SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

HEINI HALBERSTAM

Sieve methods and applications

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 9, n° 1 (1967-1968), exp. n° 7, p. 1-8

http://www.numdam.org/item?id=SDPP_1967-1968__9_1_A7_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1967-1968, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

14 décembre 1967

SIEVE METHODS AND APPLICATIONS (*)

by Heini HALBERSTAM

1. Let M , N be positive integers and α a sequence of distinct natural numbers in the interval (M+1,M+N). If the cardinality A of α is not too small compared with N we may expect that almost all residue classes mod p for almost all primes p that are not too large, contain elements of α . This "sieve principle" was first put into a quantitative form by LINNIK [7], but we shall follow here the formulation of RÉNYI [10].

For any natural number q , define

$$A(q, h) = \sum_{n \in \mathcal{A}} 1$$

$$n \equiv h \mod q$$

so that

$$\sum_{h=1}^{q} A(q, h) = A.$$

If α were well-distributed among the residue classes mod p for a particular prime p, we should expect each residue class to contain about A/p elements of α . Accordingly, the expression

$$D_{p} = \sum_{h=1}^{p} \{A(p, h) - \frac{A}{p}\}^{2}$$

is a measure of the way $\,^{\mbox{\scriptsize C}}\,$ is distributed among the residue classes $\,$ mod $\,$ p , and a non-trivial inequality of type

$$\sum_{p \leqslant X} p D_p \leqslant K(N, A, X)$$
, $(X < N)$

uniform in the sense that K does not depend on the individual arithmetic structure of $\mathfrak A$, would constitute a quantitative expression of Linnik's principle. What does "non-trivial" mean ? We have

(1)
$$pD_p = p \sum_{h=1}^{p} A^2(p, h) - A^2 \leq p \sum_{h=1}^{p} A^2(p, h)$$

^(*) The presentation derives to a considerable extent from the forthcoming monograph on sieve methods by HALBERSTAM and RICHERT.

and

$$A(p, h) \leq \frac{N}{p} + 1 \leq \frac{2N}{p}$$

uniformly in α , for all p < N . Hence, by (1)

$$pD_p \leq p \frac{2N}{p} \sum_{h=1}^{p} A(p, h) = 2NA$$
,

so that, trivially,

(2)
$$\sum_{p \leq X} pD_p \leq 2NAX ;$$

we ask therefore whether one can improve on (2).

 \mathfrak{L} . -We transform the question to one about mean values of trigonometric sums. Define

$$S(x) = \sum_{n \in \Omega} e^{2\pi i n x}$$
.

then

$$\sum_{a=1}^{p-1} |s(\frac{a}{p})|^2 = \sum_{n \in \mathcal{Q}} \sum_{n' \in \mathcal{Q}} \sum_{a=1}^{p-1} e^{2\pi i (n-n')a/p}$$

and the inner sum is p-1 if $n\equiv n'\mod p$ and -1 otherwise. Hence the sum is equal to

so that, by (1),

(3)
$$pD_{p} = \sum_{a=1}^{p-1} |S(\frac{a}{p})|^{2}.$$

We shall be concerned from now on with non-trivial estimates of the sum

$$\sum_{p \leq X} \sum_{a=1}^{p-1} |s(\frac{a}{p})|^2,$$

We begin by remarking that the sum (4) does not exceed

(5)
$$\sum_{\substack{q \leq X \\ (a,q)=1}} \sum_{a=1}^{q} |s(\frac{a}{q})|^2.$$

and that the expression (5) is simply a special case of sum of type

$$(6) \qquad \qquad \sum_{r=1}^{R} |s(x_r)|^2$$

where the real numbers $\mathbf{x_r}$ are distinct mod 1 and, if $\|\theta\|$ denotes the distance of θ from the nearest integer, the numbers $\mathbf{x_r}$ are "well-separated" in the sense that there exists $\delta > 0$ such that

$$\|\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}\| \ge \delta$$
 if $\mathbf{i} \ne \mathbf{j}$.

If the numbers x_r are taken to be the Farey series a/q $(1 \le a \le q$, (a , q) = 1) of order X, then X^{-2} is an admissible value of δ and (6) becomes (5).

Finally, we introduce

$$S_0(x) = \sum_{n=-U}^{U} b_n e^{2\pi i nx}$$

where the b are any complex numbers. Putting

$$U = \begin{cases} \frac{1}{2}(N - 1) & , 2/N \\ \frac{1}{2}N & , 2/N \end{cases}$$

and b = a (in the latter case, the case of N even, adding a term with a $_{\rm N+M+1}$ = 0) we obtain

$$|S_0(x)| = |\sum_{n=M+1}^{M+N} a_n e^{2\pi i n x}|;$$

in particular, taking a_n to be the characteristic function of α , we have, in this special case, $|S_0(x)| = |S(x)|$. Then our problem is to obtain a non-trivial estimate of sums of type

(7)
$$\sum_{r=1}^{R} |s_0(x_r)|^2$$

3. - We follow the particularly simple treatment of GALLAGHER [5]. We have

$$S_0^2(x) - S_0^2(x_r) = 2 \int_{x_r}^x S_0(y) S_0'(y) dy$$

so that

$$|s_0(x_r)|^2 \le |s_0(x)|^2 + 2|\int_{x_r}^x |s_0 s_0'||$$
.

Integrate with respect to x over the interval $(x_r - \frac{1}{2}\delta, x_r + \frac{1}{2}\delta)$, to arrive at

$$\delta |s_0(x_r)|^2 \leqslant \int_{x_r^-\frac{1}{2}\delta}^{x_r^+\frac{1}{2}\delta} |s_0(x)|^2 dx + \delta \int_{x_r^-\frac{1}{2}\delta}^{x_r^+\frac{1}{2}\delta} |s_0(y) s_0'(y)| dy ,$$

and sum over r. In view of the definition of δ , the intervals $(x_r - \frac{1}{2}\delta, x_r + \frac{1}{2}\delta)$ (r = 1, ..., R) are pairwise disjoint, so that

$$\sum_{r=1}^{R} |s_0(x_r)|^2 \leq \delta^{-1} \int_0^1 |s_0|^2 + \int_0^1 |s_0 s_0^*|;$$

writing

$$Z_0 = \sum_{-U}^{U} |b_n|^2 = \int_0^1 |s_0|^2$$
,

we obtain, by Cauchy's inequality, that the expression on the right is at most

$$\delta^{-1} \mathbf{Z}_{0} + \mathbf{Z}_{0}^{1/2} (\int_{0}^{1} |\mathbf{S}_{0}^{1}|^{2})^{1/2} \leq \delta^{-1} \mathbf{Z}_{0} + \mathbf{Z}_{0}^{1/2} (4\pi^{2} \mathbf{U}^{2} \mathbf{Z}_{0})^{1/2} = (\delta^{-1} + 2\pi\mathbf{U}) \mathbf{Z}_{0}.$$

One can improve on this estimate by more accurate methods, and I summarise the present state of knowledge in the following theorem:

THEOREM 1.

$$\sum_{r=1}^{R} |s_0(x_r)|^2 \leq \begin{cases} (\delta^{-1} + 2\pi U) Z_0 \\ 2 \max(2U, \delta^{-1}) Z_0 \\ ((2U)^{1/2} + \delta^{-1/2})^2 Z_0 \end{cases}$$

Of these, the tint is in GALLAGHER [5]; the second and third one based on the method of DAVENPORT-HALBERSTAM [3] and will appear in BOMBIERI-DAVENPORT [2].

As an immediate corollary, we obtain :

THEOREM 2.

$$\sum_{p \leqslant X} pD_p \leqslant \sum_{q \leqslant X} \sum_{\substack{a=1 \ (a,q)=1}}^{q} |S(\frac{a}{q})|^2 \leqslant \begin{cases} (\pi N + X^2) & A \\ 2 \max(N, X^2) & A \\ (N^{1/2} + X)^2 & A \end{cases}$$

If $X \leq N^{1/2}$, the second estimate gives the best result, namely 2NA; if $X = o(N^{1/2})$, the third gives the best estimate, (1 + o(1))NA. It is now clear that the saving on compared with the trivial estimate 2NAX (cf. (2)) is very considerable (a whole factor X, in fact).

RENYI [11] was the first to obtain such an estimate, valid only for $X \leq \frac{1}{2} \, N^{1/3}$. Decisive progress was made by K. F. ROTH [12], who increased the range of validity up to $X \leq (N/\log N)^{1/2}$. Shortly afterwards BOMBIERI [1] improved Roth's range slightly to $X \leq N^{1/2}$. All the methods of proof were rather complicated.

4. - Let z(p) , for each $p \leqslant N^{1/2}$, denote the number of residue classes mod p containing no elements of α . Clearly z(p) < p . Then :

THEOREM 3. - A
$$\sum_{p \leqslant N^{1/2}} \frac{z(p)}{p - z(p)} \leqslant 2N$$
.

<u>Proof.</u> - The A elements of α are distributed among p-z(p) residue classes h mod p . Let Σ' denote summation over these non-empty classes. Then, by Cauchy's inequality,

$$\frac{p}{p-z(p)} A^{2} = \frac{p}{p-z(p)} (\sum_{h=1}^{p} A(p,h))^{2} \leq p \sum_{h=1}^{p} A^{2}(p,h) = pD_{p} + A^{2}$$

by (1), whence

$$\frac{z(p)}{p-z(p)} A^2 \leq pD_p.$$

Hence the result, using the second estimate of theorem 2.

The form of this result is due essentially to GALLAGHER [5].

The following application underlines the relevance of these theorems to the original Linnik principle.

THEOREM 4. - Let α satisfy $0 < \alpha < 1$. With the notation of theorem 3, let Y denote the number of primes $p \in \mathbb{N}^{1/2}$ for which $z(p) > \alpha p$. Then

$$\mathbb{Y} \leqslant 2 \, \frac{1 \, - \, \alpha}{\alpha} \, \frac{\mathbb{N}}{A}$$
 .

<u>Proof.</u> - For each p counted by Y , $\frac{z(p)}{p-z(p)} \geqslant \frac{\alpha}{1-\alpha}$. Now apply theorem 3.

We observe that if A is large, Y is small. In particular, if A > CN (0 < C < 1), the number Y of "exceptional" primes is bounded.

For all but at most Y exceptional primes, α contains elements in at least $(1-\alpha)p$ residue classes $\mod p$, $p\leqslant N^{1/2}$.

We describe another application of theorem 3, discovered by LINNIK [8]. First a preliminary result:

THEOREM 5. - Let $\eta(p)$ denote the least quadratic non-residue mod p. Suppose $x \geqslant y \geqslant 1$ and define $\Psi(x,y)$ to be the number of natural numbers less than or equal to x, divisible by no prime greater than y. Then

$$\sum_{\substack{p \leqslant x \\ \eta(p) > y}} 1 \leqslant \frac{4x^2}{\Psi(x^2, y)}.$$

<u>Proof.</u> - It is well-known that $\eta(p)$ is itself prime, so that if $\eta(p)>y$, all primes $\leqslant y$ are quadratic residues mod p. Hence so are all numbers $\leqslant x^2$ made up entirely of primes $\leqslant y$. Take these numbers to be our set $^\mathfrak A$, so that $A=\Psi(x^2$, y). Then the elements of $^\mathfrak A$ are restricted to at most $\frac12(p+1)$ residue classes mod p for each prime $p\leqslant x$ with $\eta(p)>y$. Applying theorem 3 with $\mathbb N=x^2$, we obtain

$$\sum_{\substack{p \leqslant x \\ \eta(p) > y}} \frac{p-1}{p+1} \leqslant \frac{2x^2}{\psi(x^2, y)},$$

whence the result.

It is conjectured that $\eta(p)=0(p^\epsilon)$, and in support of this conjecture we have the following theorem :

THEOREM 6. - Let ϵ be any number satisfying $0 < \epsilon < \frac{1}{2}$. Then the number R = R(x) of primes p, $x^{\epsilon} , whose least quadratic non-residues <math>\eta(p)$ satisfy $\eta(p) > p^{\epsilon}$, is bounded; provided $x > x_0(\epsilon)$. Indeed,

$$R \leq 4 \exp\{u(\log u + \log \log u + 4)\}$$
, $u = 2\varepsilon^{-2}$.

<u>Proof.</u> - For each p counted in R we have $\eta(p) > p^{\epsilon} \geqslant x^{\epsilon^2}$. Hence

$$R \leqslant 4x^2/\Psi(x^2, x^{\epsilon^2})$$

by theorem 5, and it can be proved that

 $\Psi(y^{u}, y) \ge y^{u} \exp\{-u(\log u + \log \log u + 4)\}$ if $u > e^{2}, y \ge y_{0}(u)$.

In our case take $y^u = x^2$, $y = x^{\epsilon^2}$ (so that $u = 2\epsilon^{-2}$) to arrive at the result stated.

Using Rényi's form of theorem 2, ERDÖS [4] proved that

$$\sum_{p \leqslant x} \eta(p) \sim \frac{x}{\log x} \sum_{n=1}^{\infty} p_n 2^{-n} \qquad (x \to \infty) ,$$

in further support of the conjecture.

5. - It has been shown recently by MONTGOMERY [9] that the correct generalisation of (3) is the identity

(8)
$$q \sum_{h=1}^{q} |\sum_{d|q} \frac{\mu(d)}{d} A(\frac{q}{d}, h)|^{2} = \sum_{\substack{a=1\\(a,q)=1}}^{q} |S(\frac{a}{q})|^{2},$$

which readily reduces to (3) if q is prime.

Just as (3) and theorem 2 led to theorem 3, so MONTGOMERY showed (although the proof is much more complicated) that (8) combines with theorem 2 to give:

THEOREM 7. - A
$$\sum_{q \leq X} \mu^2(q) \prod_{p|q} \frac{z(p)}{p-z(p)} \leq (N^{1/2} + X)^2$$
.

It is very interesting to note that α can be the sequence of integers left in the interval (M+1,M+N) when we have removed from this interval all those integers lying in one of z(p) residue classes mod p for each $p \leq X$. In other words, theorem 7 is an upper bound sieve estimate of the Brun-Selberg type.

For example, if z(p) = 1 for each $p \leq X$, we have

$$A \leqslant \frac{(N^{1/2} + X)^2}{\sum\limits_{q \leqslant X} \frac{\mu^2(q)}{\Phi(q)}};$$

and if we take $X = N^{1/2}/\log\log N$ we find, using $\sum_{q \leqslant X} \frac{\mu^2(q)}{\tilde{\Phi}(q)} > \log X$, that $\pi(\tilde{H} + N) - \pi(\tilde{M}) < \frac{2N}{\log N} (1 + O(\frac{\log\log N}{\log N}))$,

a result known (without the log log N factor) from SELBERG [13].

Lower bound estimates are much harder to find, but for the most recent sharp results see HALBERSTAI, JURKAT and RICHERT [6].

BIBLIOGRAPHY

- [1] BOMBIERI (E.). On the large sieve, Mathematika, London, t. 12, 1965, p. 201-225.
- [2] BOHBIERI (E.) and DAVENPORT (H.), in "Landau Memorial Volume" (to appear).
- [3] DAVENPORT (H.) and HALBERSTAN (H.). The values of a trigonometrical polynomial at well spaced points, Mathematika, London, t. 13, 1966, p. 91-96.
- [4] ERDÖS (Pál). Számelméleti megjegyzések I, Matematikai Lapok, t. 12, 1961, p. 10-17.

- [5] GALLAGHER (P. X.). The large sieve, Mathematika, London, t. 14, 1967, p. 14-20.
- [6] HALBERSTAM (H.), JURKAT (W.) et RICHERT (H.-E.). Un nouveau résultat de la méthode du crible, C. R. Acad. Sc. Paris, t. 264, 1967, Série A, p. 920-923.
- [7] LINNIK (Ju. V.). The large sieve [in Russian], Doklady Akad. Nauk SSSR, N. S., t. 30, 1941, p. 292-294.
- [8] LINNIK (Ju. V.). A remark on the least quadratic non-residue [in Russian], Doklady Akad. Nauk SSSR, N. S., t. 36, 1942, p. 119-120.
- [9] MONTGOMERY (H. L.), in "Mordell Volume", J. London math. Soc. (to appear).
- [10] RÉNYI (Alfred). Un nouveau théorème concernant les fonctions indépendantes et ses applications à la théorie des nombres, J. Math. pures et appl., Série 9, t. 28, 1949, p. 137-149.
- [11] RÉNYI (Alfred). On the representation of an even number as the sum of a single prime and a single almost-prime number [in Russian], Izvest. Akad. Nauk SSSR, Ser. Mat., t. 12, 1948, p. 57-78.
- [12] ROTH (K. F.). On the large sieves of Linnik and Rényi, Mathematika, London, t. 12, 1965, p. 1-9.
- [13] SELBERG (Atle). On elementary methods in primenumber-theory and their limitations, Den 11te Skandinavishe Matematikerkongress [1949. Trondheim], p. 13-22. Oslo, Johan Grundt Tanums Forlag, 1952.