SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

YVETTE AMICE

Formules intégrales de Cauchy dans un corps p-adique

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 4 (1962-1963), exp. nº 8, p. 1-7

http://www.numdam.org/item?id=SDPP_1962-1963_4_A7_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1962-1963, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FORMULES INTÉCRALES DE CAUCHY DANS UN CORPS p-ADIQUE

par Mme Yvette AMICE

(d'après L. SCHNIRELMANN [3])

Cet exposé a été rédigé dans le but de permettre au lecteur français intéressé par l'article [3] do SCHNIRELMANN d'en trouver un résumé plus accessible que l'original qui ne se trouve actuellement en France, à notre connaissance, qu'à la bibliothèque de l'Institut de France [en russe], La plupart des applications des "formules de Cauchy" données par SCHNIRELMANN sont maintenant classiques et peuvent être retrouvées, d'une façon souvent moins laborieuse, en utilisant les polygones de Newton [5]. Certaines d'entre elles se trouvaient déjà démontrées par des méthodes différentes dans la thèse de SCHOBE [4] que SCHNIRELMANN ne semble pas connaître. Récemment M. LAZARD [2] a étendu les théorèmes de décomposition en produit au cas des disques "ouverts"; on trouvera, au début de son article, un élégant résumé des propriétés du polygone de Newton. On peut aussi se reporter à [1] pour les démonstrations élémentaires.

1. Définitions.

Nous désignerons par K un corps valué complet algébriquement clos et par A l'anneau de valuation de K o

Le disque D de convergence d'une série entière

$$a_0 + a_1 \stackrel{\pi}{\wedge} + \cdots + a_n \stackrel{\pi}{\wedge} + \cdots$$

est l'ensemble des points x & K tels que

$$\lim_{n\to\infty} |a_n| |x|^n = 0;$$

ce peut être un disque "ouvert" ou "fermé" de K. Nous dirons qu'une fonction f est "analytique sur le disque Δ " (analytique stricte) si elle y est définie par la somme d'une série entière dont le disque de convergence contient Δ . Une fonction entière sur K est une fonction analytique sur K.

Suite contour.

Une suite de polynômes $g_i(X) \in A[X]$, $i \in \underline{N}$, est une "suite contour" si :

-
$$g_{i}(x)$$
 n'a pas de racines multiples.
- $g_{i}(x) = x^{i} + c_{i,1} x^{n_{i,1}} + \cdots + c_{i,\mu} x^{n_{i,\mu}} + c_{i,\mu+1}$ avec $|c_{i,\mu+1}| = 1$.
 $|c_{i,\mu}| = 1$ (| est la valeur absolue dans K).

On notera $\{\alpha_{i,1}, \dots, \alpha_{i,n,i}\}$ l'ensemble des zéros de g_i

Contour discrete

Soient $\alpha \in K$, $r \in K$ et g_i une suite contour : le "contour discret" de centre α et de rayon r défini par g_i est la suite des ensembles :

$$\{\alpha + r\alpha_{i,1}, \dots, \alpha + r\alpha_{i,n_i}\}_{i \in \mathbb{N}}$$
.

On note cette suite

$$\alpha + rg$$
.

Intégrale d'une fonction sur un contour discret.

Etant donnée une fonction f définie sur α + rg , son intégrale sur le contour est définie, si la limite ci-dessous existe, par :

$$\int_{\alpha+rg}^{x} f(x) = \lim_{i \to +\infty} \left(\frac{1}{n_i} \sum_{k=1}^{n_i} f(\alpha + r\alpha_{i,k}) \right).$$

Soit par exemple p(x) un polynôme de degré n : pour i assez grand $n_{i} - n_{i,1} > n$. Alors

$$\frac{1}{n_i} \sum_{k=1}^{n_i} p(\alpha + r\alpha_{i,k}) = p(\alpha) + \varphi_i$$

où ϕ_{i} est une fonction symétrique des $\alpha_{i,k}$, de degré au plus égal à n, donc $\phi_i = 0$ pour i assez grand. Par conséquent un polynôme est intégrable sur tout contour discret et son intégrale est égale à sa valeur au centre du contour.

Intégrale sur un cercle.

Si $\int_{\alpha+rg}^{x} f(x)$ existe quelle que soit la suite contour g et est indépendante de g, on note $\int_{\alpha,r}^{x} f(x)$ la valeur commune de $\int_{\alpha+rg}^{x} f(x)$ et on l'appelle "intégrale de f sur le cercle" de centre α et de rayon |r|.

En particulier un polynôme p(x) est intégrable sur tout cercle et, quel que soit r,

$$\int_{\alpha, \mathbf{r}}^{\mathbf{x}} p(\mathbf{x}) = p(\alpha) . .$$

2. Les "théorèmes de Cauchy".

THECREME 1 (1er théorème de Cauchy).

Soit f(x) une fonction analytique sur le disque

$$D_{\alpha,r} = \{x \mid |x - \alpha| \leq |r| \},\$$

alors :

(a)
$$\int_{\alpha, r}^{x} f(x) = f(\alpha).$$

(b)
$$\int_{\alpha, r}^{x} (x - \alpha) f(x) = 0.$$

(b) résulte immédiatement de (a).

Soit

$$f_n(x) = \sum_{k=0}^{n} a_k x^n$$
 (f étant somme de la série (1));

pour $n_i - n_{i,1} > n$, on a

$$\frac{1}{n_i} \sum_{k=1}^{n_i} f_n(\alpha + r\alpha_{i,k}) = f_n(\alpha).$$

Or,

$$\sup_{x\in D_{\alpha,r}} |f_n(x) - f(x)| = \varepsilon(n),$$

qui tend vers zéro et

$$\left|\frac{1}{n_{i}}\sum_{k=1}^{n_{i}}f_{n}(\alpha+r\alpha_{i,k})-\frac{1}{n_{i}}\sum_{k=1}^{n_{i}}f(\alpha+r\alpha_{i,k})\right|\leqslant\epsilon(n)$$

qui ne dépend pas de i . Donc,

$$\int_{\alpha+rg}^{x} f(x) = \lim_{n \to \infty} \int_{\alpha+rg}^{x} f_n(x) = f(\alpha),$$

ce qui démontre le théorème.

THÉORÈME 2 (Second "théorème de Cauchy").

Soit f(x) analytique dans $D_{\alpha,r}$, alors: f(x) si

$$\int_{\alpha, \mathbf{r}}^{\mathbf{z}} \frac{\mathbf{z}\mathbf{f}(\mathbf{z})}{\mathbf{z} - \mathbf{x}} = \begin{cases} \mathbf{f}(\mathbf{x}) & \text{si } |\mathbf{x}| < |\mathbf{r}| \\ 0 & \text{si } |\mathbf{x}| > |\mathbf{r}| \end{cases}$$

$$\int_{0_9 \mathbf{r}}^{\mathbf{z}} \frac{\mathbf{z}}{\mathbf{z} - \mathbf{x}} = \begin{cases} 1 & \text{s.t.} & |\mathbf{x}| < |\mathbf{r}| \\ 0 & \text{s.i.} & |\mathbf{x}| > |\mathbf{r}| \end{cases}$$

En effet :

$$\int_{0_{9}r}^{z} \frac{z}{z-x} = \lim_{i \to +\infty} \left(\frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \frac{r\alpha_{i,k}}{r\alpha_{i,k}-x} \right)$$

$$= \lim_{i \to +\infty} \left(1 + \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \frac{x/r}{\alpha_{i,k}-x/r} \right)$$

$$= \lim_{i \to +\infty} \left(1 - \frac{x}{r} \frac{1}{n_{i}} \frac{g_{i}^{i}(x/r)}{g_{i}(x/r)} \right)$$

Or,

$$\frac{1}{n_{\hat{1}}} \frac{g_{\hat{1}}^{i}(x/r)}{g_{\hat{1}}(x/r)} = \frac{1}{(x/r)} \times \frac{(x/r)^{\hat{1}_{\hat{1}}} + (n_{\hat{1}, 1/n_{\hat{1}}}) c_{\hat{1}, 1}(x/r)^{\hat{1}_{\hat{1}, 1}} + \cdots}{(x/r)^{\hat{1}_{\hat{1}}} + c_{\hat{1}, 1}(x/r)^{\hat{1}_{\hat{1}, 1}} + \cdots}$$

|x| < |r|, cette expression est équivalente à

$$\frac{n_{i_0\mu}}{n_i} c_{i_0\mu}(x/r)^{n_{i_0\mu}-1} \times \frac{1}{c_{i_0\mu+1}}$$

et tend vers 0, l'intégrale est alors égale à 1; si |x|>|r|, $\frac{z}{z-x}$ est analytique sur D_{O_2r} et nulle au centre z on applique le théorème 1.

Démonstration du théorème 2° ~ Si |x| > |r| , $\frac{z}{z-x}$ f(z) est analytique sur $D_{0,r}$ et nulle au centre : on applique le théorème 1°

Si |x| > |r|, $f(z) = f(x) + (z - x) \varphi(z)$ cù $\varphi(z)$ est analytique sur $D_{0,r}$, alors

$$\int_{0_2 r}^{z} \frac{z}{z-x} f(z) = f(x) \int_{0_2 r}^{z} \frac{z}{z-x} + \int_{0_2 r}^{z} z \varphi(z)$$

on applique le lemme et le théorème 1.

THÉORÈME 2 bis. - Avec les hypothèses du théorème 2, et pour $N \geqslant 0$,

$$\int_{0_{9}r}^{z} \frac{z f(z)}{(z - z)^{N+1}} = \begin{cases} 1/N: f^{(N)}(x) & \text{si} |x| < |r| \\ 0 & \text{si} |x| > |r| \end{cases}$$

En effet, pour |x| > |r|; on applique le théorème 1 à la fonction $\frac{z f(z)}{(z - x)^{N+1}}$ qui est analytique sur $D_{O_{\mathbb{S}}r}$ et nulle au centre.

$$z \frac{f(z)}{(z-x)^{N+1}} = \sum_{j=0}^{N} \frac{1}{j!} f^{(j)}(x) \frac{z}{(z-x)^{N+1-j}} \div z \varphi_{N}(z)$$

 $\hat{\mathbf{u}}$ ϕ_{N} est analytique sur $\mathbf{D}_{0,\mathbf{r}}$, et le théorème 2bis résultera du lemme suivant :

IEMME. - Pour N > 1 et |x| < |r|

$$\int_{0_{p}}^{z} \frac{z}{(z-x)^{N}} = 0 ,$$

Or,

$$\frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \frac{r\alpha_{i,k}}{(r\alpha_{i,k} - x)^{N}} = \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \frac{1}{(r\alpha_{i,k} - x)^{N-1}} + \frac{1}{n_{i}} \frac{x}{r^{N}} \sum_{k=1}^{n_{i}} \frac{1}{(\alpha_{i,k} - x/r)^{N}}$$

et un calcul tout à fait analogue à celui fait au lemme précédent montre que cette quantité tend vers 0 quand i $\to \infty$, en utilisant le fait que $n_{i,\mu} \to +\infty$.

COROLLAIRE 1. Inégalités de Cauchy.

Soit f(z) analytique pour $|z| \leqslant |r|$ et telle que $|z| = |r| \Longrightarrow |f(z)| \leqslant M$.

Alors, pour $|z| \leqslant |r|$

$$\begin{cases} \left| f(z) \right| \leqslant M \\ \left| f^{(n)}(z) \right| \leqslant \frac{M}{\left| r \right|^{n}} \end{cases}.$$

COROLLAIRE 2. Théorème de Liouville.

Une fonction entière bornée sur K est constante.

COROLLAIRE 3. Théorème des résidus.

Soient f(z) une fonction analytique pour $|z| \le |r|$ et Q(z) un polynôme n'ayant aucun zéro sur |z| = |r|, alors

$$\int_{0,r}^{z} z \frac{f(z)}{Q(z)} = \text{somme des résidus de } \frac{f}{Q} \text{ aux zéros de } Q \text{ intérieurs à } D_{0,r}$$

3. Applications aux fonctions entières.

THÉORÈME du produit.

Toute fonction entière $f(x) = a_0 + a_1 x + \cdots + a_n x^n + \cdots$ qui n'est pas un polynôme a une infinité de racines α_1 , ..., α_N , ... qu'on peut indexer de façon à ce que $\lim_{n\to\infty} |\alpha_n| = +\infty$, et la fonction se décompose en produit convergent $f(x) = a_0(1 - \frac{x}{\alpha_1}) \cdots (1 - \frac{x}{\alpha_n}) \cdots$

La démonstration est faite suivant le schéma suivant : on montre d'abord que, pour presque tout $\rho < R$ (rayon de convergence d'une série entière f), $|z| = \rho \implies |f(z)| = T(\rho)$ où $T(\rho)$ est une fonction croissante de ρ . On en déduit que, si

$$f_n(x) = \sum_{k=0}^{n} a_k x^k,$$

le nombre des zéros de f_n dans un disque $|x| \leqslant \rho < R$ est constant pour n assez grand, en majorant des intégrales

$$\int_{O_{\mathfrak{p}}r}^{x} x(\frac{f_{n+k}^{i}}{f_{n+k}} - \frac{f_{n}^{i}}{f_{n}}).$$

IEMME.

Si f, g, h sont des polynômes de degré n tels que f = g - h, et si α et $\beta \in K$ sont tels que g n'ait aucun zéro sur le cercle $|x-\alpha|=|\beta|$ et que de plus on ait sur ce cercle

$$\begin{split} |h(x)| < |g(x)| \\ |h(x)| + |h^{i}(x)| < |p| & p^{n} \frac{|g^{2}(x)|}{|g(x)| + |g^{i}(x)|} \end{split}.$$

alors f et g ont le même nombre de zéros dans $D_{\alpha,\beta}$

Ce lemme permet de montrer que les ensembles des zéros des polynômes f_n ; dans un disque fixe, dont on sait qu'ils ont chacun N points (α N est indépendant de n pour n assez grand) forment N suites convergentes dont les limites sont précisément les réros de f dans le disque considéré.

COROLLAIRE.

Si $f(x) = \sum_{n \ge 0} a_n x^n$ est entière sur K, et si les coefficients a_n sont dans un sous-corps complet k de K, f(x) se décompose en produit convergent de polynômes à coefficients dans k.

BIBLIOGRAPHIE

- [1] AMICE (Yvette). Analyse p-adique, Séminaire Delange-Pisot: Théorie des nombres, t. 1, 1959/60, n° 4, 63 p.
- [2] IAZARD (Michel). Les zéros d'une fonction analytique d'une variable sur un corps valué complet. Presses universitaires de France, 1962 (Institut des hautes Etudes scientifiques, Publications mathématiques, 14, p. 47-75).
- [3] SCHNIRELMANN (L.). Sur les fonctions dans les corps normés et algébriquement fermés [en russe], Bull. Acad. Sc. URSS, Série math., 1938, p. 487-498.
- [4] SCHÖBE (W.). Beiträge zur Funktionentheorie in nichtarchimedisch bewerteten Körper (Thèse Sc. math. Univ. Münster, 1930).
- [5] Séminaire KRASNER: Théorie des corps valués, t. 1, 1953/54, Fasc. 2. Paris, Secrétariat mathématique, 1956.