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DIFFERENCES BETWEEN PRIME NUMBERS

par William J. ELLISON

Seminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
15e annee, 1973/74, n° 18, 10 p. 8 avril 1974

1. Generalities.

We denote by ~p ~ the sequence pf prime numbers, and by ~d ~ the sequence ofn n

differences between consecutive prime numbers, i. e, d = pn+1 - p . The sequence
{dn} is very irregular ; one knows virtually nothing about its members. For exam-

ple, the celebrated "twin primes" conjecture is equivalent to the assertion that

contains an infinity of 2’ s .

A trivial remark is that dn is "in mean asymptotic to log n ", for by the

prime number theorem we have

Thus, the mean value of d for n E ~ N , is asymptotic to log N . Becausen

of this observation, it became customary to consider the "normalised" sequence
{dn /log n} . It is unreasonable to expect answers to detailed questions about then

elements of the sequence, however, considered simply as a sequence of real numbers
it is sensible to ask :

( 1 ) What is lim inf (d /log n) ?
n-~ n

( 2) What is lim sup (d /log n) ?n

(3) Does there exist a "simple" function r{n) such . that (d 
n /log n)  f n ) for

all n ?

As for the first question we ’know that

a result of BOl4BIERI and DAVENPORT [1]. It is probable that the upper limit can be
reduced slightly, but naturally one conjectures that the true answer is 0 .

For the second problem it was shown by WESTZYNTHUIS [12] that

lim inf (d n/log n) = ~
and later RANKIN [9] proved that there exists a constant c > 0 and an infinity ,.
integers n such that



Nothing more precise on questions ( 1 ) and (2) seems to be known. However, there

is a curious problem which hashes open for twenty years. RICCI [10] and ERDÖS

proved that the set of limit points of the sequence {dn/log n} has a positive

measure, but no specific non-negative real number is known to be a limit point and

the precise measure of the set is unknown.

Today I would like to discuss the third question in some detail. As usual in

prime number theory there are conjectures which are almost certainly true and then

there are the considerably weaker results which one can prove. The third question

is more or less equivalent to the following.

(4) Does there exist a "siraple" function F(n) such that for each integer n

the interval (n , n + F(n)] contains a prime number ?

Denote by n(g) the number of primes less than x . If we can show that

then it follows that there is a prime number in the interval (x, x + h~} . However,
for technical reasons, it is better to work with the function defined by

and then use the observation that 8~x + h) - e(x) > 0 is equivalent to the fact

that the interval (x , x + h~ contains a prime number.

2. Hoheisel’s theorem.

The prime number theorem asserts that 9 ~x ~ ~ x + 0(x) , thus

If e > d and we choose then

. 

and f or all x > x 0 ( E ~ the right hand side is positive. Thus f or any e > 0 and

all x > xO(e> the interval (x ~ x + ex] contains a prime number. With a better

error term in the prime number theorem one can obtain a stronger conclusion. For

example, if the Riemann’s hypothesis is true one can p rove that 9(x) = x + 
f rom which it f ollows that f or any e > 0 and all x > x ( E ~ the interval

(x , x + xS~~) contains a prime number.

With these observations in mind one might hope to give an unconditional proof of

the following result.

THEOREM 1. -- There exists a real number 9  1 such that f or all x > x (g ~ the

interval (x, x + contains a prime num’ber. 
0 ---

It was long thought that in order to prove this theorem one must make progress in

proving Riemann’s hypothesis, however a remarkable breakthrough was made by 



[6] who proved the theorem with e = 29999/30000. In recent years Hoheisel’s
result has been improved upon and smaller valuea of e have been bound. A~ they

represent the best known unconditional response to question (4), I will give an

account of them before discussing the probable true state of affairs.

The objective is to prouve a result slightly stronger than is asserted in theorem

1, namely that if h > %9 ,then 9(x + h) - 6(x) .., h . Our starting point is the
well known "explicit formula" for 9(g) , namely

valid for x  2 and 2  T  x . A simple calculation yields

possible to choose h and T as functions of x such that the "0" term

tends to zero when x tends to infinity, then we will have 8~~ + h) - 8~~~ N h ,
which implies theorem 10

It is trivial that

To estimate the sum 03A3 x03B2-1 , we first note that

If we introduce the function a) defined by

where N(a. T) is defined by ".

N(or , T) =0 , + iV 



To make further progress, we need to have some information about the function

N(a , T) . The following results are known but are rather technical to prove :

(a) N(~ ~ T) = 0(T log T) ,

(b) N(c , T) ==0(T~~ logA T)  1 ~ where c > 2 and A > 1 are

absolute constants.

(c) T) = 0 for 03C3 > 1 - a/(log T)a with 0  1 and a > 0 an abso-

lute constant..

For proofs of (a) and (c), see ELLISON [3] (chapters 5 and 11)! and for (b), see

MONTGOMERY [8] (chapter 12).

Let us write h = xe , where 6 and e will be

chosen later. For any e > 0 , we have, upon using (a), (b), (c), the following es-
timate for the "0" term in (*) :

Since c a 2 , we can choose g  .~ so that ~~c + ~~ - 1 > 0 , say

Finally, we choose e > 1 - g , and since e can be as small as we like this

means that we can choose e > 1 - ~l~c~ > 1/2 . Thus, with this choice of g and

03B8 , the "0" term in (*) tends to zero when x tends to infinity. Hence, we have

shown that if S > 1 - 1~c , then for all x the interval (x, x + x *]
contains a prime number. As for a numerical value of c, HUXLEY j~7~ proved that we
can take c = 12/5 which gives e > 7/12 . This is quite close to the exponent
1/2 + e which we gave earlier as a consequence of the Riemann’s hypothesis.

3. Cramér’s conjecture and Selberg’s theorem.

Now I would like to consider a conjecture, due to H. which is almost cer-

tainly true, but seems impossibly difficult to prove. The conjecture is

Obviously the conjecture implies that if K > 1 and x > x..(K) , then the inter-
val (x, x + K log x] contains a prime number. This is vastly superior to the

type of re sult given by Hoheisel’ s theorem.



The reasoning which lead Cramér to make his conjecture is extremely interesting.

It was based upon considerations of probability. Denote by P the sequence

(0 , 1, 1, 0 , 1, ...  Sn ’ ...) , where

Clearly the study of the differences between prime numbers is equivalent to the

study of chains of consecutive zeros in the sequence P. Arguing very naively the

prime number theorem shows that the probability that S~ = 1 is asymptotic to

1/log n . Cramér’s idea was to consider the set of sequences (0 , l}- and to de-

fine a probability measure on this set which picks out the sequences "like" P.

Then one can prove that with respect to this measure almost all sequences satisfy

Cramer’s conjecture. One is then tempted to suppose that the sequence P also sa-

tisfies Cramér’s conjecture. This technique is extremely useful in number theory,

especially for proving the existence of integer sequences with specified properties.

For an excellent introduction to this method, we refer the reader to HALBERSTAM and

ROTE [5].

The principal tool from probability theory is the following "Borel-Cantell1"

lemma :

Let (D ) be a sequence of mutually independant events. If 03A3 (Dm)  ~ , then
the probability that an infinity of the events occurs is zero. However, j~
I p.(D ) = oo , then the probability that an infinity of the events occurs is 

The precise mathematical structure for our particular problem is as follows. For

n = 2, 3, ..., let 6 denote the finite probability space

(0,1) ; n(1) = 1/log n, n(0) = 1 - 1 log n) ,

and let C be the product of the spaces 6 with the induced product measure ~ .

In order to mimic the sequence of differences between the primes we define for

a e C first the sequence (r (a)) by

(r (a)) = {03BD in ascending order such that a = l) ,

then the sequence (d (a)) where d (a) = r n+1(a) - r(a) ’
Let c > 0 be a fixed real number and, for each positive integer m, we denote

by D the event

D~ = {(an} ~ 0 with a =0 for 1 ~ B~ c(log m)~) .
It is clear that the following two events have the same probability :

(i) (a e C : d ~a) > c log n for an infinity of integers n) ,

(ii) An infinite number of the events D 
m 

are realised.

We shall show that if c > 1 then the above probability is 0 , and that fo~



c  1 the probability is 1.

We obviously have

and an elementary calculation shows that for suitable absolute constants A and B

The events are mutually independent, so if c > l , then I p,(D )  co and

the probability that an infinity of the events occur is 0 .

Suppose now that c  1. Consider the sequence where m~ = 2 ,

An elementary calculation shows that for a suitable K > 0 and all large r

Thus, since c  1 , we have I ~~D ) = co . Hence with probability 1 an infi-

nity of the events occurs.

Combining the above results it follows that with probability 1

It is then reasonable to suppose that the same result holds for the special se-

quence P , One can prove other results about C and so obtain suggestive conjec-
tures about P , For example, if we def ine the random variable TT by

then the mean value of n(a , x) ia asymptotic to and one can even prove
that with probability Z .

Thus, one could conjecture that

It seems hopeless to expect any proof of Cramer’s conjecture in the immediate (or
distant t) future, so it is worth-while to try and see how far one can go towards
deciding its status by assuming, say, the Riemann’s hypothesis. CR~~IER ~ 2~ himself
did this, and later SELBERG [11] improved upon Cramér’s investigations. The most in-
teresting conclusion of this work is the following theorem and its corollaries,
wich provide some moral support f or a be lieve in Cramér’s conjecture. For they im-
ply that if the Riemann’s hypothesis is true, then the number of primes for which

Pn) is larger than (log n)~ is "small".

Let us introduce the following notation



We can now state the principal result.

THEOREM 2. - If the Riemann hypothesis is true , then

COROLLARY. - If the Riemann hypothesis is true, then

The above theorem is an elementary consequence of the following result.

THEOREM 3. - Suppose that the hypothesis is true. If ~ > 0 and tu ia

a function of X such that 0  03C9  X-~ , then as X tends to infinity

Deduction of theorem 2 from theorem 3. - Let E > 4 be a fixed real number to be

chosen later. We shall consider two cases :

In case (i), we choose w = h/4X and so 0  w  X**~ . Now suppose that

From theorem 3, we conclude that



Thus if 0  h ~ X1~ , we have proved that = 0(h log2 X) . However, if we
take E  1‘2 and choose h = Xa with 1~2  a  1 - E , then = 0 for

X > Xo . For if ~2h(X) ~ 0, then h, and since we are still in case (i),
we also have

which leads to a contradiction if X is sufficiently large. Hence s 0 for

h ~ X. Thus for all h satisfying 0  h ~ X we have = 0(~ log X) .
From the definition of it is trivial that

Upon replacing X by r = 1, 2 , y .. and adding we deduce that

Proof of the corollaries.

(i) If we take h = c ~X log X with c sufficiently large, it follows that

 1 and so = 0 .

and from theorem 29 we also have

Upon replacing X by 2r X for r = 1 , 2 , ... and adding, we obtain

and this latter series is convergent if l~ > 4 ..

Proof of theorem 3. - In this "exposé" lack of space prevents me from giving all
technical detai,ls, so I shall only outline the proof and refer the reader to

ELLISON [4] f or a c omplete account. The basic idea behind the proof is quite simple.
One starts f rom the vell known formula :

where (c) denotes the line c + it , c > 1 ,

Now, being completely formal, we move the line of integration to 1/2 + z + it ,



where z will be chosen later, and encounter a pole at S = 1 with residue x.

Taking a difference, we have

We now obse rve that the L. H. S. of the above equation is the f ormal Fourier

transform of the R. H. S. From the Parseval inequality, we have

In fact, the above inequality does hold, but the rigorous argument, which closely

parallels the above formal manipulations, starts not with e(x) but with a more

artificial function which approximates to e(x) . However, assuming that the inequa-
lity has been proved, we see

Now we consider the integral on the R. H. S. of the above inequality. Firs t of

all, we note that

since w  1 and a  1. Thus, upon spliting the range of integration (-~ ~ +o)
to the three parts (- 0’) , .. TJ, [-T , + T~ ~ (T, co) and using the first es-
timate in the middle range and the second estimate in the end ranges we obtain as

an upper bound f or the integral :

It is now a relatively straightforward technical lemma to show that

and if we choose T = 3/u) and z = 4/e log X , the upper bound becomes O(log2 X/03C9).
which completes our outline of the proof of theorem 3 ..
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