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SOME APPLICATIONS OF BAKER’S SHARPENED BOUNDS

TO DIOPHANTINE EQUATIONS

by Robert TIJDEMAN [Leiden]

Séminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
16e annee, 1974/75, n° 24, 7 p. . 26 mai 1975

1. In 1~66-1968, BAKER ~ 1 ~ published four papers entitled linear forms in the

logarithms of algebraic numbers". His results were improved by himself and others.

Some very important improvements can be found in a serie of three papers of BAKER

~ 4~ named "A sharpening of the bounds for linear forms in logarithms", which were

published in 1972-1975. I shall discuss some consequences of the first of these

papers to the following diophantine equations.

As usual N, Q, A ~ R stand for positive rational integers, rational

numbers, algebraic numbers and real numbers.

2. Let us first assume that a, b , k and n in equation (1) are fixed
positive rational integers with n ~ 3 . It was proved by around 1908,

that (1) has only finitely many integer solutions x, y . In fact, THUE proved
his result for the class of equations f(x, y) = k , where k is a non-zero inte-

ger, and f is an irreducible binary form with integer coefficients of degree

n ~ 3 . He derived this result from his theorem on the approximation of algebraic

numbers by rationals. This last theorem was subsequently improved by SIEGEL, and

ROTH [10J. The well known theorem of Thue-Siegel-Roth states that for any algebraic
number ex and for any e > 0 there exists a constant c = > 0 such

that

We now assume that a, b and k are positive algebraic numbers. We apply ine-

quality (4) with a Hence, there exists a constant c~ = > 0

such that 
°

On the other hand, by the mean value theorem, there exists a ~ with 

such that



So we obtain

~"~ "V J

for some c~ = c~(a ~ b ~ n) > 0 . The combination of (5) and (6) yields a constant
c.==c.(a~b ~ n ~ e)>0 such that

In particular, if a and b are fixed algebraic numbers, n ~ 3 is a fixed po-

sitive integer, and k is bounded, then there exist only finitely many rational

integers (x, y) satisfying ( 1~.

Roth’s theorem has been generalized by W. M. SCHMIDT [12]. Let cy be an alge-

braic integer, d a positive (rational) integer, and E > 0 . Schmidt’s theorem

implies the existence of a constant c5 
= c5(03B1 , d , e) > 0 such that

for every algebraic number 03B2 ~ cy of degree at most d and with height at most

H (> 2) . One can deduce as above that if x/y is an algebraic number of degree

at most d and height at most H such that (l) holds, then there exists a cons-
tant c6 = such that

3. Several authors have given upper bounds for the number of solutions

x , y , k E N of equation (1) for fixed rational integers a, b (See for exam-
ple SIEGEL [16], HYYRÖ [7]), However, all theorems which I have mentioned up to now
in 2 and 3 have the disadvantage that their proofs are ineffective. This implies
that the constants c4 and c6 cannot be calculated from the proofs. The first

effective proof of Thue’s result on f(x , y) = k was given by in 1968.

This was one of the first applications of Baker’s method on linear forms in the lo-

garithms of algebraic numbers. Baker’s sharpened bounds were recently used by

SPRINDZUK [17] to derive a generalization to norm forms.

In order to illustrate the applicability of Baker’s sharpened bounds to equation
~ 1 ) , we assume that a, b , k , x , y are positive algebraic numbers of degree at

most d . It follows from (1) that

vy

This is a linear form in the logarithms of algebraic numbers. Baker’s "sharpened"
theorem ~~q.~~ I~ reads as follows. (By log x , we mean the principal value of

logx .)



THEOREM i - Let 03B11 , . , 03B1n be non-zero algebraic numbers with degrees at
° 
- 1 

° 
n ----- 

. 

- - ...- . - ..---

most d , and iet the heights of 03B11 , ... , 03B1n-1 and 03B1n be at mOSt A’ (1 2)

and L (p 2) respectively. Then there exists on effectively computable 
constant

C = C(d , n , A’ ) such that the inequalities

~ ~ ~~l log ~l ~° * ~ ~n log "n~ ~ log ~~

have no solutions in rational integers ... , bn with absolute values at most

B (z 2) .

Hence there exists a constant c7 
= c7(a , b , d) > o such that

where H (> 2) is an upper bound for the height of x/y .

On combining (9) and ( 10 ) , we obtain

The bound for k is comparable with (s), but the constant c~ is effectively

computable. It follows from [l9] (Theorem 2] that there are positive constants

Cg = Cg(d) and c9 such that c7 
= c8(log h)c9 , where h ( 2) is the height

of a/b.

A very remarkable feature of (ll) is the fact that c~ dies not depend on n .

Let us assume that a , b , k , x and yare positive rational integers, y ~ 2 .

Then H ~ max(x , y) ~ b , k)y in view of (l). It follows from (ll) that

for n > c- log n

Hence, n  c11(a , b , k) . BAKER’s effective proof of Thue’s theorem [2],

implies that for every integer n ~ 3 there exist effective upper bounds for x

and y. So we have deduced as a simple consequence of a 
much more general result.

THEOREM 2. - Let a, b and k be fixed positive rational integers. Then the

number of solutions in integers n~3 , x ~2 , y~ 2 of the inequality

b9 = k is finite. There are effectively computable upper bounds for n, x

and y.

4. We turn our attention to the equation 9 = P(x) , where P ~ 

is an integer, m ~ 2 . There are some trivial cases in which 
there might be infi-

nitely many integer solutions x, y . For example, if m = 2 and the degree of P

equals 2 (Pellian equation) or if P has only one distinct root. On the other

hand, it follows from a mach more general result of SIEGE[, ([l4], M) that (2) has

only finitely many integer solutions x, y if

(a) P has at least two distinct simple roots and m ~ 3 or



(b) P has at least three distinct simple roots and m = 2 .

Siegel’s proof is ineffective, and the first effective proofs of (a) and (b) were
given by BAKER [ 3]. These results imply that under very general conditions a poly-
nomial with integer coefficients assumes at most finitely many squares, finitely

many cubes, and so on, at integer points.

One may ask whether it can occur at all that a polynomial assumes infinitely many

perfect powers at integer points. Of course this might happen if P has only one

distinct root. The following theorem shows that in all other cases only finitely

many different kinds of powers can be attained at integer points.

THEOREM 3 (SCHINZEL and If a po lynomial with rational

coefficients has at least two distinct zeros, then the equation

in integers x ~ y with Iyl >1 implies mc(p) ~ where c(p) is an effecti-

vely computable constant.

The following reasoning shows the relation between the equations (l) and (2) .

Let K be the splitting field of P , and let

For our convenience we assume a = rl = r 2 = 1 . Since for every integer x ~

the highest common divisor of any two factors on the right hand side of (12) is

composed exclusively of prime ideals of K dividing p = ~.. (a. - a. ~ , Hence,
3

for 2, we have

for some ideals b . i and c, i such that bi is composed exclusively of prime fac-

tors of a and (c. , A) = 1 . Denote by bl and cl ideals of K inverse to

bi and ci , respectively. Then

So we find algebraic integers ~i and ’~i such that

This equation is just of the form (1).

The complete proof of theorem 3 is considerably more complicated than the-proof
of theorem 2, but apart from some classical algebraic number theory only results

obtained by Baker’s method are used. One of these results is Baker’s sharpened



bound ([4], I), the other one is a result due to SCHINZEL, KEATES, SPRINDUK and
KOTOV (see L8D that the greatest prime factor of P(x) exceeds c ~ log log jxj y
where c ~ = c ~(P) > 0 . In fact, it would have sufficed to use an older result of

COATES [5], also proved by p-adic methods. A different proof, not using any p-

adic methods, has been given by SHOREY. See [13]. This paper also contains some

generalizations of the result of KOTOV et.al.

5. Finally, we turn to Catalan’s equation (3). One might try to prove the ana-
logue of theorem 2 for the more general equation in positive integer variables

m ~ n ~ x ~ y

where a, b and k are fixed positive integers. It is easy to derive a corres-

ponding linear form log a/b + m log x ~ n log y , but the application of Baker’s
theorem 1 does not provide the desired result, since both x and y are not cons-

tant. If m or n is fixed, then we can apply theorem 3 to k or by + k
respectively. We can then conclude that there are only finitely many solutions in

the three remaining variables. It has not been proved yet in general that for fixed

integers a, b and k there exist only finitely many solutions m, n , x , y

satisfying (13). However, for very special values of a, b and k there are

such results. The first result of this kind concerned Catalan’s case a = b =k = 1.

CATALAN conjectured, in 1844, that the only solution of the equation xm y = 1 ,
m > 1, n > 1 , x > l ~ given by 32 - 23 = 1 . By using a refinement
of theorem 1 cne can prove

THEOREM 4 [19]. - The equation xm - yn = 1 ,in integers m > 1, n > 1, 

y > 1 has only finitely many solutions. Effective bounds for the solutions can be

given.

The proof is based on a double application of the factorization argument in the

previous section. It is no loss of generality to assume that m and n are primes.
Since LEBESGUE [9] proved that n ~ 2 , it follows that n is odd. Hence we have

the factorizations

It is easy to see that the greatest common divisor of the two factors on the

right-hand sides divide m and n respectively. So we obtain integers d , d2 ,
c1 and c2 such that

Here d~ is a power of m and d 2 is a power of n. On substituting this in



( 3~ , we find

It follows that the difference d c~‘ .- d~ c~ is small. This leads to a

linear Although m, n , d 1 and d 2
are not really constants, they are relatively small. It is possible to deduce theo-

rem 4 from a refinement of theorem 1, namely with C~d , n ~ A’) replaced by

C(d , n)(log A ~ , to find upper bounds for m and n, and then to apply
Baker’s results mentioned in the beginning of 4.

It is clear from the proof that more complicated arguments are needed for genera-

lizations of (3). Certain generalizations have been announced by CUDNOVSKU (see
[6], §6) and by VAN DER POORTEN.

I hope that your conclusion of this paper will be that Baker’s sharpened bounds

provide an essentially new tool to obtain information on variables in the exponents

of diophantine equations.
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