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SIEVE METHODS AND APPLICATIONS (*)
by Heini HALBERSTAM

Séminaire DELANGE-PISOT-POITOU

(Théorie des Nombres)
9e année, 1967/68, n° 7 14 décembre 1967

M , , N be positive integers and a a sequence of distinct natural

numbers in the interval + 1 , M + N) . If the cardinality A of 03B1 is not too

small compared with N we may expect that almost all residue classes mod p for

almost all primes p that are not too large, contain elements of This "sieve

principle s’ was first put into a quantitative form by LINNIK [7], but we shall follow
here the formulation of RENYI [l0].

For any natural number q , define

If ~. were well-distributed among the residue classes mod p for a particular

prime p, we should expect each residue class to contain about A/p elements of

Accordingly, the expression

is a measure of the way 03B1 is distributed among the residue classes mod p , y and

a non-trivial inequality of type

uniform in the sense that K does not depend on the individual arithmetic structure

of would constitute a quantitative expression of Linnik’s principle. What does

"non-trivial" mean ? We have

(*) The presentation derives to a considerable extent from the forthcoming mono-
graph on sieve methods by HALBERSTAM and RICHERT.



uniformly in for all p  N . Hence, by (1)

we ask therefore whether one can improve on (2).

2. transform the question to one about mean values of trigonometric sums.

Define

and the inner sum is p - 1 if n = n’ mod p and -1 otherwise. Hence the sum

is equal to

We shall be concerned from now on with non-trivial estimates of the sum

We begin by remarking that the sum (4) does not exceed



and that the expression (5) is simply a special case of sum of type

where the real numbers x r are distinct mod 1 and, if denotes the distance

of 8 from the nearest integer, the numbers xr are "well-separated" in the sense

that there exists s > 0 such that

If the numbers x are taken to be the Farey series 

of order X , then X ~ is an admissible value of 6 and (6) becomes (5). o

Finally, we introduce

where the b are any complex numbers. Putting

and b 
n 

= a (in the latter case, the case of N even, adding a term with

aN+M+1 = 0 ) we obtain

in particular, taking an to be the characteristic function we have, in .

this special case, ~S(x~~ . Then our problem is to obtain a non-trivial
estimate of sums of type

3. - We follow the particularly simple treatment of GALLAGHER [5]. We have



Integrate with respect to x over the interval [xr - 1 203B4 , y x + 1 203B4] , y to arrive at

and sum over r . In view of the definition of s , the intervals (x - 1 203B4 ,5 x + 1 203B4)
(r = 1 , ... , R) are pairwise disjoint, so that

we obtain, by Cauchy’s inequality, that the expression on the right is at most

One can improve on this estimate by more accurate methods, and I summarise the 

sent state of knowledge in the following theorem o

THEOREM 1.

Of these, the tint is in GALLAGHER [5] ; the second and third one based on the

method of DAVENPORT-HALBERSTAM [3] and will appear in BOMBIERI-DAVENPORT [2].

As an immediate corollary, we obtain ;

THEOREM 2. 0

If X  1/2 the second estimate gives the best result, namely 2NA; if

X = o(N1/2) , the third gives the best estimate, (1 + o(1))NA . It is now clear
that the saving on compared with the trivial estimate 2NAX (cf. (2)) is very

considerable (a whole factor X y in fact).



was the first to obtain such an estimate, valid only N ’ .
Decisive progress was made by K. F. ROTH [12], who increased the range of validity
up to X  (N/log N)1/2 . Shortly afterwards BOMBIERI [1] improved Roth’s range
slightly to X ~ N ~~2 . . All the methods of proof were rather complicated. .

4. - Let z(p) y for each p ~ N 1~2 , denote the number of residue classes

mod p containing no elements of a . Clearly z(p)  p . 0 Then o

Proof. - The A elements of QL are distributed among p - z(p) residue classes

h mod p . Let 2-’ denote summation over these non-empty classes. Then, by Cauchy’s

inequality, 

Hence the result, using the second estimate of theorem 2.

The form of this result is due essentially to GALLAGHER [5].

The following application underlines the relevance of these theorems to the ori-

ginal Linnik principle. o

THEOREM 4. - Let 03B1 satisfy 0  03B1  1 . a With the notation of theorem 3, let Y

denote the number of primes p ~ f or which z(p) > Then 

..~...

Proof. - For counted 
’p z(p) p - z(p)  03B1 1 - cY 

° Now apply theorem 3.

We observe that if A is large, Y is small . 0 In particular, if A > CN (0  C  I) ,
the number Y of "exceptional" primes is bounded.

For all but at most Y exceptional primes, G contains elements in at least

( I - q)p residue classes uod p , p ( N1/2 .
IIe describe another application of theorem 3, discovered by LINNIK [8]o First a

preliminary result:



THEOREM 5. - Let denote the least quadratic non-residue mod p . Suppose

and define ~(x , y) to be the number of natural numbers less than or

equal to x, y divisible by no prime greater than y . Then

Proof. - It is well-known that is itself prime y so that if > y , y all

primes ~ y are quadratic residues mod p . Hence so are all numbers $ x ~ made

up entirely of primes  y . Take these numbers to be our set 03B1 , y so that

A = ~(x ~ y) . Then the elements of d are restricted to at most 2014(p + l) resi-

due classes mod p for each prime p ~ x with > y . Applying theorem 3 with

N = x ~ we obtain
?

whence the result.

It is conjectured that = 
y and in support of this conjecture we have

the following theorem : 1

THEOREM 6. - Let e be any number satisfying 0  e  ’~- . Then the number
R = R(x) of primes p , p  x , y whose least quadratic non-residues 

satisfy T;(p) > is bounded ; provided x ~ Indeed~

R  4 exp(u(log u + log log u + 4)} , u = 

2

Proof. - For each p counted in R we have > Hence

by theorem 5, and it can be proved that

u 2 ~2 ( -2 .

In our case take y - x , y = x (so that u = 2~ ~ to arrive at the result

statede

Using Rényi’s form of theorem 2, ERDÖS [4] proved that

in further support of the conjecture.



5 . ~ It has been shown recently by that the correct generalisa-

tion of (3) is the identity

which readily reduces to (3) if q is prime. o

Just as (3) and theorem 2 led to theorem 3, so MONTGOMERY showed (although the

proof is much more complicated) that (8) combines with theorem 2 to give o

It is very interesting to note that a can be the sequence of integers left in

the interval + 1 , y M + N) when we have removed from this interval all those

integers lying in one of z(p) residue classes mod p for each p ~ X . In other

words, theorem 7 is an upper bound sieve estimate of the Brun-Selberg type.

For example, 9 if z(p) = 1 for each p ~ X , we have

a result known (without the log log N factor) from SELBERG 113~.

Lower bound estimates are much harder to find, but for the most recent sharp

resume see HALBERSTAM, JURKAT and RICHERT [6].
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