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DIFFERENCES BETWEEN PRIME NUMBERS

par William J. ELLISON

1. Generalities.

We denote by {pn} the sequence pf prime numbers, and by {dn} the sequence of
differences between consecutive prime numbers, i. e. dn =Ppyy = Pp * The sequence
{dn} is very irregular ; one knows virtually nothing about its members. For exam-
ple, the celebrated "twin primes™ conjecture is equivalent to the assertion that

{d,} contains an infinity of 2' s .

A trivial remark is that dn is "in mean asymptotic to log n ", for by the

prime number theorem we have

2 . d =

ngl &n = Pyyq ~ N leg N

and so

ZNSnQN d ~Nlog N .

Thus, the mean value of d for ne€ [N, 2N] is asymptotic to log N . Because
of this observation, it became customary to consider the "normalised" sequence
{dn/log n} . It is unreasonable to expect answers to detailed questions about the
elements of the sequence, however, considered simply as a sequence of real numbers

it is sensible to ask :
(1) what is 1lim inf (d_/log n) 2
N~ n
(2) what is ligﬂsup (dn/log n) ?

(3) Does there exist a "simple" function f(n) such. that (dn/log n) < f(n) for
all n?

As for the first question we know that
0< lin inf (dn/log n) € 0,46... ,

a result of BOMBIERI and DAVENPORT [1]. It is probable that the upper limit can be

reduced slightly, but naturally one conjectures that the true snswer is O .
For the second problem it was shown by WESTZYNTHUIS [12] that
lim inf (dn/log n) =ow

and later RANKIN [9] proved that there exists a constant e >0 and an infinity -
integers n such that

d
n_ c(log log n)(1oz log log log n)
log n *

(1og log log n)2
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Nothing more precise on questions (1) and (2) seems to be known. However, there
is a curious problem which has bemopen for twenty years. RICCI [10] and ERDUS
proved that the set of limit points of the sequence {dn/log n} has a positive
measure, but no specific non-negative real number is known to be a limit point and

the precise measure of the set is unknown.

Today I would like to discuss the third question in some detail. As usual in
prime number theory there are conjectures which are almost certainly true and then
there are the considerably weaker results which one can prove. The third question

is more or less equivalent to the following.

(4) Does there exist a "simple" function F(n) such that for each integer n

the interval (n , n + F(n)] contains a prime number ?
Denote by m(x) the number of primes less than x . If we can show that
n(x + h) - n(x) >0,

then it follows that there is a prime number in the interval (x, x+ h] . However,

for technical reasons, it is better to work with the function o(x) defined by

o(x) = zisx

and then use the observation that e(x +h) - e(x) > 0 1is equivalent to the fact

that the interval (x , x + h] contains a prime number.

log P

2. Hoheisel's theoren,

The prime number theorem asserts that o(x) = x + 0(x) , thus
8(x +h) -o(x) =h +0(x +1n) .
If ¢ >0 and we choose h = gx s then
o(x +1h) - o(x) = ex +0(x) ,

end for all x > xo(g) the right hand side is positive. Thus for any ¢ > 0 and
all x > xo(g) the interval (x , X + ¢x] contains a prime number. With a better
error term in the prime number theorem one can obtain a stronger conclusion. For
example, if the Riemann's hypothesis is true one can prove that 6(x) =x + O(xé+e)
from which it follows that for any ¢ >0 and all x > xo(g) the interval

(x  x +x7¢] contains a prime number,

With these observations in mind one might hope to give an unconditional proof of
the following result.

THEOREM 1. - There exists a real number 8 < 1 such that for all x > xo(e) the
interval (x , x + xe] contains a prime number.

It was long thought that in order to prove this theorem one must make progress in
proving Riemann's hypothesis, however a remarkable breakthrough was made by REOHEISEL
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[6] who proved the theorem with @ = 29999/30000 . In recent years Hoheisel's
result has been improved upon and smaller values of © have been bound. As they
represent the best known unconditional response to question (4), I will give an
account of them before discussing the probable true state of affairs.

The objective is to prouve a result slightly stronger than is asserted in theorem
1, namely that if h > x° , then @(x + h) = 9(x) ~ h . Our starting point is the
well known "explicit formula" for 6(x) , namely

P

2. X, O(xé + = log2 x)
p=pti P T '
EB3Y
o<fy|<'1'

valid for x> 2 and 2 T < X . A simple calculation yields

((x + )P -~ xP x% x 2
0<|$|$T' T | + 5+ g Log” x) «

it - possible to choose h and T as functions of x such that the "O" term
tends to zero when x tends to infinity, then we will have @6(x + h) - a(x) ~1h ,

which implies theorem 1.

e(x) = X +

e(x+hl)1-e(x)_1=o(

It is trivial that

P p h h
!(x +h‘))h-x | = |.r’;.f:+ u?™! qu| s%fxﬁ Wl gy ¢ B2

with the consequence

e(x+h1)1-e(x) - 1=0(°<"YZ‘<1' xa'1+-?§-+-&loga x) .

p=p+iy
To estimate t T £P1 i
o estima he sum s Wwe first note that

1o %x + (log x) ,r; £ 4

and so
A N U !
]

If we introduce the function z(p » 0) defined by

1 if g g<p
3(9’0)3
0 if o>8,
then
Ion-ldaa Zl .flz(p,o)x"“laa
o<lylsr % o<lylsr %
P P

1
=J’% [o<|y%<m p ,0)} £t =J; No , 1) oo,
vhere N(o , T) is defined by

Fo, ™ =#p: ¢lp) =0, p=p+1iy with p20, |yl<T.
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Thus we have shown that

-1 _NE, D) 1 o1
o<|§|sm Pl = %J;‘ + (log x) £% No ,7) 7" do ,

P

vhich implies

(%) Qifiﬁ%zgiil -1 = 0(21%;£2+(10g x) J; N(o,T) i do+%§+§% log2 x). o

X
To make further progress, we need to have some information about the function

N(o » T) . The following results are known but are rather technical to prove :

(&) N(% ’ T)

(») o, T = O(Tc(lqj) 1ogA T) for 2<0<1,vwhere ¢>2 and A>1 are

o(T 1og T) ,

absolute constants,

(¢) No ,T) =0 fer o >1~2/(logT)® with 0 <g<1 and a>0 an abso-

lute constant..

For proofs of (a) and (c¢), see ELLISON [ 3] (chapters 5 and 11), and for (b), see
MONTGOMERY [8] (chapter 12).

) )

Let us write z = af(logT)®*, T=x", h=x
chosen later. For any ¢ > O , we have, upon using (a), (b), (c), the following es~

timate for the "O" term in (%) :

y Where § and 6 will be

O{xs_% log z+(1log x)A*! Lé-z exp{(o=1)(1-8(c+e))1log x} do+xE 0 1780 log? x}
= O{XG-% log x+(log x)A exp{-z(6(c+e)=1)log x}+x%"e+x1"¢5_e log2 x} .

Since ¢ > 2 , we can choose § < % so that s§(c + e) -1>0, say

(1+ %-e)/(c +€) e

Finally, we choose 6 >1 - § , and since ¢ can be as small as we like this
(1/¢) > 1/2 . Thus, with this choice of § and
9 , the "O" term in (*) tends to zerm when x tends to infinity. Hence, we have
shown that if @ > 1 - 1/c , then for all x >x,(6) the interval (x , x + 0]

contains a prime number. As for a numerical value of ¢ , HUXLEY [7] proved that we

&

Il

means that we can choose 90 > 1

can teke ¢ = 12/5 which gives © > 7/12 . This is quite close to the expomnent

1/2 + ¢ which we gave earlier as a consequence of the Riemann'!s hypothesis.,

3. Cramér's conjecture and Selberg's theorem.

Now I would like to consider a conjecture, due to H. CRAMER, which is almost cer-

tainly true, but seems impossibly difficult to prove. The conjecture is

J o) - D
1im sup _Eil___§E =
D~ (log n)

Obviously the congecture implies that if K >1 and x >x, (X) , then the inter-
val (x, x +K log x] contains a prime number. This is vastly superior to the

type of result given by Hoheisel's theorem,
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The reasoning which lead Cramér to make his conjecture is extremely interesting.
It was based upon considerations of probability. Denote by P the sequence
{0,1,1,50, 1, ee048 ees} o Where

1 if n is a prime
Sn B 0 otherwise.

Clearly the study of the differences between prime numbers is equivalent to the
study of chains of consecutive zeros in the sequence P ., Arguing very naively the
prime number theorem shows that the probability that Sn =1 is asymptotic to
1/log n . Cramér's idea was to consider the set of sequences {o, 1}E and to de=-
fine a probability measure on this set which picks out the sequences "ike" P .
Then one can prove that with respect to this measure almost all sequences satisfy
Cramér's conjecture. One is then tempted to suppose that the sequence P also sa-
tisfies Cramér's conjecture. This technique is extremely useful in number theory,
especially for proving the existence of integer sequences with specified properties.
For an excellent introduction to this method, we refer the reader to HALBERSTAM and
ROTH [5].

The principal tool from probability theory is the following "Borel=-Cantelli"

lemma ¢

Let {Dm} be a sequence of mutually independant events. If 2 p(Dm) < o , then

the probability that an infinity of the events occurs is zero. However, if

2 p(Dm) = o , then the probability that an infinity of the events occurs is ane.

The precise mathematical structure for our particular problem is as follows. For

n=2, 3, ses » let Qn denote the finite probability space
{0,1} 3 {¢,{1},{0},{1,0} TR where pn(l) = 1/log n , un(O) =1-11ag n},
and let C be the product of the spaces Sh with the induced product measure .

In order to mimic the sequence of differences between the primes we define for

a € C first the sequence {rn(g)} by
{r ()} = {v in ascending order such that a =1},
then the sequence {dn(g)} where dn(g) = rn+1(g) - rn(g) .

let ¢ >0 be a fixed real number and, for each positive integer m , we denote
by Dm the event

. 2
Dy={{a;} €0 with a =0 for 1<vg c(log m)°} .
It is clear that the following two events have the same probability :
(i) {é € C: dn(g) >c 105'2 n for an infinity of integers n} ,
(i1) An infinite number of the events D~ are realised.

We shall show that if ¢ > 1 then the above probability is O , and that for
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¢ < 1 the probability is 1 .

We obviously have

2
log™ m 1
u'(Dm) = ﬂ3=1 (1 - Tog(m + v))
and an elementary calculation shows that for suitable absolute constants A and B
A B
-—6-< p,(Dm) <_6.
m n

The events {Dm} are mutually independent, so if ¢ > 1 , then 2 u(Dm) <o and
the probability that an infinity of the events occur is 0 .

Suppose now that ¢ < 1 . Consider the sequence {Dmi} where m, =2,

2
Mg =D+ [c log“m]+ 1.

An elementary calculation shows that for a suitable K > 0 and all large r
m, < Kr(log r)2 .

Thus, since ¢ < 1 , we have 2 u(Dm) = » o Hence with probability 1 an infi-
nity of the events {D } occurs.
Combining the above results it follows that with probability 1

d (a)

lim sup =1,

2
(1eg n)
It is then reasonable to suppose that the same result holds for the special se-

quence P . One can prove other results about C and so obtain suggestive conjec-

tures about P ., For example, if we define the random variable 1r by

T\'(E,X)=Zn'qan’

then the mean value of m(a , x) is asymptotic to £i(x) and one can even prove

that with probability 1
I"(E y X) -,Gi(X)I

11m su
P J Uzlog log xi?log X

Thus, one could conjecture that

n(® , %) = 41(x) + ORI LoE xX)

og X

It seems hopeless to expect any proof of Cramér's conjecture in the immediate (or
distant !) future, so it is worth-while to try and see how far one can go towards
deciding its status by assuming, say, the Riemann's hypothesis. CRAMER [2] himself
did this, and later SELEERG [11] improved upon Cramér's investigations. The most in-
teresting conclusion of this work is the following theorem and its corollaries,
wich provide some moral support for a believe in Cramér's conjecture., For they im-
ply that if the Riemann's hypothesis is true, then the number of primes for which
(Pn+1 - Pn) is larger than (log n)? is "small",

Let us introduce the following notation

X) = 2 d X) = 2 .

dy3h dyzh
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We can now state the principal result.

THEOREM 2, = If the Riemann hypothesis is true, then

X
(%- log2 X) , N, (X) = o(;é- 108° X) .

zh(X) =0

COROLLARY. = If the Riemann hypothesis is true, then

(1) dn=0(»\/i5 log ) ,

(i1) XGZ<Z( = 0(X 1og Xx) ,

(i:.i)If k>4,thenz¢ ;L(logP))‘ .
The above theorem is an elementary consequence of the following result.

THEOREM 3, - Suppose that the Elemanh hypothesis is true. If ¢ >0 and w is
a function of X such that 0 < w< X ¢ , then as X tends to infinity

f: ol + uxu; - 0(x) | 132 4 = 0(10%2 Xy |

Deduction of theorem 2 from theorem 3, -~ Iet ¢ > 0 be a fixed real number to be
chosen later, We shall consider two cases :

(1) 0<h<x!™® and
(11) x}t <ng¢x.
In case (i), we choose w =h/4X and so O < w< X ¢ . Now suppose that

(Pn ’ Pn_,.l] = (X ’ 2{]

and that dn >h, If x satisfies

N fn n
then
x+u<pn+%dn+2"x‘<pn+dn=pn+1
with the consequence
o(x + ux) - 8(x) =
Benoe we have
b e i)

From theorem 3, we conclude that

p,+d
2 d =2 J. B n {B(x + ux) - 9(!)
X<pnsZX n X<pn$2( Pn wx

dp>h dpy>h
2‘[‘ olx + wx) ~0(x) | 32 40 - G(log: Xy

= off 106® x¥ .

-1}2dx
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Thus if O < h < XI™® , we have proved that Lh(X) = 0(X log X) . However, if we
take ¢ < 1/2 and choose h =X% with 1/2< o<1 -¢ , then .v,h(x) =0 for

X > X, o For if £,(X) # 0 , then £,(X) 21 , and since we are still in case (1),

we also have
h= 0(3‘- log® X) ,

which leads to a contradiction if X is sufficiently large. Hence £ (X) =0 for
X* <h <X . Thus for all h satisfying O < h <X we have L(X)=O(B-log X) .

From the definition of N, (x) , it is trivial that
£,(X) > h{y, (x) - (3 X)} .
Upon replacing X by X/2*, r=1, 2, ... and adding we deduce that

M,(8) = 0 £,(X)) = 0% 0" X)

Proof of the corollaries,

(1) If we take h =c /X log X with ¢ sufficiently large, it follows that
Nh(x) <1 and so N(X)=0.
(1i) We have
> 2 d = 2 d 2 = 2
1hk X<pex ‘0 T xepx mndd 1T e
d_>h
n
and from theorem 2, we also have

3
<1§§X X<pz<2( 0 = O{h%(- log” X} = 0(X log” X) .
a >h

(11i) From (i), it follows that

2
2 ~i- (10g r, )=A < T a2¢ A
X<p <X Py X Xep g2 8% (108 )"

X(log X)
Upon replacing X by 2°X for r=1, 2, .. and adding, we obtain

a2
n h T o\ 3=A 3=\
p>xp(1ogp) Afl(logz X) =-.o(2°1r )

and this latter series is convergent if A > 4,

Proof of theorem 3. - In this "exposé" lack of space prevents me from giving all
technical details, so I shall only outline the prosf and refer the reader to
ELLISON [4] for a complete account. The basic idea behind the proof is quite simple,
One starts from the well known formula ¢

o(x) = E;lrrf(c)z—*éﬁ £ a3,

where 2Z*(S) = 2% (10g p) p-s , and (c) denotes the line ¢ +it , ¢ > 1,

Now, being completely formal, we move the line of integration to 1/2 + z + it ’
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where 2z will be chosen later, and encounter a pole at S =1 with residue x .

Teking a difference, we have
o(x + ux) - 8(x) - & = jkl+z) ——S—l ((1+w)°-135as,

thus

Hoo %
o(x + wﬁ£+; o(x) - ux ='£; - Z (%%f+zi:)it) (1 + w)§+z+it - 1]xit it .
» 2

We now observe that the L. H., S. of the above equation is the formal Fourier
transform of the R. H. S. From the Parseval inequality, we have

J” {e(x+ux)-e(x)-mx 2 dx f+m lZ*(%+z+it) {(1+w)é+z+it - 1}|2 at .

X S 2n

In fact, the above inequality does hold, but the rigorous argument, which closely
parallels the above formal manipulations, starts not with e(x) but with a more
artificial function which approximates to e(x) « However, sssuming that the inquap
lity has been proved, we see

J‘“’ {e(x+ux)-e(x)-ux}2 dx .2J

. re(x+uxu;-e(1) -2 d;cz,xzzj' {e(xwu;-e(x) 32 ax

and so

fx {Mﬂ 132 ax < 2 Jml z+it) ()Y 1312 gt
2"‘” %+Z+it

Now we consider the integral on the R. H. S. of the above inequality. First of
all, we note that

(s @S =1 = 1], " 58 aul < I8l w

and
i+ 0¥ -1 s+ +153,

since w< 1 and ¢ < 1 . Thus, upon spliting the range of integration (=c , +w)
to the three parts (~w 4 -7], [-T,+ 7], (T, ®») and using the first es~
timate in the middle range and the second estimate in the end ranges we obtain as
an upper bound for the integral :

Z*(} + 2z + 1t) 2 2 T
18f;| (§+:+it)l dt + 2w .[o |2*(3 + 2 + 1£)|% at .

It is now a relatively straightforward technical lemma to show that

J ;Z (% + 2z + 1t)'2
T % + 2z + it

dt = o(-—ls)
Tz
and

Jg |23 + z + 1t)]|% at = o(;%) .

Thus we now have

ﬁ? {e(x + ux) - 6(x) 1} ax = o( x2 . x22 T) '

wE w Tz2 z

and if we choose T = 3/w and 2 = 4/¢ log X , the upper bound becomes O(log? X/o) .
which completes our outline of the proof of theorem 3 .
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