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NONCONTINUABLE POWER SERIES

by Rolf WALLISSER

Seminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
15e 1973/74, n° 16, 7 p. 11 mars 1974

1. Introduction.

In the last decade, there are many results on the classical problem to determine

the global behaviour of a function, given by a power series, from certain proper-

ties of the coefficients of the series. It was especially one conjecture which oc-

cupied several authors :

Let g e and $ E be polynomials of degree greater than zero with

complex respectively real coefficients. Let [x] denote the largest integer which

does not exceed x .

has z ~ ( = 1 as a natural boundary if, and only if, at least one of the coeffi-

cients of ~~x) - is irrational.

The following authors solved the problem in special cases : First HECKE [3]
showed, that

is noncontinuable over the circle of convergence if, and only if, 03B1 is irrational.

SALEM [~5~] generalized this, and proved the conjecture in the case

NEWMAN, MEIJER, POPKEN, CARROLL and KEMPERMAN, CANTOR and SCHWARZ were occupied
with the irrationality of G . (For detailed references, see CARROLL and KEMPERMAN

[2J or SCHWARZ [6J.) In 1970, I could prove a general theorem on power series whose

coefficients are uniformly distributed (WALLISSER [8]), and with the aid of this

result, SCHWARZ and myself answered the problem mentioned above in the affirmative.

2. Noncontinuable .power series and uniform distribution of coefficients.

The following result of WIENER is the main tool in the proof of our theorem :

LEMMA 1 (WIENER ~9 ~~ . -. Let ~( z ~ = 1~ a zn have the unit circle as circle of

convergence. Suppose that, for each integer p ~ 0 , the limit

exists. If

is strictly monotone, then ~ has ~ z ~ ~ 1 as a natural boundary.



We use this lemma to derive the following.

THEOREM 1. - Let f be a Riemann integrable function, not equivalent to a cons-

tant function. (xn)N is a sequence of real numbers, such that, for each integer

P > 1 (fx ~ . fx 7)~ is uniformly distributed in the unit square. Then" . ~ ~ 20142014201420142014201420142014~2014201420142014201420142014201420142014201420142014’’201420142014 
201420142014

has the unit circle as a natural boundary.

Proof. - We show, that

is noncontinuable beyond its circle of convergence. To apply lemma 1, we have to

state the existence of

With regard to the uniform distribution of the for

e ach p  1 , we obtain, by a well known re sult of H. WEYL on uniform distribution

of sequences, A ~1

b 0 is strictly positive because of the assumption that f is not equivalent to

a constant function. The theorem is therefore an immediate consequence of lemma 1.

With the aid of this theorem, we can prove an analog onto our conjecture men-

tioned in the introduction.

THEOREM 2. - Let g e be a polynomial with complex coefficients :

be a polynomial with real coefficients :

Then the following statement is true :

has the unit circle as a natural boundary if, and only if , 03A6(x) - 03A6(0) has an
rational coefficient.

Proof.

(a) It is a mere calculation to show, that the condition at least one of the

coefficients ~~ , ..., $~. is irrational is necessary for G being noncontinua-

ble. In fact, us ing the Taylor-deve lopment , we have



If all are rational, and if Q is a least common

multiple of the divisors, (1) is an integer, and we can write

G is therefore a rational function.

The main result of theorem 2 is the opposite direction.

(b,) $, irrational, 03A62 , ... , $. rational.

Here we can apply the method which HECKE [3] used in proving the noncontinuabi-

lity of the series 03A3~n=0 ({03B1n})zn. In this way, we can show (see SCHWARZ [6]) :
There is a dense set M on the unit circle, such that for every (p ~ M

Therefore each point of the unit circle is a singular point for G, and the con-

vergence circle becomes a natural boundary for the function.

(b ) At least one of the numbers 03A62 , ... , 03A6k is irrational. To use theorem 1,

we have to show the uniform distribution of ({03A6(n)} , {03A6(n + P)j)N for each in-

teger p > 1 . 
--

Following H. WEYL, we have t o prove that, f or e ach pair ~~ t , ;~ 2 ~ ~ ~ 0 , 0) of

integers, the derivative of

i L

has an irrational coefficient. Let 03A603BD be the irrational coefficient of 03A6 with

greatest index. Because of our assumption, that at least one of the reals

’2 ’ ... tk is irrational, we have v > 2 . The coeff icients of xv or x~~
are of the form

Therefore, if l1 + l2 ~ 0 , (4) is irrational, and if l1 + l2 = 0 , (5) is ir-.

rational. Since we have v > 2, has in any case at least one irrational

coefficient. We can now apply theorem 2 with x = n and f = g , and ourpp ~’ 1 
n 

~~ ) g ~

re sult f ollows .

3. On power series with coefficients of the form f ~~ x n ~) .
Using a special version of Hadamards multiplication theorem, we can derive from

theorem 2 a result which answers our initial problem in the affirmative.

THEOREM 3. - be s, sequence of real numbers with the following proper-
.._.... -.w .. -.«- - -...... 

-. 

, 
-.- 

.....,- .- . - - ....-. -

ties : .



(II) limn~~ X n = ~ ,

~ £x ~ , ~x ~ ~ is uniformly distributed for p >, ~ .
n+p n 

’

Let G : (0 , ~) ~ C be a complex valued function which satisfies:

G is continuously differentiable for x  xG 9

(V) There exists 03B4 > 0 , such that > s for 

Uniformly, for all 0 with |03B8| I  1 , we have

(VII) G(x ) z~ has the unit circle as circle of convergence and only a

finite number of singularities with absolute value 1.

(VIII) 03A3~nx0 1 G’(xn) zn has 1 as radius of convergence, and z = 1 is the only
singular point on the unit circle. 
Then it follows :

x~) ~ has the unit circle as a natural boundary.

For a proof, we use the following result of Hadamard :

LEMMA. 2 (HADAMARD, see [l]). - Let

denote power series with lim|fn |1/n = 1 , lim|an )"= l . Let g(z) be analy-
tic in any point on the unit circle. Then each singularity z0 with
|z0| =1 of f(z) is also a singularity of

Proof of theorem 3. - We assume, that the conditions (I)-(VIII) are satisfied for

n0 = x~ == 1 . This is no limitation, because we can take all the series beginning
with the same power of z .

If F would be continuable, then

would be continuable too, and the same holds in consequence of lemma 2 for the

series

Regarding the assumptions on G’ , we find



and so we get, for the coefficients d ,

According to theorem 2, D(z) would be noncontinuabJe, a contradiction which

shows, that F must have the unit circle as a natural boundary.

As an application of this theorem, we can get the following results (for others,

see [7]) :

THEOREM 4. - If j : N ~ C is a generalized polynomial of the form

and is a generalized real valued polynomial with

and if at least one of the numbers 03C91 , ... , w r is irrational, the series

are noncontinuable over the circle of convergence.

THEOREM 5. - The assumptions are the same as in theorem 2. Then it folloWS :

has the unit circle as a natural boundary if, and only if, ~(x ~ .. ~ ( o ) has an ir-

rational coefficients

Remark. - The proofs of theorem 4 and theorem 5 are straightforward applications
of theorem 3. In theorem 5, if only~ ~ 1 is irrational, we have again to use the
method of Hecke ( see SCHWARZ [6] f or a detailed proof). If 03A61 , ... , 03A6k are ra-

tional, we ge t from (1)

which is obviously a rational function.

4. "Almo st all" results.

At last, we show that theorem 1 can also be used to derive results of the fol-

lowing type : The property of a power series to be noncontinuable over the unit
circle is with regard to a special measure the normal case. So we get the following
theorem,



THEOREM 6. - Let f : (0, 1) -~; C be Riemann integrable and not equivalent to

a constant function. ...) ; g be the set of all

sequences of re al numbe rs with values in the unit interval. X becomes a measure

space, if we take the product measure ~,~ of the one dimensional Lebesgue measure

In (X, f , the power series of the form

which are continuable over the unit circle form a set of measure zero.

Proof. - HLAWKA ~4~] has shown, that for ~ nearly all sequences (x ) the se-

quence (x 
n*t*p , x ) n N is ’ for every p ~> 1. uniformly distributed in the unit square.

Therefore, we can use theorem 1 to prove the assertion.

Another application of theorem 2 is : For a convergent series .Z a 
n 

we can

choose signs e =±1 in such a way, that I E a z~ becomes noncontinuable.
n n n

THEOREM 7. - Let (an)! be a sequence of complex numbers with

Let r (t) be the Rademacher function : r (t) = sgn sin 2n 03C0t . Then for almost
- n n

all t e (o , 1)

has the unit circle as an essential boundary.

Example : a = 1 for all n . Then almost all series with coefficients ± 1

are noncontinuable.

Proof. - We applicate lemma 1 . For this, we have to calculate

we get, using the relations of orthogonality for the Rademacher functions for

.

Therefore the series 03A3~n=1 10 fN(t) dt is convergent, and from Lebesgue theorem
of dominated convergence, we have

for almost all t ~ (0 , 1) . Because of the assumption the conditions of

lemma 1 are satisfied and the theorem follows.
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