SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

NORBERT A'CAMPO

Théorème de préparation différentiable ultra-métrique

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 9, n° 2 (1967-1968), exp. n° 17, p. 1-7

http://www.numdam.org/item?id=SDPP_1967-1968__9_2_A3_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1967-1968, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

18 mars 1968

THEOREME DE PREPARATION DIFFERENTIABLE ULTRA-METRIQUE

par Norbert A'CAMPO

1. Application de classe C^p , théorème des fonctions implicites, théorème de Borel. Soient K un corps valué complet, E et F deux espaces de Banach sur K, Ω un ouvert de E, et f: $\Omega \rightarrow F$ une application.

<u>Définition</u>. - Une telle application $f: \Omega \to F$ est dite <u>strictement différentiable</u> ou de classe C^1 s'il existe des applications continues

Df :
$$\Omega \rightarrow \mathcal{C}(E, F)$$

et

$$\varphi: \Omega \times \Omega \rightarrow \mathbb{R}$$
,

telles que

$$\varphi(x, y) \geqslant 0$$
 et $\varphi(x, x) = 0$,

et

$$\left\| f(x) - f(y) - Df(x)(x - y) \right\|_F \leqslant \left\| x - y \right\|_E \phi(x \text{ , } y) \text{ ,}$$

lorsque $x \in \Omega$ et $y \in \Omega$.

L'application Df, qui est déterminée par f, s'appelle la différentielle de f.

Par récurrence, sont définies les applications de classe C^p $(p \in N \cup \{\infty\})$.

Nous avons besoin de supposer les applications strictement différentiables, car nous devons établir le théorème des applications implicites sans utiliser un "théo-rème de Rolle".

Par une flèche brisée f : (E , x_0) $-\to$ F , nous notons un germe d'une application au voisinage de x_0 dans E à valeurs dans F . Si nous désirons mentionner la valeur de f en x_0 , nous notons f : (E , x_0) $-\to$ (F , y_0) .

Un tel germe est dit de classe $\mathbf{C}^{\mathbf{p}}$ s'il admet un représentant de classe $\mathbf{C}^{\mathbf{p}}$ au voisinage de \mathbf{x}_0 .

THEOREME 1 (Fonction inverse). - Soient E et F des espaces de Banach sur un corps K valué complet. Soit f: (E, x_0) --> (F, y_0) un germe de classe

COROLLAIRE: Théorème des fonctions implicites. On peut démontrer ce théorème en modifiant convenablement la démonstration pour le cas $K = \mathbb{R}$ [4].

Plus loin, nous aurons besoin d'un "théorème de Borel" ultra-métrique.

THEOREME 2. - Soit K un corps valué complet non discret ultra-métrique (non nécessairement de caractéristique 0). Alors étant donnée une série formelle $F \in K[[X_1, \ldots, X_n]]$, il existe un germe $f:(K^n, 0) \longrightarrow K$ de classe C^∞ tel que sa série de Taylor en $0 \in K^n$ soit la série F.

Nous nous réferrons à [1] et à [7] pour la définition de la série de Taylor d'un germe $f:(K^n,0)\longrightarrow K$ lorsque K est de caractéristique $p\neq 0$.

<u>Preuve.</u> - Soit $F = \sum_{\alpha \in \mathbb{N}^n} F_{\alpha} x^{\alpha} \in K[[x_1, \dots, x_n]]$ la série formelle donnée. On pose

$$\begin{cases} \phi_{\alpha}(x) = 1 & \text{si} \quad x \in K^{n} \text{ et } |x| \leqslant \min[1/2, |F_{\alpha}|^{-1}] \\ \phi_{\alpha}(x) = 0 & \text{si} \quad x \in K^{n} \text{ et } |x| > \min[1/2, |F_{\alpha}|^{-1}] \end{cases}.$$

Alors la série

$$\sum_{\alpha \in \mathbb{N}^n} F_{\alpha \phi_{\alpha}}(x) x^{\alpha}$$

converge sur K^n vers une fonction de classe C^∞ dont la série de Taylor en 0 est la série formelle F .

Q. E. D.

2. Enoncé du théorème.

Désormais K désignera un corps valué complet, non discret, ultra-métrique et algébriquement clos.

Nous notons \mathcal{E}_n la K-algèbre formée des germes (K^n, 0) --> K de classe C^∞ . L'algèbre \mathcal{E}_n est une algèbre locale, son idéal maximal $\mathbf{m}(\mathcal{E}_n)$ est formé des germes (K^n, 0) --> (K, 0) .

Comme pour les algèbres analytiques [3] ou pour les algèbres différentiables [5] la famille $(\mathcal{E}_n)_{n\in\mathbb{N}}$ permet de bâtir une catégorie \mathcal{E}_K .

Les objets, appelés algèbres différentiables, sont des K-algèbres munies d'une surjection $\mathcal{E}_n \xrightarrow{\pi} A$ de K-algèbres (unitaires).

Un morphisme de $\mathcal{E}_n \xrightarrow{\pi_A} A$ dans $\mathcal{E}_m \xrightarrow{\pi_B} B$ est la donnée d'un couple (ϕ, α) , ϕ étant un germe de classe C^{∞} , $(K^m, 0) \longrightarrow (K^n, 0)$ et d'un homomorphisme de K-algèbres $A \xrightarrow{\alpha} B$ tels que le diagramme suivant soit commutatif :

où ϕ^* : $\mathcal{E}_n \to \mathcal{E}_m$ est défini par $f \in \mathcal{E}_n \longmapsto f \circ \phi \in \mathcal{E}_m$.

Dans la suite, nous notons par une seule lettre une algèbre différentiable, sous-entendu que la surjection est donnée : Par exemple, un morphisme d'algèbre différentiable est noté α : $\Lambda \to B$, sous-entendu que les surjections π_A et π_B sont données ainsi que φ : $(K^m$, 0) $-\to$ $(K^n$, 0).

Une algèbre différentiable est une K-algèbre locale, un morphisme d'algèbre différentiable est un homomorphisme local de K-algèbres locales. Rappelons qu'un morphisme α : A \rightarrow B est dit fini (resp. quasi-fini) si α fait de B un A-module de type fini (resp. $\overline{\alpha}$: A/m(A) \rightarrow B/m(A)B' obtenu en passant aux quotients suivant l'idéal maximal m(A) de A et l'idéal $\overline{\alpha}(m(A))$ B de B, fait de B/m(A)B un (A/m(A))-module de type fini).

Nous allons démontrer le théorème suivant :

THEOREME 3. - Pour un morphisme de la catégorie \mathcal{E}_{K} la quasi-finitude équivaut à la finitude.

Un germe $f \in \mathcal{E}_n = \mathcal{E}(x_1, \dots, x_n)$ est dit régulier d'ordre s en x_n , si $f(0, \dots, 0, x_n) = x_n^s g(x_n)$ où $g \in \mathcal{E}_1 = \mathcal{E}(x_n)$ et $g(0) \neq 0$.

COROLLAIRE (Théorème de préparation). - Soit $f \in \mathcal{E}_n = \mathcal{E}(x_1, \dots, x_n)$ régulier d'ordre $g \in \mathcal{E}_n$, il existe $g \in \mathcal{E}_n$, il existe $g \in \mathcal{E}_n$ et $g \in \mathcal{E}_n$, in existe $g \in \mathcal{E}_n$ et $g \in \mathcal{E}_n$, in existe $g \in \mathcal{E}_n$ et $g \in \mathcal{E}_n$, in existe $g \in \mathcal{E}_n$ et $g \in \mathcal{E}_n$, in existe $g \in \mathcal{E}_n$ et $g \in \mathcal{E}_n$, in existe $g \in \mathcal{E}_n$ et $g \in \mathcal$

$$g(x_1, \dots, x_n) = f(x_1, \dots, x_n) q(x_1, \dots, x_n) + h(x_1, \dots, x_{n-1}) x_n^{s-1} + \dots + h_s(x_1, \dots, x_{n-1})$$

Le corollaire se déduit [5] du théorème en considérant le morphisme $\mathcal{E}_{n-1} \to \mathcal{E}_n/(f)$ obtenu en composant l'injection $\mathcal{E}_{n-1} \to \mathcal{E}_n$ (associée à la projection $K^n \to \mathbb{F}_n$ qui "supprime" \mathbf{x}_n) et la surjection canonique $\mathcal{E}_n \to \mathcal{E}_n/(f)$.

3. Réduction du théorème 3 (MALGRANGE [5]).

Soit T: $\mathcal{E}_n \to \mathbb{K}[[\mathbb{X}_1,\ldots,\mathbb{X}_n]]$ l'homomorphisme de K-algèbres, qui fait correspondre à un germe $f \in \mathcal{E}_n$ sa série de Taylor $Tf \in \mathbb{K}[[\mathbb{X}_1,\ldots,\mathbb{X}_n]]$. Le théorème 2 signifie que T est surjective. Son noyau ker T est l'idéal

$$\mathfrak{m}^{\infty}(\mathfrak{E}_{n}) = \bigcap_{i \geqslant 1} \mathfrak{m}^{i}(\mathfrak{E}_{n}) ,$$

l'intersection des puissances de l'idéal maximal de \mathcal{E}_n . On voit que la K-algèbre séparée associée à \mathcal{E}_n s'identifie à K[[X_1, ..., X_n]], et par conséquent la K-algèbre séparée associée à une algèbre différentiable \mathcal{E}_n $\xrightarrow{\pi_A}$ A s'identifie à un quotient de K[[X_1, ..., X_n]].

Dans la catégorie des algèbres formelles, bâtie à partir de la famille $(\texttt{K}[[\texttt{X}_1\ ,\ \dots\ ,\ \texttt{X}_n]])_{n\in\mathbb{N}} \ \text{la quasi-finitude \'equivaut} \ \textbf{la finitude} \ [\texttt{3}]. \ \textbf{Un raisonnement,} \ d\mathring{\textbf{u}} \ \text{à MALGRANGE,montre que l'on peut "relever" cette propriété dans } \mathcal{E}_K^{} \ , \ \text{si l'on dispose d'un théorème des fonctions implicites (théorème 1), d'un "théorème de Borel" (théorème 2) et d'un théorème de division, que nous allons établir maintenant au paragraphe suivant. }$

4. Théorème de division.

Notons $(x, c, t) = (x_1, \dots, x_n; c_1, \dots, c_s, t) \in K^n \times K^s \times K$. Soit $P(c, t) = t^s + c_1 t^{s-1} + \dots + c_s$. Le théorème de division auquel le théorème 3 se réduit s'énonce ainsi :

THEOREME 4. - Pour tout f: $K^n \times K^S \times K$ \rightarrow K de classe C^{∞} , il existe q: $K^n \times K^S \times K$ \rightarrow K de classe C^{∞} (i \leq i \leq s) uniques tels que

$$f(x, c, t) = P(c, t) q(x, c, t) + t^{S-1} h_1(x, c) + ... + h_s(x, c)$$

Preuve.

Unicité: Il faut montrer que

$$0 \equiv P(c, t) q(x, c; t) + t^{s-1} h_1(x, c) + ... + h_s(x, c)$$

entraı̂ne $q \equiv 0$ et $h_i \equiv 0$ $(1 \leqslant i \leqslant s)$.

Fixons $(x, c) \in K^n \times K^s$. Alors, le polynôme $R(t) = t^{s-1} h_1(x, c) + \dots + h_s(x, c)$ est de degré < s et a s racines. Donc $R(t) \equiv 0$. Il en résulte que $h_1(x, c) = 0$; donc $h_1 \equiv 0$, puis $q \equiv 0$.

Existence: Considérons $\sigma: K^S \to K^S$ où $r = (r_i) \longmapsto (\sigma_1(r), \ldots, \sigma_s(r))$. σ_i est la i-ième fonction symétrique élémentaire à s variables. L'application σ est analytique, propre, et surjective (car K est supposé algébriquement clos). Notons

$$g_{\sigma}(\mathbf{r}) = \begin{pmatrix} \frac{\partial \sigma_{1}}{\partial \mathbf{r}_{1}}(\mathbf{r}) & \dots & \frac{\partial \sigma_{s}}{\partial \mathbf{r}_{1}}(\mathbf{r}) \\ \vdots & & \vdots \\ \frac{\partial \sigma_{1}}{\partial \sigma_{s}}(\mathbf{r}) & \dots & \frac{\partial \sigma_{s}}{\partial \mathbf{r}_{s}}(\mathbf{r}) \end{pmatrix}$$

son Jacobien et $\Delta_{\sigma}(r)=\det(J_{\sigma}(r))=\prod\limits_{1\leqslant i< j\leqslant s}(r_i-r_j)$. Notons

$$Z = \{ r \in K^S \mid \Delta_{\sigma}(r) = 0 \} .$$

Le complément de Z est une partie ouverte et dense dans K^S .

Soit $f: K^n \times K^s \times K \rightarrow K$ de classe C^∞ . On pose $F(x, r, t) = f(x, \sigma(r), t)$ la fonction F est symétrique par rapport aux s variables r_1 , ..., r_s .

Soit $\Gamma(r, t) = P(\sigma(r), t) = \prod_{\substack{1 \leq i \leq s \\ K^n \times K^s \times K}} (t - r_i)$. Il est facile de trouver Q:

$$F(r, t) = \Gamma(r, t) Q(x, r, t) + t^{S-1} H_1(x, r) + ... + H_S(x, r)$$
.

On vérifie que les Q et H_i sont uniques. Il en résulte que Q et H_i sont symétriques par rapport aux variables r_1 , ..., r_s , car les données F et Γ le sont.

Donc il existe q et h, rendant commutatifs les diagrammes :

Puisque $1_{K^n} \times \sigma \times 1_{K}$ et $1_{K^n} \times \sigma$ sont surjectives, on a

$$f(x, c, t) = P(c, t) q(x, c, t) + t^{s-1} h_1(x, c) + ... + h_s(x, c)$$
.

Le théorème de division sera établi si l'on sait que $\,q\,$ et $\,h_{\,\dot{1}}\,$ sont de classe $\,C^{\infty}\,$. Cela résulte de la proposition suivante :

PROPOSITION. - Soit Ω un ouvert de Banach sur K . Soit Φ : $\Omega \times K^S \longrightarrow K$ une fonction de classe C^∞ , symétrique par rapport aux s dernières variables. Alors Φ se factorise de manière unique



 $\underline{où}$ φ est de classe C^{∞} .

Preuve.

<u>Unicité</u>: Immédiate, car $1_{\Omega} \times \sigma$ est surjectif.

Existence: Soit $(x, c) \in \Omega \times K^S$. Soit $(x, r) \in \Omega \times K^S$ tel que $\sigma(r) = c$. Posons $\phi(x, c) = \phi(x, r)$. La valeur $\phi(x, c)$ ne dépend pas du choix de $r \in \sigma^{-1}(c)$, car ϕ est supposée symétrique.

Soit $(x, r) \in \Omega \times K^S$, tel que $\Delta_{\sigma}(r) \neq 0$. Alors le théorème de la fonction inverse (théorème 1) montre qu'il existe ρ : $(\Omega \times K^S, (x, \sigma(r))) \longrightarrow (\Omega \times K^S, (x, r))$ unique de classe C^{∞} tel que $\rho \circ 1_{\Omega} \times \sigma = 1$. Donc $\phi = \Phi \circ \rho$ au voisinage de $(x, \sigma(r))$; ϕ est de classe C^{∞} sur $\Omega \times \omega$, $\omega = \{c \in K^S \mid \sigma^{-1}(c) \cap Z = \emptyset\}$. qui est un ouvert dense de $\Omega \times K^S$.

Soit $(x, r) \in \Omega \times K^n$, $r \notin Z$. On a les équations

$$\frac{\partial \bar{\Phi}}{\partial \mathbf{r}_{i}} = \sum_{j} \frac{\partial \varphi}{\partial \mathbf{c}_{j}} \circ \mathbf{1}_{\Omega} \times \sigma \frac{\partial \sigma_{j}}{\partial \mathbf{r}_{i}} \qquad (1 \leqslant i \leqslant s) \quad .$$

Par la règle de Kramer, il vient

$$\frac{\partial \varphi}{\partial c_j} \circ 1_{\Omega} \times \sigma = \frac{\delta^J}{\Delta \sigma}$$

 $\delta^{\hat{\mathbf{j}}}$ est le déterminant de la matrice obtenue en remplaçant dans Jo la j-ième colonne par $\frac{\partial \Phi}{\partial \mathbf{r}_1}$, ..., $\frac{\partial \Phi}{\partial \mathbf{r}_S}$.

Remarque. - John N. MATHER [6] a démontrer le théorème 4 de division lorsque $K = \mathbb{R}$. J'espère pouvoir démontrer ce théorème (et donc le théorème 3) lorsque K est un corps valué complet ultra-métrique non nécessairement algébriquement clos.

BIBLIOGRAPHIE

- [1] DIEUDONNÉ (Jean). Semi-dérivations et formule de Taylor en caractéristique p , Arch. der Math., t. 2, 1949-50, p. 364-366.
- [2] GLAESER (Georges). Fonctions composées différentiables, Annals of Math., Series 2, t. 77, 1963, p. 193-209.
- [3] HOUZEL (Christian). Géométrie analytique locale, I, Séminaire Cartan : Familles d'espaces complexes et fondements de la géométrie analytique, t. 13, 1960/61, n° 18, 12 p.
- [4] LANG (Serge). Introduction to differentiable manifolds. New York, Interscience Publishers, 1962.
- [5] MALGRANGE (Bernard). Ideals of differentiable functions. Bombay, Oxford University Press, 1966 (Tata Institute of fundamental Research. Studies in Mathematics, 3).
- [6] MATHER (John N.). Stability of C mappings: I. The division theorem, Annals of Math., Series 2, t. 87, 1968, p. 89-104.
- [7] ROBY (Norbert). Lois polynômes et lois formelles en théorie des modules, Ann. scient. Ec. Norm. Sup., 3e série, t. 80, 1963, p. 213-348 (Thèse Sc. Math. Paris, 1963).