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Séminaire DELANGE-PISOT-POITOU 11-01
(Théorie des nombres)

17e année, 1975/76, n°® 11, 12 p. 15 décembre 1975

PAIRS OF POLYNOwmIALS SMALL AT A NUMBER
TO CERTAIN ALGEBRAIC POWERS

by W Dale BROWNAWELL(™)

In 1949, A. O. GEL'FOND [6] proved that when «

is §lgebraic, a#0, logu«
#0 , and B is a cubic irrational, then aB and " are algebraically indepen-

dente Almost immediately thereafter GEL'FOND and N. I. FEL'DMAN [7] were able to

show that for fixed € >0 , when P[x , y] € Z[x , y] is non-zero with

dhgx P+ degy P + log height P = ¢t > tO(& v By €)

then

e 2
log [P(e” , of )| 3 - exp(t

44e
)

For this, they used Gel'fond's transcendence measure [6] for o

In 1974, G.V. CUDNOVSKLI [5] significantly extended the meithod of GEL'FOND and
FEL'DMAN to show that in certain specific sets of numbers at least three: are
algebraically independent. Using ®me of these ideas, M. WALDSCHmIDT and the au=-
thor [3] recently showed that if « is only very gell approximated by algebraic

numbers in an appropriate sense, then aB and oP are still algebraically
independent.

Later the author [2] remarked that when @ itself is not algebraic, then these
ideas suffice to show that «o , aB and ab are algebraically independent when
o 1is well approximated by algebraic numbers.,

1o Statement of results and Ereliminarx commentse

THEOREM 1o - Let o, 5 €C, ¢ #0, lnga #0 with B cubic irrational.

Then there is a constant C , depending only on B and log ¥ , such that for

relatively prime polynomials R(x , y) , S(x , z) € Z[x 4, v ; 2] the following
inequality holds @

11/2
log max {IR(aO , a1)| , IS(aO , a2)i} > —exp (Cd / d% log h) ,

where

d

I

(degy R), (degZ >0,

d1= degx R + degx S>>0,

log h = d; + log ht R + log ht S ,

e

o1l
~

( ) Research supported in part by the National Science Foundation.
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and 8y, 1 84 9 a, is an arbitrary permutstion of o 5.&¢ 4 ¢ =

As usual, height, abreviated ht, demotes the maximum absolute value of the ccef-

ficients of a polynomiale.

When d or d1 is zero, one of the variables X 3y or z does not actuelly
occure. Then a direct argument using a very recent regult of M. MIGNOTIE and M.
WALDSCHMIDT [8] applies (see remark 3 below). The result of MIGNOTTE and WALDSCHMIDT

has the following caerollary :

THEOREM. ~ Let aeC, a#0, loga #0 , and b be algebraic irrationals
Then for any non-zera P(x),Q(x) e Z[x] with

deg P + deg Q + log ht P + log ht Q = t > tg

we have

log max{IP(a)l . 'Q(ab)l} > - t11 .«

As a consequence of thecrem 1, one can deduce a non-trivial lower bound for arbi-
trary relatively prime polynomials at (¢ , aB ’ aB ) in which x , y and z

actually occur. Theorem 1. deals with the case that at most one vaxiable occurs
in both R and S .

THEOREM 2, - Let o 5, B 8 5 84 9 3 be as above. There is a positive constant

By depending only on B and log o , such that for any rclatively prime polyno-
mials R(x , y) , S(x , v ,2) €Z[x , ¥y , z] , we have

11/2 2

log max{lR(aO s am)i . lS(aO Ay az)[}z - exp(R d / d.1 log h) ,
where
d = (deg R)° (deg S) > O
Y \ z 9.
d1 = degx R degY S + degY R degx S
log h = d1 +rdegy R log ht S + degy S log htR ,
and

) c~
degy S>>0, degx R + degX S>0 .

After a permutation of ag s 349 if necessary, it is clear that theorems 1
and 2 cover any case where R and S have at most two variables in comaon and a
direct argument from the result of MIGNOTTE and WALDSCH:.IDT is impossible. The

remaining cases are covered by the following result :

THEOREM 3¢ — Let o 5 B » ag s 3, s a, be as above. There is a positive constant

® , depending only on B and log @ , such that for any relatively prime polyno—

mials R(x 4y ,2) 5 S(x sy s 2).€Zlx, vy, z], each involving x , y and z ,

we have




1103
11/2 2
log max{ [R(ay » a5 s 3) | 4 IS(ag 5 a4 5 ) [} > exp - @ d / dy log h) ,
where

- 2
= {(degy R)(degZ S) + (degZ h)(degy )} ,
= s s R .
d, = deg, R(degy + deg, ) + deg, SQdegy K + deg, R) ,
log h = d, + (deg R+ deg, R)log ht S + (degY S + deg, S)log ht R .

The spirit of ihe theorem is thus that any two po}ynomials which are both small
at (o, aB ’ a ) must have a non-constant common factor. The title was chosen

to reflect this way of expressing the. results..

The results in this report represent the third stage in the investigations begin-
ning with the joint work with WALDSCH..IDT. Since we do not assume « to be alge—
braic, we have no transcendence measure for aB s as did GEL'FOND and FEL'DMAN,
Instead we use the above consequence of the msult of MIGNOTTE and WALDSCHuIDT [8]
which gives a lower bound on simultan@&ous approximations to a , b , ab (a #0,
l1o0ga#0, b £Q) by algebraic numbers. The results in this direction by T.
SCHNEIDER [10], A.A. SMELEV [9] or P.BUNDSCELH [4] would have sufficed, except
th&t they concerned only approximation by al gebraic numbers of bounded degree. There
are many such results on the simultaneous approximation of certain.numbers by
algebraic numbers or, equivalently.on the simultaneocus smallness of polynomials
over E’ in each of the given numbers. However the results above se@m to be the
first whioch give lower bounds on the simultaneous smallness of two relatively prime

polynomials in three quantities.

Preliminary remarks.

° In view of lemma 3, we can assume that R and S are irreducible.

2° It is immediate from lemma 5 that two small relatively prime polynomials can

not involve just one of the a8y s 84 9 8«

3° In fact, two reletively prime polynomials which do not involve all three varia-
bles between them can be treated directly by the result of MIGNCTTE and WALDSCHWIDT s

Say R and S involve only a_. and 3y . Then using an argument on resultants to

0
alternately eliminate the variables occuring in both R and S , we obtain non-

gero polynomials P(aO) e Z[ao] » Q(ay) €Z[a,] with

deg P , degQ < d, = 1‘1 + deg, R)(1 + degY S) + (1 + degx S)(1 + degy R)

1
log ht Q < h2

loght P<h, = (1 + degy R)(1 + log ht S) + (1 + degy S)(1 + log ht R)

(1 + deg_ R)(1 + log ht S) + (1 + degX S)(1 + log ht R) ,
and
h
Blag)| < (14 o+ a2 o P maxgRleg » a) | » [5ag » a1} »

d, hy
|Q(a1)' €1 +e+ |a1|) e max{lR(aO . a1)l , [S(aO , a1)l} ’
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as in [1] (@~ 6-7, 10-11).

4° For similar reasons, we may assume that there is a constant & > O , depending
only on B and -log o such that when B[aO] € Z[aO] is non-zero with

deg B < (deg R + deg S)

log ht B £ (log ht R + log ht S + deg R + deg S)

then

long(aO)I >—£(deg R + deg S + log ht R + log ht 8)22

Otherwise we could take the resultant of B(x) and R (or S') with respect to
x ([1] p. 6-7, 10-11) to obtain a small non-zero polynomial in a, (or ay )
which together with B(aol would contradict the result of MIGNOTTE and WALDSCHMIDT.

5° One uses similar arguments with resultants tn deduce theorem 2 from theorem
1 by elipinating y between R and S . The resultant plays the role of S in
theorem 1. For theorem 3, one eliminates both z and vy , alternately. The first

resultant plays the role of R and the second that of S in theorem 1.

Notaticne. - The gothic lower case letters [ 4 r. , n will denote triples of inte-
gers given by corresponding Greek lettersS and absolute value signs will denote the
(3
sup norm. E. ge 1 = (ko ’ X1 » Ay ) €Z 1=0,1,2 Iki .. The
coprdinates of | and n will be non-negative. In addition, we s&t b = (1 , B , B ) s
[ = XQ +-k1 B + A2 52 and similarly for n«b..

and lll = max,

The letters Cq 9 Cy 9 Og g oo will denote positive constants depending only on
B and log o «

2. Auxiliary lemmas

n-1

P(x , ¥) = Po(x)y" + P, (x)y"" + cou + P (x) €Z[x 4 Y]

and P(x , g) = O « Then for every positive integer r >n , we_can write

(x)

(Po(x)fg)r = Pr,o‘(x)gn_1 + eee + P

r,n="
with each Pr j(x) e Z[x] satisfying
’ ~~

(1) deg P_ ,(x) € (x + 1 - n)deg P(x , y)
9
(i1) height Pr j < (1 +(1 + deg P)height p)r+1—n

’ degxP r+1~n
< (e ht P) .

The lemma clearly holds for r =n and follows for r>n by a straight-forward

induction.

IEMA 2. — Let R and S be positive integers, 2R < S , an 233 € Z[x]
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i€<i<R, 1£3ji<KS, satisfy

deg a; s < d, height 35 A where A > 1.
Then there exist polynomials f1&, eve fs 6‘%[x] , not all zero, satisfying
deg £, < d , height £, < ((1 + &?)sn) R/ (6-2R)
and
E:s a.. £f. =0 1< i<R
=1 713 7J ! SEs T

For a proof, see [1], lemma 5.2.

LEMMA 3. - Suppose P(x , Y) ’ Q(x y Y) eg[x s Y] « Then

degxPQ+degyPQ

(height PQ) e > (height P)(height Q) .

For g proof, see [6], lemma 2, p. 135, or [11], lemma 3, p. 149, where a particu—

karly clear expositiom of the fundamental one variable result is given.

e(n.b)z

an
n and

LEMvA 4. - Suppose F(z) = Zln | A

b, = min (1 5 |zeb [min(1 ’ |10g «l))

0 O<|m|< N

b

1]

- max In |<N (1 ’ In.b lmax(\’l; 9 llog O."))

E = maxlnl<L$Nb|F(P)QQnob)log a)| .
O<p<P
£ P 2\ + 13 b , then
2 3

3
max|A_| < By /2 P (2bbo)-N (72b/bOL3/2)PL

E .

For a proof, see [12].

[EMMA 5. - Let £(x) , g(x) € Z{x] have heights l£] , |g| and degrees m 4 n ,

respectivelys, Then f(x) and g(x) have a common non-constant divisor in ‘%[x]

if, and only.if, for some w €C ,

max{ |£(w) | 5 lg(w) 1} 117 g]™ (m + n)"

-+
n<1.

For a proof, see [6], lemma V, p. 145-146.

LEMVA 6. - Suppose w € C and P(x) € Z[x] setisfy [P(w) | < e—kdih*d) where

A23, d>degP, P > height P « Then there is a factor Q(x) of P(x) which

is a power of an irreducible polynomial iR Z{x] such that

logla(w) [ <= (A = 1) d(h + 4) .

For a proof, see [6], lemma VI, p. 147,

IEmdA 7. — Suppose w € C 1is transcendentel and € € C satisfies a monic poly-
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nomial f of degree & d which has coefficients in Z[w] of degree < § , and
height < eX . Let h1 . hz be real numbers satisfying

Ay > A, > 6 +2 log(d + 1) +2 log(w| + 1)
If
- Ay 8(6 +x) < loglgl € - n, 8(6 +x)

then there exist an irreducible polynomial P(w) € Z[w] and an irteger s > 1 such
that p° d_vides the constant term of f and that

A
2
3dh,, 8(s +x) < log|P(w) | € = 25 6(s +x) «
For a proof, see [3], lemma 6, where a little less is claimed.

LEMMA 8 (Newton's Identities). - If Qg g sew g @

n 2Le the roots of

1

f(x)=xn+a1 xn— +ou.+an _?_rl(_i_ Sk=a$+... ';‘ak 1<k$n,

then: for T <k <n,

Sk + a,l S/k—-1l + s0s + ak_1 S1, + kak = O ®

3. Proof of theorem 1.

This proof has much in common with those of [2] and [3]. When: the details are
the same, we shall indicate briefly the basic idea and refeg to [3]. For definite~
ness, we shall prove the case ag =« 5 3y = P g a8y = aﬁ

cases are essentially the same,

below. The other

STER O = Setting the stage. - We assume for the sake of argument that the asser—

tion of the theorem fails for C and dm/2 d1 leg h  sufficiently large, depending

on B 4, log @, (by tracing through the proof, one can state explicitly what one
is requiring). We take

b € N such that b 1is an algebraic integer,
B, € Zlo] to be the leading coefficient of R(a , y). with respect to y ,
B, € Z[o] to be the leading coefficient of S(o , z) with respect to z ,
3 to bee a root of R(x , y) closest ta o , and:
g, tobe a root of S(a 4 2) closest to aBz .
As in the proof of lemma 3.11 ¢f [1], pe 12, onehas that

o ls2 Y Ry, )V Ry s o)

2 d S 2 2
‘QB - §2| 2 egz IS(Q ’ QB )'/|S3(a ). aB )l '

where the subscript 2 (or 3 ) denotes partial differentiation with respect to
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y (or z ). Applying the lower bound, we have for polynomials in « to the resul-

tant of R and R, with respect to y (and S and S, with respect to z) we
have that

2
(1) loglo‘B - §1‘ ’ loglozB - §2' <= exp(( S~ T)dj1/2 6% log h) «
Moreover |
(2) log|B1l ’ longzl > - &(deg R +deg S + log ht R + Zog ht S)22 .
Let
7 11/2 2 _
Ny = [exp(Cd™ /" df , log /7)1, My = [N log N.J «

11/2 2
d / d1 log h 1is large enough,

N?:log_Nm < exp(13Cd11/2 dﬁ log h/14) .

It is easy to verify that when

For NO <N N1 s we define
L, = N2 (1og N/d 10g 1) 74
PN(=‘[N§/2(1Q9 h/ log N33/4/1Qd1/4]
Hy = [N3/2 (Log I‘F)V4 (log h:)s/ 4/dm/d‘l .
Note that
NLN log h + PN log N < 2HN"

STEP 1. — We show that there exist o(n) € Z[] , lnl < N , not all zero and even

without a common divisor im Z[w] satisfying

log(hdight o(n) < c, Hy
degree @(n) < ¢, d, NIy

such that the function

Fy(2) =2 | 1oy @(n) exp((r.0)z)
satisfies
logIFN(,z).l iz|=-:}33'2;4/3 SN > log N/d .

(A) Consider for |I| <L, O0gp< Py the expressions

2P C.NL C,NL
o (s, By) > LN(O@m ) " . |y Jau @) (me0)® @ Yo g

where Ho 9 Hyq 0 Ho e‘%. satisfy

2 o . 2
bc(g.b)(ieb) =pg *huq B tuy Bos
(Multiplying by (ozg1i 52) ath with G, large enough ensures that the powers of

oy Ey 0 and & appearing are non-negative.) Since Eﬁ g, and 82 5, are integrel
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over Z[a] , we use lemma 1 to rewrite the above expressions as

k k2
2 1
= X Z I N .
q’p,,l Zn cp(n)(no +T B 4T, B ) Pk‘l:’] (‘a)"(B1a 51) (B, 52)
where (K, o k,) runs over all pairs with O < k, < degy R, 05k, <deg, S

i < ith.
and where T, € Z with loglni| Sk PN log N and where pk1,k2(a) € Eﬁa] wi

< d =
deg Pk1wk2 Cq NLN( eg, R + degx S) s d1 NLN

J - N
log ht Pk1,k2 S og NI (d1i + log ht R + log ht S) = o, NL, logh,

k

We plan to choose the «(n) € Z[o] so that the coefficient of each (81 §1)‘

k

2 . . 3 .
(B, 52) vanishes for O < p <P, |§l < L, « That gives us 3dP L~ equations.
But the number of unknowns o(n) is N~ , Since

3 3
3dP L <N/4,
we may apply lemma 2 to obtain a non-trivial solution with @O(n) G‘E[a] satisfying
deg gy(n) < oy d; NLy
log ht cpo(n) $ ¢q By log N + cg NL log h < ¢ q Hy «

After dividing each ¢O(n) by the greatest commen divisor of all the @O(n) ’
lemma 3 assures us that the quotients @(n) which. remain satisfy

. degipln) € o5 d NLy
log ht ¢(n) < c, Hy
as desired.

(B) For 0gp< Py and | < Ly » we have

2P c-N NL

N sNLy ANy

lép’! —b (81 B2) (Cf gm §2) FN(p) ((I'b)bz leg Ol)l
PN+NLN

N 2 v
sop VT el IR e P lal ® 1y o) (B, P )2 - (B, ey P (B, 5) ) e

2 v
(B, ) (8, o )2 - (B, g,) ' (8, §2)v2|
V4 B B B
) <Im R e M e 2 =2 e el =gt D)

and

N Oy ;
HN’+ PN log N + d1 ALN < Zle +c .y HN1 leog N1 ’
we have, by (1) and (2), that
“\ 2 2 y
1951P§p) (6 (1.5) log o) | < - exp(13 C ali/ d‘f leg hW/14) < — (NB1L leg N1)2 .

(C) To establish the claim, we use Hermite's interpolation formula on the circles
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about the origin of radii N4/3 and N5/3 :

_ F.(C)
- 1 I\I_L; Z"“b(sou) Log
Ayz) =571 j),g|=N5/3 c-z 1 C —1°(142) log o a) %
E(PI (12 (14) 1 "
1y B F{ie) tog ")j G=12(1e)) 1og )P 1 gz = 52(ied) log gnPN
“20i Ti,p ol g -z an ) dg

2
2 ) - b (I °y ) 1o
[ k.!»b)logal=b2 g o g«

where the indices 1 , §!
and LN - 1, and where

Tun over all possibilities with coordinates between O

2 .
2b2 =D (log a) mlnwél, Ilob - I”obl .
Fer the details, see [3], step 1.

STEP 2. - we now note that there is an integer Iy eN, 1< S €12 & , such

that for some: Pg gnﬂ ’ PN < Po < Ty PN and IIOI < Ty LN s We have

&
€14 ™N

Otherwise by lemmas 4, & and 5, the @(n)- must have a common factor in Z[w] .

(pp)
N3 log N' < log‘F (H?(lofb) log o) | € N log N/4d .

For the details, see [3], step 2. In fact, by (3) and easy upper bounds on lBﬁ'

ana fle, we see that

3 4 3
- £ - ag N
cis N log N € log ‘@po"ol S - oy oy N 1og /d
where, when we write & as

Porlo

(4) %001, =2 5.k (bp)* g J (B, &) pi,j,k(o‘)"

2, OSdengR, O\<k\<degzsv piik‘ez[d]r.wehave

deg pijk.s Cym d1‘rN NLN

log ht Pijk S Cyg Ty HN .

STEP 34 -~ We know that @p ( is integral over Z{w] of degree at most 3d .
0’°0 ~
To apply lemma 7, we must find appropriste upper bounds on the degree and height
of the coefficients of a monic polynomial for @, 41 OveT Z[o] .« Surprizingly,
0" 0
it seems more convenient to use Newton!s formulae for this purpose than to take
a more direct approachs.
deg R—j degyR-1 deng-k ]
The coefficient of (B1 y) ¥ in (Bm Y.) R (of (B, 2) in
deg S-1:
(B, z) z S ) has degree in x at most

(3 +1) deg, R ((k + 1) deg_ S)

and height at most

: ' %
(1 + deg_ R)d (nt r)IY ((1 + deg, s)¥ (nt s)¥*

) s
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as one sees by keeping in mind that for polynomials £ in: one variable

11’f2

(%) ht £, £, < (1 + min{deg £, 5 deg £5})(ht £,)(ht £) .

Let S5 (s2k) denote the sum of the j-th (k-th) powers of the conjugates

of By & (B, &) over %(C') + Then $13 ? Sy € Zla] + Lemma 8 and (5) allow us
to show by induction that for 1< j < degy Ry, 1Sks<deg S, we have
z

deg s1;j £ 23 degX R, deng_s 2k degx S,

=1 ;.\2 23 23
ht s, . < 237 (31)° (4 + deg, R) I (ht )Y,

J
ht s, <2577 (k)% (1 + deg. $)°K (nt 5)%K .
2k X
Let $, € Z[a] denote the sum of the 4~-th powers of the épo lg s the 3d
- 'Q
i btai b i B, E A in. by their
expressions obtained by repla cing 4 é‘]; 9 82 & and b in épo"o y their
conjugates. We consider the powers 4 < 3d of ép [ They may be expressed as
0*’o s
. . _ In N k.
in (4), but now the coefficient Qijk{oz) o§ (bg)*.(B, 51;), (B, &) Thes

degree < 49 ,'2,d1i T N\LN R

log height < ¢~ 41, Hy,

20 "N N

Sy v So e% s dependent only on. B ,

P

Thus we see that, for s

8, =%, 5,k 51 515 Sok Qagkle)
Hence

deg,gﬂ £2 degy R degx R +2 olegz S degx S + 19 44, T,

S
N NLNJ\ C,2,]17,d

Ty Ny o

1

log Ht g, < 2[(degy R) log(?t + degx R)]
+ 022[(degy R) log(1 + degy R) + (degZ S) log(1 + o\egz S)]
+ 2[degy R log(1 + deg, R) + (»degZ S) log(l + deg, S)]

+r2[degy R(log ht S) + (de.gz S) log ht R]
< Cog er%H{N -

Applying Newton's identities inductively and recalling (5), we conclude that the

coefficient of Lﬁd—z in. T(w- & [ ) has
Poslp

degree £ Gy4 ~dy Ty NLy & 3cyy dd11 Ty NI.N ’
log height < c¢,, «Ty HN -
Since d d2(r NL ) (x H\I') <z N3 log N/d , with the ratic. arbitrarily lerge
1 e L N

(depending on our choisce of C) we can apply lemma 7 to conclude that there is &
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po}ynomial Inﬁa) e‘z[a] which: is a power S 1 of an irreducible polynomial
UN(oz)..v € Zlo] with

deg T(¥) < c,q dad, Ty Nhyg
log ht Ty(a) € oy d 1y He
4 3
INZN log N

3
= Cyq dN” log N < loglUN(a)l S - g _—-?E%;-_-_-'

Note that, agcording to lemma &

deg Uiy § 5 ddy oy Nlyf'sy

and

log ht Uy € ¢, drN HN/SN?'
STEP 4, - We apply lemma 5 to UN and UN+1 ’ NO <N< N1 « Since

1/2 2 . _ 1/4
(C/14) d d; log h < log N, and since rN/sN,, rN&ﬂ/SNMJ Se, d ’

we see that, for large C ,

2

R D ;;- L
S0 & A (/o) (v 4/ sy N> (log K)E (log h)/d?
11/4

/A

. 3 1 X
C3g d d, mln{rN/sN . rN+1/SN+1}N (log N)® (log h)?/d

< cso(m/c)% 2 log N(min{zy/sy s Ty,q/Syeq3)/d

< chg N log N(min{x'Nl/sw s T /5N+1})/d .

N+1

1 = UL i < N< -
as required to show that UN‘ UN+1 ’ NO s N N1
STEP 5« = We now derive the final contradiction by showing that UN # Uﬁ. .
0 %

SN
Otherwise TN = U L .
1 No

Hence
log|TN1(a)| = s, logluy (9|2 - cyg ad; y N, LN1 X Cpoy GN% log Ny «
T ] 1
But in step 3 we saw that

4 3
longN1(oz) S rN1 N log N./d .
It is a straight-forward calculation to show that these two inequalitdgs cennot

both hold under our definition of No and N1 .
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