SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

ELHANAN MOTZKIN PHILIPPE ROBBA

Ensembles d'analyticité en analyse p-adique

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 10, nº 1 (1968-1969), exp. nº 8a, p. 1-5

http://www.numdam.org/item?id=SDPP_1968-1969__10_1_A7_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1968-1969, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

27 janvier 1969

ENSEMBLES D'ANALYTICITÉ EN ANALYSE p-ADIQUE par Elhanan MOTZKIN et Philippe ROBBA

On appelle $\hat{\Omega}_{
m p}$ la clôture algébrique du complété du corps des rationnels muni de la valeur absolue p-adique.

Nous nous proposons de démontrer le théorème suivant :

THÉOREME. - Un ensemble quasi-connexe est un ensemble d'analyticité. Autrement dit, étant donné un ensemble quasi-connexe A, il existe une fonction analytique f sur A qui ne peut être prolongée analytiquement sur aucun ensemble quasi-connexe K contenant A.

Nous allons construire explicitement cette fonction. Mais pour ce faire, il faut d'abord étudier de près la nature des quasi-connexes, ou plutôt de leurs complémentaires. Un ensemble dont le complémentaire est un quasi-connexe sera appelé un c.-q.-c. (complémentaire de quasi-connexe).

Soient A un quasi-connexe, et B son complémentaire. Nous supposerons désormais que B est borné, ce que l'on peut toujours obtenir à l'aide d'une inversion puisque A est ouvert.

- LEMME 1. Soit B un c.-q.-c. borné, et soit Δ le plus petit disque fermé contenant B. Soit Δ_0 un des disques intérieur de Δ . Alors $\Delta_0 \cap B$ est :
 - (a) Soit le disque ouvert Λ_0 tout entier,
- (b) Soit un c.-q.-c. contenu dans un disque fermé Δ' de rayon inférieur à celui de Δ_0 ,
 - (c) Soit l'ensemble vide.

Il suffit de prouver (b). Or $C\Delta_0$ et CB sont des quasi-connexes d'intersection non vide ; leur réunion est donc un quasi-connexe, donc $\Delta_0 \cap B$ est un c.-q.-c. Maintenant, si $\Delta_0 \cap CB$ est non vide et différent de Δ_0 , soit a un point de $\Delta_0 \cap CB$; puisque CB est quasi-connexe, il existe un nombre fini de rayons exceptionnels $\mathbf{r}_1 < \cdots < \mathbf{r}_n$ tel que B soit contenu dans la réunion des cercles $|\mathbf{X} - \mathbf{a}| = \mathbf{r}_1$, ..., $|\mathbf{X} - \mathbf{a}| = \mathbf{r}_n$. Δ est le disque $|\mathbf{X} - \mathbf{a}| < \mathbf{r}_n$, Δ_0 le disque $|\mathbf{X} - \mathbf{a}| < \mathbf{r}_n$, donc $\Delta_0 \cap B$ est contenu dans le disque $|\mathbf{X} - \mathbf{a}| < \mathbf{r}_{n-1} < \mathbf{r}_n$.

- LEMME 2. Soit A un quasi-connexe (dont le complémentaire est borné). Il existe une suite finie ou dénombrable de disques ouverts disjoints $D_k: |x-a_k| < r_k$ contenus dans CA, et une suite finie ou dénombrable de points (b_k) appartenant au complémentaire de la réunion de A et des D_k , tels que, si K est un quasiconnexe contenant A strictement, alors:
- (a) Ou bien K intersecte l'un des disques ouverts, D_k par exemple, et alors $A \cup (K \cap D_k)$ est quasi-connexe,
- (b) Ou bien K contient un disque D, contenant au moins un des b_k , et tel que A \cap D \neq \emptyset .

(Le "ou bien" n'est évidemment pas exclusif.)

Soit Δ le plus petit disque fermé contenant CA = B. Si Δ est de rayon nul, il est réduit à un point, et B aussi. On choisit alors ce point qui répond à la question. Si le rayon de Δ ne fait pas partie du groupe des valeurs de $\hat{\Omega}_p$, Δ n'a qu'un disque intérieur coïncidant avec lui, et alors on a $B = \Delta$. On choisit ce disque ouvert qui répond à la question. Si on n'est dans aucun de ces deux cas, soit Δ_1 , ..., Δ_n , ... la famille dénombrable des disques intérieurs de Δ .

Considérons $B \cap \Delta_n$. Si $B \cap \Delta_n = \Delta_n$, Δ_n sera l'un des disques D_k annoncés. Si $B \cap \Delta_n$ est non vide et différent de Δ_n , on choisit un point β de $B \cap \Delta_n$. On notera qu'il existe alors un m différent de n pour lequel $B \cap \Delta_n$ n'est pas vide.

Soit alors Δ_n^i le plus petit disque fermé contenant $B \cap \Delta_n$. On recommence le raisonnement : ou bien Δ_n^i est aussi un disque ouvert et $B = \Delta_n^i$ sera un des D_k , ou bien Δ_n^i se réduit à un point et $B \cap \Delta_n$ est un point qui sera un des b_k , ou bien alors il y a une infinité de disques intérieurs Δ_n , ..., Δ_n , et on poursuit le raisonnement.

On obtient ainsi une famille finie ou dénombrable de disques ouverts qui sont nos \mathbf{D}_k , et une famille finie ou dénombrable de points de $(\mathbf{A}$. La suite (\mathbf{b}_k) sera formée de points de cette famille qui n'appartiennent à aucun des \mathbf{D}_k .

Soit alors K un quasi-connexe contenant A, et soit x un point de K \cap (A. Alors, ou bien x appartient à l'un des \mathbb{D}_k et le lemme est prouvé (on vérifie sans peine que $(K \cap \mathbb{D}_k) \cup A$ est un quasi-connexe), ou bien x est un des points obtenus lorsque $\mathbb{B} \cap \mathbb{D}_k$ était restreint à un point, x appartient à la suite \mathbb{B}_k , et un disque de centre x et de rayon assez petit est contenu dans K et intersecte A, ou bien, enfin, x appartient à l'intersection d'une suite infinie de disques ouverts emboités $\mathbb{D}_{n_1,n_2,\dots,n_p}$, $\mathbb{D}_{n_1,n_2,\dots,n_p,n_p,n_p+1}$. On notera

LEMME 3. - Soit D le disque ouvert |X - a| < r. Il existe une fonction analytique sur (D, f, de module majoré par 1, qui ne peut pas être prolongée analytiquement en dehors de <math>(D.

Soit β_n une suite d'entiers > 0 tels que $\beta_n \to +\infty$ et $\beta_n/n \to 0$ quand $n \to \infty$. Soit α_n une suite d'entiers > 0 tels que $p^{\alpha_n} < r^n < p^{\alpha_{n+1}}$. On pose $c_n = p^{\beta_n - \alpha_n}$, alors $|c_n| = p^{\alpha_n - \beta_n}$.

La série $\sum_{n=1}^{\infty} c_n/x^n$ converge uniformément pour |x| > r, puisque

$$|c_n|/|x^n| \leqslant |c_n|/r^n \leqslant p^{-\beta_n}$$
,

et que ce dernier terme tend vers 0 puisque $\beta_n \longrightarrow +\infty$.

Mais le rayon de convergence de cette série est r , puisque

$$\lim_{n\to\infty} \sqrt[n]{|\ell_n|} = \lim_{n\to\infty} \sqrt[n]{n} \times \lim_{n\to\infty} \sqrt[n]{n},$$

or

On sait qu'alors la fonction f, somme de cette série, ne peut pas être prolongée en dehors de (D ([1]).

De plus, f est majorée en module par 1, puisque chaque terme de la série l'est.

Démonstration du théorème. - Soit donc A un quasi-connexe, avec B = CA borné. Soient D_k : $|x-a_k| < r_k$, et b_k les disques et les points définis au lemme 2. Soit f_k la fonction associée au disque D_k au lemme 3. Soient α_k et β_k deux suites de nombres p-adiques non nuls, tels que $|\alpha_k|$ et $|\beta_k|$ tendent vers zéro quand k tend vers l'infini, et que l'on ait $|\beta_i| \neq |\beta_i|$ pour $i \neq j$.

On appellera A $_{\epsilon}$ l'ensemble des points de A qui sont à une distance supérieure à ϵ du complémentaire de A . Pour tout $\epsilon>0$, A $_{\epsilon}$ est un quasi-connexe et U A $_{\epsilon}$ A .

La fonction annoncée dans le théorème est la fonction

$$f(x) = \sum_{k} \alpha_{k} f_{k}(x) + \sum_{k} \beta_{k} / (x - b_{k}) .$$

On voit que la première série converge uniformément sur le complémentaire de U D , donc sur A , et que la deuxième converge uniformément sur l'ensemble E $_{\epsilon}$ des points x tels que $|x-b_{_{\scriptstyle k}}|>_{\epsilon}$ pour tout k , donc sur A $_{\epsilon}$, et ce quel que soit $_{\epsilon}>0$. La fonction f est donc bien une fonction analytique sur A .

Supposons alors que f se prolonge sur un quasi-connexe K contenant A . Si K intersecte le disque \mathbb{D}_m , f se prolonge a fortiori sur le quasi-connexe A \cup (K \cap \mathbb{D}_m) . La série $\sum\limits_{k\neq m}\alpha_k$ $f_k(x)$ convergeant uniformément sur (\bigcup \bigcup $\sum\limits_{k\neq m}$, définit une fonction analytique sur A \cup (K \cap \mathbb{D}_m) . De même, la série $\sum\limits_{k}\beta_k/(x-b_k)$ converge uniformément sur \mathbb{E}_{r_m} qui contient \mathbb{D}_m , donc cette série définit aussi une fonction analytique sur A \cup (K \cap \mathbb{D}_m) , donc si f se prolonge sur A \cup (K \cap \mathbb{D}_m), la fonction

$$\alpha_{m} f_{m}(x) = f(x) - \sum_{k \neq m} \alpha_{k} f_{k}(x) - \sum_{k} \beta_{k}/(x - b_{k})$$

se prolonge aussi sur A \cup (K \cap D_m) , ce qui contredit la définition de f $_m$.

Supposons alors que K ne rencontre aucun des D_k , il contient alors un disque D contenant au moins un b_n et tel que $A \cap D \neq \emptyset$. Alors $A \cup D$ est un quasiconnexe, et si f se prolonge sur K, elle se prolonge a fortiori sur $A \cup D$. D n'intersecte aucun des D_k . Soient $(b_i)_{i \in I}$ les points de la suite b_k qui appartiennent à D. On voit facilement que les séries $\sum\limits_{k} \alpha_k f_k(x)$ et $\sum\limits_{k \neq I} \beta_k / (x - b_k)$ définissent des fonctions analytiques sur $D \cup A$. Donc si f se prolonge sur $D \cup A$, la fonction

$$g(x) = \sum_{i \in I} \beta_i / (x - b_i) = f(x) - \sum_k \alpha_k f_k(x) - \sum_{k \notin I} \beta_k / (x - b_k)$$

se prolonge sur D \cup A . Or, comme cette série converge uniformément sur E_{ϵ} \cup (D, qui est quasi-connexe, et que, pour ϵ assez petit, E_{ϵ} intersecte A, g définit même une fonction analytique sur tout $\hat{\Omega}_p$, y compris le point à l'infini, donc g(x) doit être constante et même nulle puisqu'on voit que $|g(x)| \longrightarrow 0$ quand $|x| \longrightarrow \infty$.

Mais si on effectue le développement en série de Laurent de g pour |x| grand, on trouve que le coefficient du terme $\frac{1}{x}$ est $\sum\limits_{\mathbf{i}\in I}\beta_{\mathbf{i}}\neq 0$. On obtient donc une contradiction, ce qui achève la démonstration.

BIBLIOGRAPHIE

[1] KRASNER (Marc). - Prolongement analytique uniforme et multiforme dans les corps valués complets, Colloques internationaux du C. N. R. S.: Les tendances géométriques en algèbre et théorie des nombres [143. 1964. Clermont-Ferrand], p. 97-141. - Paris, Centre national de la Recherche scientifique, 1966.

(Texte reçu le 15 juin 1969)

Elhanan MOTZKIN Département de Mathématiques Université de Jérusalem JERUSALEM (Israël)

Philippe ROBBA 216 rue Saint-Jacques 75 - PARIS 05