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ALGEBRAIC INDEPENDENCE OF THE NUMBERS 03A0~K=0(1 - p-2K)
WITH p PRIME

by Kenneth K. KUBOTA

Séminaire DELANGE-PISOT-POITOU
(Theorie des nombres)
17e année, 1975/76, n° 15, 9 p. 19 janvier 1976

This is a description of some refinements of a transcendence method developed by

K. MAHLER in [8], [9], [10] almost fifty years ago. More recently, MAHLER has
written expository articles [11], [12] describing his method and some open problems,
two of which will be dealt with below. Full details appear in ~3~, ~4~.

1. Transcendence.

Let R : C ---> C be the map z ~.> z p , where p ~ 2 is an integer. It can be

shown that the product

defines a transcendental function satisfying the functional equation

THEOREM 1 (MAHLER [8]). - If z is an algebraic number in the open punctured
unit disc, then is transcendental.

Proof. - Suppose K == Q(z~ ~ is an algebraic number field. For each posi-
tive integer p ~ one can construct a non-zero auxiliary function of the form

where the 03B1j(z) are polynomials of degree at most p with coefficients algebraic

integers in K and b. - 0 for i : p . In fact, this amounts to solving p + 1

linear equation in the (p + 1)2 coefficients of the 03B1j(z) . A non-zero solution
yields a non-zero auxiliary function since f(z) is a transcendental function.

If m is the least index for which bm ~ 0 , then z0) ~ b as

k ~ ~ . In fact, by Cauchy’s inequality, there are positive numbers A and B

with ~  AB~ for all i > . 0 . Since R~ z = zP" , one has

as k ..-> ~ because ) I  i . In particular, there is a c > 0 independent of

both p and k such that for all k larger thm some function of p, we have

To obtain a lower bound on !E ’ (EL / k z~) ~ B one uses the Liouville inequality.



Recall ~5~] that the size s(a) of cy E K is defined by

/ . B

where the (y " are the conjugates of and den 03B1 is the denominator of 03B1 .

The Liouville inequality [~5~ is just

The functional equation (2) iterates to give

and so

Since the ~~ have degree at most p and coefficients dependent on p , it is

straightforward to verify that

where c~ > 0 depends on p but not ~~ ~ and c > 0 is independent of both p

and k. By taking k larger than some function of p , it follows that

and so by equation (4) one has a o 4 > 0 independent of p and k with

If p is chosen sufficiently large? this contradicts equation ~3~ a

2. Algebraic independence.

The title result obviously follows from :

THEOREM 2. - If is as in equation (1), and z0 = (z01 , ... , zOn) is an

algebraic point with

and ~ , ‘ ~ . f z- are multiplicati vely independent, then20142014 0~ On 2014201420142014201420142014*-2014-2014-2014201420142014201420142014201420142014201420142014 -

are algebraically independent numbers.

Proof. - The proof given in section 1 will be generalized. Let R be the func-

tion R : Cn ~ Cn def ined by (z1 , zn) ---> (z03C11 , ... , z03C1n) . The func-

tions fi(z) = f(zi) whe re z = (z1 , ... , zn) are f unct ion s algebraically inde-

pendent over and sat isfying



These functional equations iterate to give

If the f . where z 
= , ... , are algebraic ally dependent, then

they satisfy an equation 

where the i = ( t03B1... .03B1 are finitely many algebraic integers. Define
’** ° ° ~" 

~~ ~.

where t = ~ta , . ~~ ~ is a set of a.ndeterminants. Note that substituting equation
1 n

~5~ into equation ~6~ gives

If t is defined by substituting (t , z,.) in place of (t ~ z) , then it
follows that

for all k > 0 .

Suppose that one has for large positive integers p an auxiliary function of the

form

where the o.(z ~ 1:) are polynomials of degree at most p in each z. and each
w~ ~*

and with coefficients algebraic integers in K = Q(z~ ~ l) . Observe that
by equation (?) ~ one has

One can calculate the size of z0 , t(k)) and as before the Liouville ine-

quality shows that there is a c > 0 independent of p and k with

whenever

For the lower bound, one has

Since the ( are multiplicatively independent z . ~  1 ~ the set
0~ L’j



L L

of z~’ ... z~ for (L , ... ~ L~) with EL~~ ~ ~r (t) ~ 0 largest ele-

say that corresponding ’bo the (m ~ ~.. ~ in ) . An argument
similar to that given for equation (.3) shows that the term

dominates in (ll). Of course, the t(k) pose an added difficulty ; but they have

negligible effect essentially because

is small compared to p~ . In this way, one obtains for k larger than some func-

tion of p that

where c~ ~ 0 is independent of p and k. Therefore, if one could choose E

so that ~. 1 m . 1 > p 1+n" ~ and such that equation (10) holds for infinitely many 
P

k t then equations ~~~, ~ 12~ for large enough p would be a contradiction.

Guaranteeing this last condition is the main difficulty in the proof. For this,

if A~z ~ t) E K[z ,tJ is a polynomial, define A~z , 0( ~~ to mean that

for all sufficiently large k . Then one can prove following lemma.

LEMMA. - The set q(t) of polynomials A(z , t) e with A( z , t ~ ~ 0~ t)
is a prime ideal of K~ z ~ t ~ with basis in 

In particular, it makes sense to define B(z , t ~ ~. 0 ~ ~ ~ ~ where

is a power series, to mean B-r -r (t) ~ o( t) for all L1 , ... , Ln .
1 * * * n i i~

For arbitrary power series as in equation (l3) ~ the index is defined to be the
least m for which there are (in , ... , in ) with

The assertion that q( t) is prime, translates as

A counting argument together with linear algebra now allows one to construct an

auxiliary function of the form (l 1) with a~(z , t~ ~ q( t) and with

Replacing equality with ~ o( t) in the argument of the last paragraph gives

equation ( 12) and hence the desired contradiction. Although the proof of the lemma
will not be given here, it should be mentioned that the main ingredient is a va-



nishing theorem of the kind described in the next section.

3. Generalization to functions of several variables.

3.1. Let R == (p..) be an n x n non-negative rational integer matrix. Then R

defines a map R : C ~ Cn by z ~ Rz where z == (z1 , ... , z ) and

Rz = 03A0nj=1 z03C11jj , ... , 03A0nj=1 z03C1njj) .
Let z.. == (z01 , ... , z.. ) e (Q )n The 6m algebraic point with z...) mul-

0  |z0j|  1 for j = 1 , ... , n . Can a complex non-zero convergent power series f(z) with f(R 
k 

z) = 0 for all suf-

ficiently large k ?

In the cases where R is either scalar : R = pi with p > 2 or where the cha-

racteristic polynomial of R is irreducible over Q and R has only one eigen-

value of maximal absolute value p > 1 , the answer is no, and the result forms the

basis of MAHLER’s papers [8], [9], [. 10]. However, in general the answer is yes. In

fact, examples show that there are such power series for every choice of z0 pro-

vided that R is either singular or possesses a root of unity eigenvalue. In

answer "bo a problem of MAHLER [ 11], one can prove :

THEOREM .3. - With R and z0 as above, suppose in addition that R is; non- 
,

singular and possesses no root of unity eigenvalues. Then R z0 2014> 0 as

k 2014> ~ , and the only complex convergent power series f(z) satisfying

f(R z ) == 0 for all sufficiently large k is the identically zero power series.

The proof of this result as well as the refinement needed for the generalization
of theorem 2 is an easy application of the following :

(a) Baker’s theorem on linear independence of logarithms,

(b) Turan’s third main theorem (El3~ p. 53) on lower bounds for exponential
sums,

(c) Skolem-Mahler-Lech theorem [6] on zeros of linear recurrences,

(d) Perron-Frobenius theory [2] of non-negative matrices.

3.2. Let R be an n x n non-singular non-negative integer matrix with no root

of unity eigenvalues, and f1(z) , ... , f (z) The convergent power series with

algebraic coefficients and satisfying functional equations

where the ai (z) , b.(z) are rational functions 
. 

with ai (0) ~ 0 . Denote by U

the set of all algebraic points z0 = ... , zOn) with non-zero coordinates

such that



(b) The numerator and denominator of each a. (z) as well as the denominator of

each are non-zero at each of the points R k k ~ 0 .

(c) For every (Ll’ ... , L ) = (0 ~ ... ~ 0) , the linear recurrence defi-

ned by the matrix product

has at most finitely many zeros.

Here condition (b) is used to make sure one can iterate the functional equations
whereas conditions (a) and (c) are weaker than the hypotheses used before that

0  and that the be multiplicatively independent. One might ex-

pect :

CONJECTURE. - If the f. (z) are algebraically independent over C(z) and

then the numbers ... , fn(z0) are algebraically independent.

However, counterexamples can be constructed with matrices R as simple as

R = (~ ~) . One needs an additional hypothesis which roughly stated says that the
rows of R grow equally fast. To be precise y recall [7~ that the Hamilton-Jacobi
theorem implies that the coordinates 03C1(k)ij of R = (c’.’) define linear recur-

rences, and so one can write

where the cy E C  (0) are distinct and the pr (k) are non-zero polynomials. The

degree of p . , is defined by

The additional hypothesis is

One can show for example that this hypothesis is satisfied if R is of the form

R = A ~ ... (B A where A is an irreducible square matrix, i. e. no permutation

applied to both the rows and columns puts it in the form ([ §) with B , "

square. 
" "

THEOREM 4. - If , in addition to the above hypotheses, one has equation (15), then
the conjecture holds true.

3.3. For applications of theorem 4 as well as for its proof, one needs a simple

test for deciding when the f.(z) are algebraically independent over C(z) .
i -

This can be done in a purely algebraic setting. :i -> M be an endomor-



phism of a field M of characteristic zero, K be the subfield of M consisting

of elements left fixed and L be an intermediate field mapped into itself

by Q . For example, if M is the field of Laurent series, f(z) ~r~~ -> f(Rz) is as

in section 3. 1~ and L = C (z) , then theorem 3 can be used to show that K = C .

Let ... , m and j == 1 ~ ... , n(i) be elements of M sa-

tisfying "functional equations"

for all i2 , Note that condition (16) is merely a normalization, for if

ai1 /ai2 ::: ~g , then one can replace the fi1j . with gfi1j . which satisfies

without affecting algebraic independence over L . The criterion can now be stated
as the following theorem.

THEOREM 5. - If the f.. are algebraically dependent over L, then they satis-

fy a non-trivial relation of the form

where the m. are integers, c.. ~ K , and g. , g e L .
" 

~- ’ 

ij ’ 1

As an example, this yields a corrected version of a result of MAHLER [ 10]t :

COROLLARY. - Let the fij(z) be holomorphic functions defined on a connected

open neighborhood of the origin and satisfying

where the a. E C are distinct, b.. E C(z) , and R is a non-singular non-

negative rational integer matrix with no roots of unity in its spectrum. Then a

necessary and sufficient condition in order for the f.. to be algebraically inde-

pendent over is that for each i = 1 , ... , n , the functions

be C-linearly independent modulo 

4. Other problems.

The second of the three problems generalizes the functional equation (14)
by allowing the matrix R to vary. This leads to a functional recurrence of the

form



where the f . , R. and b. 1 are infinite sequences of holomorphic functions,

matrices, and rational functions respectively. For example, instead of considering

a single function

satisfying the functional equation

one considers a sequence of functions

satisfying a functional recursion

For this example, one can show :

THEOREM 6. . If the infinite sequence contains but a finite number of dis-

tinct integers (> 2) , then is transcendental for all algebraic z.. in
the punctured open unit disc.

This is a special case of a result [4] treating functional recursions of the form

(17) in which the are scalar matrices ; the case of general matrices is still

open. An algebraic independence result along these lines can also be proved.

Finally, we mention that the third problem of [11J is still open. Here one asks
about the transcendence of values of holomorphic functions f(z) satisfying a po-

lynomial functional equation

The most interesting example is

where j(z) is the modular function of level one. In this case, all I am able to

show is the inequality
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