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ON SPLINE INTERPOLATION AT ALL INTEGER POINTS OF THE REAL AXIS

by Isaac J. SCHOENBERG

Seminaire DELMGE-PISOT-POITOU
(Theorie des nombres)
9e annee, 1967/68, nO 1 Ociobre 1967

Let (y) (- co  v  ~ , v rational integer) be a doubly-infinite sequence of
real or complex numbers. By a cardinal interpolation problem we mean the problem of

constructing a function F(x) (x satisfying the relations

(l) F(v) = y 
v 

for all integer v ,

while F is to meet appropriate additional conditions specified beforehand. There

are many cardinal interpolation problems depending on the additional conditions

which are imposed. We refer to (l) as a cardinal interpolation problem, because (1)
is solved formally by the so-called cardinal series

(see (8 ~, chap. 

The paper is divided into three parts. Our main results are described in part 3,
and concern certain cardinal interpolation problems. These results are based on

those of a recent joint paper with M. GOLOMB [3]. This paper not being yet in print,
it seemed indispensable to describe in pert 2 its main contents.

For motivation and background I discuss, in part 1, the formal solutions (by
spline functions) of the problem (l) which were given in my old paper [5]. These
were found useful during the war for numerical purposes. In part 3, these formal

solutions are characterized by certain extremum properties, and their connection

with the theory of entire functions of exponential type is uncovered. This connec-

tion may also be interpreted as a new summation m.ethod for the series (2) which is
more powerful than existing methods. Being based on spline functions, we propose to
call it the spline summation of the cardinal series. Part 3 is expository in the

sense that no proofs are given ; these will appear elsewhere. The paper concludes
with a number of open problems and conjectures.

1. The s line solutions of the cardinal inte olation roblem.

In the present first part, we discuss the interpolation problem (1) from the for-
mal computational point of view of the paper (5 ~~ The solutions there given will



now be described, postponing to part 3 a discussion of their analytic characteriza-

tions.

Let us assume for the moment that y =0 if > N , y where N is very large.

It follows that the series (2) is a finite sum which represents an entire function

F(x) satisfying (1). However, the series (2) is not convenient for numerical pur-
poses, because of the slow decay of the function 

.

This implies that the sum ( 2) will contain very many terms which can not be neglec-
ted. Moreover, an error in the value of y 

v 
will affect F(x) even if the distan-

ce x - v ‘ is large.

The interpolation method used in [5] proceeds as follows. We select a natural
number m , and denote by S (x) (x E R) a function satisfying the following con-

ditions :

Here and below n- denotes the class of polynomials of degrees not exceeding k .

In words : We interpolate the points (03BD, y ) by a spline function S (x) of de-

gree 2m - 1 having knots at all integer points of the real axis.

Thus, if m = 1 ~ is the piecewise linear function obtained by linear in-

terpolation between consecutive points. Notice that is uniquely defined.

Matters are different if m > 1 . Indeed, let us choose P(x) e such that

P(o) = y and P(l) = y1 , but otherwise arbitrary. P(x) still depends on 2m - 2

free parameters. We now define

and extend its definition to all real x by setting



I claim that the coefficients ai and b . are uniquely defined by the interpola-
tion requirements ( 1. 4) . For a is uniquely defined by asking that S ~ 2~ - y ,
then a by S ~ 3~ ~ y , etc. Likewise b is given by 1~ _ b~ by
S (- 2~ - y , etc. This makes it abundently clear that the spline function S (x)
m - m

satisfying the conditions ( 1.2~ 9 ~ 1.3~ and ( 1 . 4) , still depends on 2m - 2 linear

parameters.

Nevertheless, a useful spline interpolant S (x) was constructed in ~5~t § 4.2,
m

as follows : ~e start from the rectangular frequency function

be the frequency function obtained by convoluting 2m factors, all of which are

identical with The Fourier transform of M 1 ~x~ being

It is easily shown in various ways that M(x) satisfies the conditions ( 1,.2~ and

(~.3~. Moreover, M(x) > 0 in the interval (- m , m) , and M(x) = 0 in its com-

plement. It was also shown in [5] (theorem 5, p. 72) that any S m (x) satisfying

( 1. 2~ and ( 1. 3~ may be represented uniquely in the form

for appropriate values of the c . Conversely, it is clear that the series ( 1.9)
v



represents a function satisfying ( 1. 2) and (l.3) whatever the values of the coeffi-
cients c maybe.

Let us now consider the "unit data"

and let us find a spline solution L (x) of the interpolation problem
m

Such a spline function was given p. 79, for k = 2m and

t = 0 ). It is defined by the Fourier integral

By ( 1.12~ and ( 1.?~, $(u) is evidently a periodic function of period 2Tr which

is positive for all real u.

We can readily see that L 
m 
(x) satisfies (l.2) and (l.3) as follows : We consi-

der the Fourier expansion of the reciprocal of ~(u~ ,

and introduce it into (1.11). Interchanging the integration and summation symbols,
we obtain by ( 1.8~

which is a spline function of our class in view of the representation ( 1.9~. That
also ( 1.10) are satisfied is seen as follows : For integer x = v , gives



Finally, L (x) being a solution of the "unit" interpolation problem ( 1.10~ ~ it is
m

clear that the series

if convergent, will represent a function satisfying the conditions ( ~.2) s ( 1. 3) and

(1.4).

One advantage of the interpolation formula ( 1.1.3) over the cardinal series (2) is

due to the exponential decay of L m (x) as jx) (compare with ( 1.1) : ) . Ano-

ther advantage of ( 1.13) is this : If

then the series (1.13) converges and

For these reasons, ( 1. 13) was found useful for numerical applications.

Nevertheless, various pertinent questions are as yet unanswered. Here is one :

We have seen above that the conditions ( 1 . 2) , ( 1 . 3) and ( 1 . 4) do not determine the

interpolating spline function uniquely. What additional properties charac-
terize the particular interpolating spline function Sm(x) , defined by (1.13),
among all other interpolating spline functions of degree 2m - 1 ?

This, and other questions will be answered in § 3.

2. The extension of functions and s line inte olation.

Let A be a closed set of reals, and let f be a function, or mapping, from A

into the complex field C . A function F from R into C is said to be an ex-

tension of f, y provided that

Worthwhile problems arise if we ask for conditions for the existence of extensions

F belonging to some specified space of functions. In ~3~~ the authors discuss the
extension problem which requires that

where

(2.3) (m prescribed, m ~ / l ~ .

Alternatively, we may describe Rm as the class of functions F obtained as m-

fold integrals of functions in L2(R) .



The extension problem described by (2.1~ and (2.2) will be denoted by the symbol

for all solutions F of (2.4) . Such functions S are called optimal extensions of

f , or optimal solutions of (2.4).

PROBLEM III. - To give an intrinsic, or structural, characterization of the opti-
mal solutions.

The case when the set A is finite. We assume that

and wish to point out that all three problems I, II, y III are for this case comple-
tely solved by known results concerning spline interpolation. We write as usual

(2.6) f(x. ) = y. (i= 1 , ... , n) .

It is known that the optimal solution S of the extension (or interpolation) pro-
blem (2.4) is unique, and uniquely characterized by the following properties (see
e. g. E4~ theorems 1 and 2, p. 158) :

A function S en joying the properties (2.7) (1’) , (2’), (3’), is called a natu-

ral spline function of degree 2m - 1 with knots x.. We denote their class by
the symbol

(2.9) NS (A) .
m



A moment’s reflexion will show that the conditions (2.7) (it), ( 2’), ( 3’ ~ , are equi-
valent with the conditions

This is so because the two simultaneous conditions S and 

are equivalent with the condition and similarly for the interval

(xn , ~) .
For the case of a fin te set A 9 we therefore conclude the following :

Problem I : The problem (2.4) has always solutions.
Problem II : The optimal solution S always exists and is unique.
Problem III : The optimal solution S is characterized, besides the interpolato-

ry conditions (2.8), by the structural properties (2.10) (1) , ( 2) , and (3).

For the interpolating natural spline function S (i. e. the optimal extension) y
the integral

can be evaluated ; it is represented by a Hermitian form in n - m variables, who-
se coefficients depend on the set (2.5) and the number m , while the variables are

the n - m (consecutive) divided differences of order m of the n ordinates y. i
(see ~6 ~, ~ 2). Thus, for m = 1 , we find

an expression which already appears in some early work of F. RIESZ.

The case of a finite set A being disposed of, we shall now describe the solu-
tions of problems I, II and III, as given in ~3~, for the case when

(2.12) A is an infinite closed set of reals .

THEOREM I (GOLOMB-SCHOENBERG). - Assuming (2.12), the roblem (2.4) has solutions
if and only if, the following condition is satisfied :

Let



and let S ~x~ denote the natural spline function of degree 2 m - 1 which inter-

polates f at the n points of A . Then there should exist a constant K = 

independent such that

THEOREM II (GOLOMB-SCHOENBERG). - If the condition (2.13) is satisfied, then the

problem (2.4) admits a unique optimal extension S .

The solution of problem III requires two preliminary definitions. The first defi-

nition describes, for a fixed set A and all possible (or admissible) f, the

class of optimal extensions which is to be characterized.

DEFINITION 1. - Let A be fixed and such that (2.12) holds. For an arbitrary
F E ~~ 9 we define its restriction to A,

Evidently this f admits extensions in ~m , e. g. F. By theorem II, it has a

unique optimal extension S = SF , and we consider the class of all these exten-

sions which we denote by the symbol

Problem III asks for a characterization of this class.

DEFINITION 2. - Let A be fixed and such that (2.12) holds. A function S(x)
is called a natural spline function of degree 2 m - 1 knotted on the set

A , provided that it satisfies the following conditions :

where A’ is the derived set of A.

We denote by the symbol NS m (A) the entire class of functions satisfying the

conditions (2.15) ( 1 ~ , ( 2) , and (3).

A solution of problem III is given by the following theorem :

THEOREM III (GOLOMB-SCHOENBERG).



In words : A solution S of the problem (2. 4) is an optimal extension if, and only

if, it is a natural spline function of degree 2 m - 1 knotted on the set A .

In definitions 1 and 2 and theorem III, we have assumed that the set A is infi-

nite. However, if A is a finite set of n points, n ~m , then the results re-

main valid, because definition 2 is then easily seen to define the class of ordina-

ry natural spline functions of degree 2 m - 1 having as knots the n points of

A . This follows from the fact that A’ == ~ .

3. The case when A is the set of all rational integers.

For the remainder of this paper, we discuss the problem (2.4) for the special ca-
se when

As in (2.6), we change notation by writing f(03BD) = y , so that our "data" is a se-
v

quence of numbers

The problem (2.4) now becomes

(3.3) ExtProb(Z , (y ) , m) .

This is precisely the interpolation problem (l) of our introduction, with the added

restriction that the interpolating functions, or extensions, should belong to .
We may therefore apply all results of the general theory of § 2 to this special ca-

se.

In the present case, the general existence theorem I simplifies considerably.

From the explicit expression of the integral ( 2.11~ as a Hermitian form, it is now

easy to derive the following theorem :

THEOREM 1. - The problem (3.3) has solutions in ~m if, and only if

Let us assume that the series (3.4) converges. By theorem II, we are assured of
the existence of a unique optimal extension S . Moreover, definition 2 and theorem

III allow to characterize S by structural properties. The characteristic proper-

ties (2.15) are fully used in our case (3.1), if in condition (2.15) (2) we select



Likewise, observing that At = Z’ = §$ , we may select in condition (2. 15) ( 3) the

single open interval J = R 5 This establishes the following theorem:

THEOREM 2. - Let (3. 4) hold. Among all spline functions of degree 2n - 1 , wi th

knots at all integers, and which interpolate the sequence (y ) , there is exactly
v

one, which we call S , which is in X~ , I, e.
m -

This particular interpolating spline function sm is the optimal solution of the

problem (3.3).

Theorems 1 and 2 were announced in [6] (theorem 7, p. 27).

Let us now return to the function L (x) defined by We have already

shown in the introduction that L (x) is a spline function of degree 2m - 1 with

knots at the integers. On the other hand, ~t (u~ - 0 (u Now 

implies that

as being the Fourier transform of a function in L2(R) . By ( 1. 10) and theorem 2,

we conclude that L (x) is the optimal extension of the sequence (6 ) . From
n >..-.. - ., 

.. 

-... 
- 

....- 
- 

-, 
..- .- - 

-.. 
- - 

.- 
- - .- - 

v

this, it is easy to derive the following general result.

THEOREM 3. - %Ie assume (3. 4) to hold. The optimal extension S of theorem 2 is
m o-o°°°°

given by the series

which converges locally uniformly on the real axis.

These results answer the question raised at the end of § 1. Assuming ~3.4~, they
also show that the interpolation formula (3.5) furnishes the optimal solution in
~ for the cardinal interpolation problem (1).

Further problems arise from the following remark. Let (3.4) hold, and let p be

a positive integer. By Cauchy’s inequality, we obtain

whence



Summing these inequalities for all integers v, we obtain

This inequality shows that if (3.4) holds for a value m = k (>, o~ ~ then (3.4)
also holds for all m ~ k .

By theorems 1 and 2, we obtain the following corollary :

COROLLARY 1. - If (3.4) holds f or a value m = k > 0 ~ then the spline function

exists f or all 

This raises the following new question :

PROBLEM 1. - What happens to S (x) as we let m ~ ~ ?

The remainder of this paper will describe the answer to this question.

We need two definitions.

DEFINITION 3.

(1) For an integer k >~ 0 ~ we consider the cl ass of sequence

(2) For an integer y we consider the class of entire functions of a com-

plex variable

(3.10) PW03C0k = {F(x) ; F(x) entire of exponential type  03C0

and such that for real x , EL (R)) .

The symbol M refers to PALEY and WIENER~ since they discovered the characte-

ristic representation of the elements of the class (see e. g. p. 103).
Evidently , the inequality (3.6) implies the inclusions



Likewise, the Paley-liiener theorem easily shows that

The relation between the classes and l2k is described by the following
theorem s

THEOREM 4. - If

(3.11) F(x) ~ (P~f ,
and if we write

(3.12) F(v) ==y~ Z) ,

then

(3.13) 

Conversely, if (y ) is a sequence such that (3.13) holds y then there exists a

unique function F(x) satisfying (3.1l) and (3.12).

lie may summarize this theorem by saying that there is a one-to-one correspondence
between the two classes

which is def ined by the relations ( 3.1.2~ .

The connection of theorem 4 with spline functions is as follows. Let (y ~ E Q2 .
It follows that (y ) E for all values of m such that 

v

v m

( 3.14) 

By coroll ary 1, we conclude the existence of the spline functions

~ (x) E~m
m

interpolating the sequence (y ) for all values of m satisfying (3.14). This se-
quence of spline functions enjoys the following property :

THEMOREM 5. - Let F(x) be the unique elements of satisfying (3.12). Then

locally uniformly for all real x . If k ~ 1 , also the relations



hold loc ally uniformly f or re al x 9 while

holds uniformly for all real x .

This, then is the answer to problem 1. Originally, I establish theorem 5 first,
and afterwards derived from it theorem 4. Very recently Richard A. ASKEY found an

elegant direct proof of theorem 4. Thereby theorem 4 can be used in establishing
theorem 5, thereby greatly simplifying its proof.

An example : The sequence (y03BD) = (03B403BD) satisfies the condition of the definition

(3.9) with k = 0 , i. e. (6 ) The corresponding interpolating function

F(x) (theorem 4) is evidently

On the other hand, we know by theorem 3 that

is the spline interpolant of the sequence ($ ~ . By theorem 5, we now conclude
v

that the relation

holds uniformly for all real x .

The relation (3.16) implies that formally (or termwise)

where the series on the right hand side is usually divergent. However, theorem 4
and particularly the relation (3.15) of theorem 5, suggest the following summation
method s

Let

(3.17) (y ) ~ l2k, for some k > o .

We define the (S) sum of the cardinal series by



where F(x) is the unique element of PW03C0k (theorem 4) such that

Constructively, we can define F(x) , for real x, from theorem 5 by

where S 
m 
(x) is the spline function of degree 2m - 1 which interpolates the se-

quence ~y ~ .
v

If we substitute (3.19) into (3.18), we obtain the identity

which is valid for any F(x) belonging to the class

in particular for any polynomial.

This summation method may be called the spline summation of the cardinal series.

The relationship with previous methods of summing the cardinal series (see [8J,
§ 11) should be discussed, but we shall not do it here.

Open problems and conjectures. - All these refer to the subjects of § 3. Further

questions might occur to the reader.

1° In what sense does the relation (3.15) of theorem 5 hold also for complex va-
lues of x ? F(x) is an entire function, while S m (x) is only defined on the

real axis where it is piecewise polynomial. On the basis of his experience (unpu-
blished) with a somewhat similar situation concerning the approximation by spline
functions of solutions of analytic differential equations, the author conjectures
the following : Let P m,v (x) denote the polynomial of degree 2m - 1 which repre-

sents S (x) in the interval (v, v + 1) , then

(3.22) lim P (x) = F(x) ,
m,v

loc ally unif ormly in the complex plane. s



2° We may also consider a cardinal interpolation problem when a certain fixed

number of derivatives are also preassigned. The simplest such cardinal Hermite in-

terpolation problem is

(3.23) F(03BD) = y03BD , F’(v) = y’ , for all integer v ,

which depends on the pair of sequences

Connections with the theory of functions are again likely, because of an analogue

of the cardinal series which is easily found to be

Again we may ask the question : Let m >~ 2 ; under what conditions does the pro-
blem (3.23) admit solutions F E Jf1?

These conditions are expected to be as follows s We regard all integer nodes to

be double nodes. If we write them consecutively in a row, we obtain the infinite

array

(3.27) ... y - 1 y - 1 y 0 y 0 y ... ~ ~ y ~ ~ ~+ 1 ~ B)+ 1 y ....

We select from this sequence all sets of m + 1 consecutive elements, and we form

the divided difference of order m (with single and double nodes) for each of

these sets and computed by means of the data (3.24). Let I denote the sum of the
m

squares of the moduli of all these divided differences. Thus for m = 2 , we obtain

I expect that (3.23) has a solution F E ~~ (m >,, 2~ if, and only if,

Also that the optimal solutions, i. e. those which minimize



will be spline functions S (x) of degree 2m - 1 having double knots at all in-

tegers. This means that we are now lowering our continuity requirements by asking
that

Let us look for a moment at the case of the lowest possible value of m, namely

m = 2 . Now S (x) is the cubic spline of class C~(R) which satisfies (3.23).
For this case of the lowest value of m, the problem of constructing S (x) breaks

up into a sequence of elementary interpolation problems : S 2 ~x~ is identical in

the interval (B) y v + l~ with the cubic defined by the four data

When is this spline function S (x) e ? ? We apply the conjectured condition
(3.29) : Evaluating the divided dif f erences appearing in (3. 28) , we obtain the con-
dition

It is fairly easy to verify directly that the cubic spline s2(x) is in R2 if,
and only if, (3.30) holds.

Also the relation between the interpolating spline functions and the cardinal se-

ries, as m -~ ~ , will very likely generalize. As in the case of simple nodes, we

observe that if (3.29) holds for a value of m (even the value m = 1 is accepta-

ble) , then it will hold for all larger values of m .

Let l2k denote the class of pairs of sequences (3.24) such that the condition

holds. Furthermore, let be the class of entire functions F(x) of exponen-

t i al type ~ 2n su ch that

Then we expect that there is a one-to-one correspondence between the classes

which is defined by the relations (3.23). Furthermore~ that if the pair (3.24) is
and S 

m 
(x) is the interpolating spline function of decree 2m - 1



where F is the corresponding element in "~~ .
Finally, that the conjectures just stated for (3.23) should generalize to the

cardinal Hermite problem

The critical exponential type for this case should be 

3° An entirely different cardinal interpolation problem (1) was discussed some
ten years ago by B. EPSTEIN, D. S. GREENSTEIN and J. MIMKER in [2]. Let o > 0 ,
and let H denote the Hilbert space of functions F(z) , analytic in the strip

D : |~ 
In 

z| t  cr . and such that

They show that the interpolation problem (1) has solutions in H if, and only if,

and determine the unique solution which minimizes the norm defined by the left side

of (3.31).

Our discussion in § 3 suggests that it might be worthwhile to study the interpo-
lation problem ( 1.) within the class Hm of functions F(z) such that

and in p articul ar, to seek solutions of (1), within which minimize the inte-

gral

The solutions of this problem might even converge to our spline interpolant S (x)
m

of theorem 2, as we let the width Q --~ 0 + .
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