SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

Marthe Grandet

Ensembles d'entiers algébriques

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 4 (1962-1963), exp. n° 3, p. 1-7

http://www.numdam.org/item?id=SDPP_1962-1963__4__A3_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1962-1963, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

19 novembre 1962

ENSEMBLES D'ENTIERS ALGEBRIQUES

par Mme Marthe GRANDET

Nous allons considérer, dans cet exposé, des ensembles d'entiers algébriques, sur 2 ou sur un corps quadratique imaginaire K, ayant des propriétés analogues.

Soit S l'ensemble des entiers algébriques sur 2, ayant un conjugué extérieur au cercle unité et aucun conjugué sur la circonférence unité (nombres de Pisot-Vijayaraghavan); soit Σ l'ensemble des entiers algébriques sur un corps quadratique imaginaire K, ayant un conjugué intérieur au cercle-unité et aucun conjugué sur la circonférence-unité.

Si P(z) est le polynôme irréductible sur le corps de base (2 ou K) ayant pour zéro θ (appartenant à S ou Σ). P(z) est à coefficients réels si et seulement si θ est réel, c'est-à-dire si $\theta \in S$. Si θ est imaginaire, $\theta \in S_2$, ensemble des entiers algébriques sur 2 ayant deux conjugués imaginaires extérieurs au cercle-unité et aucun conjugué sur la circonférence-unité, de plus θ n° a aucun conjugué réel.

Les nombres $\theta \in S$ peuvent être caractérisés par la propriété suivante :

$$\exists \ \lambda \in 2(\theta) : \ \lambda \theta^n = u_n + \varepsilon_n$$

 $\frac{c\lambda}{n}$ $\frac{u}{n}$ est un entier rationnel et $\frac{c\lambda}{n}$ la série $\frac{c\lambda}{n}$ $\frac{c\lambda}{n}$ converge; de même les nombres $\frac{c\lambda}{n}$ peuvent être caractérisés par la propriété suivante:

$$\exists \quad \lambda \in K(\theta) : \quad \lambda \theta^n = u_n + \varepsilon_n$$

 $\underline{où} \quad \underline{u}_{n} \quad \underline{\text{est un entier de}} \quad \underline{K} \quad \underline{\text{et où la série}} \quad \sum_{n=0}^{\infty} |\varepsilon_{n}^{2}| \quad \underline{\text{converge}} \quad [8].$

On sait que les ensembles S [2], [9] et $S \cup S_2$ [1], [7] sont fermés. Nous allons voir qu'il en est de même des ensembles Σ . Pour ceci nous allons utiliser une méthode analogue à celle qu'ont utilisée MM. DUFRESNOY et PISOT pour l'ensemble S [2]. A tout nombre $\theta \in \Sigma$ on peut associer au moins une fraction rationnelle ayant les propriétés suivantes:

- 1º A(z)/Q(z) admet le seul pôle 1/0 à l'intérieur du cercle-unité.
- 2° En tout point de la circonférence-unité on a $|A(z)| \leq |Q(z)|$.

 3° Au voisinage de l'origine A(z)/Q(z) admet le développement en série de Taylor:

$$\frac{A(z)}{Q(z)} = u_0 + \cdots + u_n z^n + \cdots$$

 $\underline{\alpha}$ les \underline{u}_n sont des entiers de K.

Si l'on pose :

$$Q(z) \equiv z^S \overline{P}(1/z)$$

où s est le degré de P(z); les fractions P(z)/Q(z) possèdent ces propriétés, sauf peut-être si θ est une unité quadratique sur K, mais alors on peut montrer par un calcul simple que 1/Q(z) répond à la question. Dans la suite nous appellerons Γ l'ensemble des fractions rationnelles ayant les propriétés (1), (2) et (3). Nous allons montrer que ces fractions forment une famille compacte, d^2 où nous déduirons que les ensembles Σ sont fermés.

Principe de la démonstration.

On peut écrire :

$$\frac{A(z)}{Q(z)} = \frac{\lambda}{1 - \overline{\theta}z} + \varepsilon(z)$$

où

$$\varepsilon(z) = \sum_{n=0}^{\infty} \varepsilon_n z^n$$

est holomorphe pour $|z| \leq 1$; on a donc :

$$u_n = \lambda \overline{\Theta}^n + \varepsilon_n$$
.

Au voisinage de la circonférence-unité A(z)/Q(z) admet le développement en série de Laurent :

$$\frac{A(z)}{Q(z)} = \sum_{n=0}^{\infty} \frac{b_n}{z^{n+1}} + \sum_{n=0}^{\infty} \varepsilon_n z^n ,$$

d'cù

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{A(e^{i\phi})}{Q(e^{i\phi})} \right|^2 d\phi = \sum_{n=0}^{\infty} |b_n|^2 + \sum_{n=0}^{\infty} |\epsilon_n|^2$$

et

(1)
$$\sum_{n=0}^{\infty} |b_n^2| + \sum_{n=0}^{\infty} |\varepsilon_n|^2 \leq 1$$

et, pour tout n,

$$|b_n| \le 1$$
 et $|\epsilon_n| < 1$,

or, pour $|z| \geqslant 1/|\theta|$,

$$\frac{\lambda}{1 - \theta z} = \sum_{n=0}^{\infty} \frac{b_n}{z^{n+1}} .$$

donc:

$$\overline{\lambda} = -\frac{b_0}{\overline{\Theta}}$$
 et : $|\lambda| \le |0|$

on a aussi :

$$|\lambda| \geqslant \frac{1}{4(1+|\theta|)}$$

car l'inégalité inverse est incompatible avec (1).

Si l'on considère une suite de fractions rationnelles associées à une suite convergente de nombres $\theta_{\mu} \in \Sigma$, les λ_{μ} associés sont bornés inférieurement et supérieurement, et de la suite des λ_{μ} , on peut donc extraire une sous-suite tendant vers un nombre $\lambda \not = 0$. On en déduit que les $\epsilon_{\mu}(z)$ forment une famille normale de fonctions holomorphes à l'intérieur du cercle-unité, donc que les fonctions $A_{\mu}(z)/Q_{\mu}(z)$ forment une famille normale de fonctions méromorphes à l'intérieur de ce cercle, dont on peut extraire une sous-suite convergeant vers une fonction :

$$f(z) = u_0 + \cdots + u_n z^n + \cdots$$

au voisinage de l'origine, où $u_n = \lim_{\mu \to \infty} u_{\mu_2} n$; on a donc :

$$\lambda \overline{\theta}^n = u_n + \varepsilon_n \quad \text{avec} \quad \sum |\varepsilon_n|^2 \le 1$$

on en déduit que f(z) est une fraction rationnelle ayant un seul pôle $1/\overline{\theta}$ intérieur au cercle—unité, qui est d'après le théorème de Fatou un entier algébrique $[8]_2$ donc $\theta \in \Sigma_2$ et l'ensemble Σ est fermé.

Nous allons donner une caractérisation des fractions limites $A(z)/Q(z) \in \Gamma^1$ analogue à celle qui a été donnée par MM. DUFRESNOY et PISOT pour les fractions associées à des nombres $9 \in S^1$ (ensemble dérivé de S) [2].

THEORÈME 1. Pour qu'un nombre $\theta \in \Sigma$, appartienne à Σ' , il faut et il suffit qu'il existe un polynôme A(z) à coefficients entiers de K tel que, en tout point de la circonférence—unité, on ait l'inégalité :

$$|A(z)| \leq |Q(z)|$$

l'égalité n'étant vérifiée qu'en un nombre fini de points.

La démonstration se fait de la même manière que pour les fractions associées à des nombres $\theta \in S^+$ [2]; on considère les valeurs moyennes sur la circonférence-unité des fonctions $A_{\mu}(z)/Q_{\mu}(z)$ et A(z)/Q(z), soit respectivement τ_{μ} et τ ; on obtient alors

$$\lim_{\mu\to\infty}\tau_{\mu}\leqslant\tau+\frac{1}{\theta},$$

dine :

$$\tau < 1 - \frac{1}{\Theta^4}$$

on a donc l'égalité |A(z)| = |Q(z)|, au plus en un nombre fini de points. Réciproquement, soit une fraction A(z)/Q(z) ayant les propriétés (1) et (3), et la propriété :

(2') en tout point de la circonférence-unité, on a l'inégalité :

$$|A(z)| \leq |Q(z)|$$

l'égalité ayant lieu, au plus, en un nombre fini de points. Nous noterons C¹ le sous-ensemble de C, formé par les fractions vérifiant (2¹).

Formons les polynômes :

$$P_{\mu}(z) \equiv A(z) + \epsilon z^{\mu + a - s} P(z)$$

$$Q_{\mu}(z) \equiv Q(z) + \epsilon z^{\mu} B(z)$$

où a et s sont les degrés respectifs de $\mathbb{A}(z)$ et $\mathbb{Q}(z)$ et où

$$B(z) \equiv z^a \, \overline{A}(1/z)$$

d'après le théorème de Rouché $Q_{\mu}(z)$ a, au plus, un zéro intérieur au cercle-unité, donc $P_{\mu}(z)/Q_{\mu}(z)$ a, au plus, un pôle intérieur à ce cercle, si l'on pose :

$$\frac{P_{\mu}(z)}{Q_{\mu}(z)} = \sum_{n=0}^{\infty} u_{\mu,n} z^{n}$$

au voisinage de l'origine, les $\,u_{\mu_\bullet\,n}\,$ sont des entiers de $\,K\,$ et

$$u_{\mu,n} = u_n \text{ pour } n < N$$

$$u_{\mu,N} \neq u_N$$

avec

$$N = \mu$$
 si a < s

$$N = \mu + a - s$$
 si $a > s$

$$N = \mu + r$$
 si $a = s$ où r est le degré le plus bas de $A(z) B(z) - P(z) Q(z)$

ce qui prouve que $P_{\mu}(z)/Q_{\mu}(z)$ n'est pas holomorphe à l'intérieur du cercle-unité, et que A(z)/Q(z) peut être considérée comme limite d'une suite de fractions appartenant à Γ .

Caractérisation des ensembles S^n et Σ^n [6].

THEOREME 2. — Pour qu'un nombre $\theta \in S$ (ou Σ) appartienne à S'' (ou Σ'') il faut et il suffit qu'il existe trois polynômes à coefficients entiers du corps de base (2 ou K), $A_1(z)$ et $Q_1(z)$ tels que $A(0) \neq 0$, $A_1(z)$ ou

Q₁(z) pouvant éventuellement être identiquement nul, et que, en tout point de la circonférence-unité, on ait

$$|A(z) + z^{\mu} A_{1}(z)| \le |Q(z) + z^{\mu} Q_{1}(z)|$$

pour tout entier positif μ, l'égalité étant vérifiée, au plus, en un nombre fini de points.

Principe de la démonstration : [4], [5].

Un nombre $\theta \in S$ " (ou Σ ") est limite d'une suite de nombres $\{\theta_{\gamma}\} \in S$! (ou Σ '); à chaque nombre θ_{γ} , on peut associer une fraction rationnelle $A_{\gamma}(z)/Q_{\gamma}(z)$ appartenant à C^1 (ou Γ^1); de la suite de ces fractions, on peut extraire une sous-suite tendant, à l'intérieur du cercle-unité, vers une fraction rationnelle A(z)/Q(z) associée à θ .

Considérons les polynômes :

$$P_{\mu\nu}(z) \equiv A_{\nu}(z) + \varepsilon z^{\mu+a} y^{-s} y \quad P_{\nu}(z)$$

$$Q_{\mu\nu}(z) \equiv Q_{\nu}(z) + \varepsilon z^{\mu} B_{\nu}(z) \qquad \varepsilon = \frac{+}{2} 1$$

où a et s sont les degrés respectifs de A (z) et Q (z) et où

$$P_{\mathcal{V}}(z) \equiv z^{S_{\mathcal{V}}} \overline{Q}_{\mathcal{V}}(1/z)$$

$$B_{\nu}(z) \equiv z^{a_{\nu}} \overline{\Lambda}_{\nu}(1/z)$$

les fractions $P_{\mu\nu}(z)/Q_{\mu\nu}(z)$ peuvent être associées à une suite de nombres $\theta_{\mu\nu}\in S$ (ou Σ) et

$$\lim_{\substack{v \to \infty \\ \text{que}}} \frac{P_{\mu\nu}(z)}{Q_{\mu\nu}(z)} = \frac{A_{\mu}(z)}{Q_{\mu}(z)} \in C^1 \quad \text{ou} \quad \mathbf{r}^1$$

et l'on voit facilement, que

$$\frac{A_{\mu}(z)}{Q_{\mu}(z)} = \frac{A(z) + \varepsilon z^{\mu} A_{1}(z)}{Q(z) + \varepsilon z^{\mu} Q_{1}(z)},$$

d'où le théorème.

Caractérisation des ensembles S(m) et $\Sigma(m)$ [6].

Soient $S^{(m)}$ et $\Sigma^{(m)}$, les ensembles dérivés m-ièmes des ensembles S et Σ ; à ces ensembles, on peut associer des ensembles de fractions rationnelles C^m et Γ^m , définis par récurrence sur m.

THEOREME 3. - Pour qu'un nombre $\theta \in S$ (ou Σ) appartienne à $S^{(m)}$ (ou $\Sigma^{(m)}$), il faut et il suffit qu'il existe 2m-1 polynômes à coefficients entiers du corps de base A(z), $A_1(z)$, ..., $A_{m-1}(z)$; $Q_1(z)$, ..., $Q_{m-1}(z)$, tels que $A(0) \neq 0$, certains de ces polynômes pouvant être identiquement nuls, et tels qu'en tout point de la circonférence-unité on ait :

$$\begin{split} & |\mathbf{A}(\mathbf{z}) + \mathbf{z}^{\mu_1} \ \mathbf{A}_1(\mathbf{z}) + \cdots + \mathbf{z}^{\mu_{m-1}} \ \mathbf{A}_{m-1}(\mathbf{z}) | \leqslant |\mathbf{Q}(\mathbf{z}) + \mathbf{z}^{\mu_1} \ \mathbf{Q}_1(\mathbf{z}) + \cdots + \mathbf{z}^{\mu_{m-1}} \ \mathbf{Q}_{m-1}(\mathbf{z}) | \\ & \underline{\text{pour tout système d'entiers}} \ \mu_1 \ , \cdots \ , \ \mu_{m-1} \ , \ \underline{\text{l'égalité étant vérifiée, au plus,}} \\ & \underline{\text{en un nombre fini de points}}. \end{split}$$

La démonstration s'appuie sur les deux lemmes suivants que l'on démontre par récurrence sur m :

IEMÆ 1. – Si
$$A(z)/Q(z) \in C^m$$
 (ou Γ^m), et si l'on pose :
$$P_{\mu}(z) \equiv B(z) + \epsilon z^{\mu + \epsilon - S} P(z)$$
 $Q_{\mu}(z) \equiv Q(z) + \epsilon z^{\mu} A(z)$

alors, la fraction $\mu(z)/\eta(z)$ peut être associée à un nombre $\theta_{\mu} \in S^{m-1}$ (ou $\Sigma^{(m-1)}$) pour $\mu \geqslant \mu_0$.

IEME 2. - Soit $\{\theta_{\mu}\}$ une suite de nombres de $S^{(m-1)}$ (ou $\Sigma^{(m-1)}$) et $P_{\mu}(z)/Q_{\mu}(z)$ la suite des fractions rationnelles de module 1 sur la circonférence-unité qui lui est associée, si

$$\lim_{\mu \to \infty} \frac{P_{\mu}(z)}{Q_{\mu}(z)} = \frac{B(z)}{Q(z)} .$$

Alors $A(z)/Q(z) \in C^m$ (ou Γ^m).

Ces lemmes sont vrais pour m=1, et on les démontre pour m quelconque par une méthode analogue à celle qui a permis de montrer le théorème 2.

Démonstration du théorème.

Elle se fait par récurrence sur m, nous avons déjà vu que ce théorème est vrai pour m=2; supposons—le vrai jusqu'à l'ordre m-1,

On construit une suite de fractions $A_{\mu}(z)/Q_{\mu}(z)\in \mathbb{C}^{m-1}$ (ou Γ^{m-1}) et tendant vers A(z)/Q(z). D'après l'hypothèse de récurrence, il existe des polynômes: $A_2(z)$, ..., $A_{m-1}(z)$; $Q_2(z)$, ..., $Q_{m-1}(z)$, tels qu'en tout point de la circonférence-unité on ait :

 $|A(z) + z^{\mu_2} A_2(z) + \cdots + z^{\mu_{m-1}} A_{m-1}(z)| \leq |Q(z) + z^{\mu_2} Q_2(z) + \cdots + z^{\mu_{m-1}} Q_{m-1}(z)|$

l'égalité étant vérifiée, au plus, en un nombre fini de points, ceci pour tout système d'entiers μ_1 , μ_2 , ..., μ_{m-1} ; on peut donc trouver les polynômes $\mathbb{A}_1(z)$ et $\mathbb{Q}_1(z)$, et le théorème est démontré.

Ce résultat conduit à écrire des inégalités entre les u_n , qui expriment une condition nécessaire pour qu'une fraction $A(z)/Q(z) \in C^m$ (ou Γ^m). Ce sont ces inégalités qui ont permis d'obtenir les plus petits éléments de S^i , et ont permis de montrer que 2 est le plus petit élément de S^i [4], [5].

BIBLIOGRAPHIE

- [1] DOUBRÈRE (Monique). Sur les points limites d'un ensemble remarquable d'entiers algébriques imaginaires. C. R. Acad. Sc. Paris, t. 240, 1955, p. 2111-2113.
- [2] DUFRESNOY (J.) et PISOT (C.). Sur les dérivés successifs d'un ensemble fermé d'entiers algébriques, Bull. Sc. math., 2e série, t. 77, 1963, 1re partie, p. 129-136.
- [3] DUFRESNOY (J.) et PISOT (C.). Sur les éléments d'accumulation d'un ensemble fermé d'entiers algébriques, Bull. Sc. math., 2e série, t. 79, 1955, 1re partie, p. 54-64.
- [4] GRANDET (Marthe). Sur un ensemble d'entiers algébriques, C. R. Acad. Sc. Paris, t. 252, 1961, p. 1542-1543.
- [5] GRANDET (Marthe). Dérivés d'un ensemble d'entiers algébriques, Séminaire Dubreil-Pisot : Algèbre et Théorie des nombres, t. 14, 1960/61, nº 15, 12 p.
- [6] GRANDET (Marthe). Sur les dérivés d'un ensemble d'entiers algébriques, C. R. Acad. Sc. Paris, t. 254, 1962, p. 2905-2906.
- [7] KELLY (John B.). A closed set of algebraic integers, Amer. J. Math. t. 72, 1950, p. 565-572.
- [8] PISOT (Charles). La répartition modulo 1 et les nombres algébriques, Annali Scuola norm. sup. Pisa, Série 2, t. 7, 1938, p. 205-246.
- [9] SAIEM (Raphael). A remarkable class of algebraic integers, proof of a conjecture of Vijayaraghavan, Duke math. J, t. 11, 1944, p. 103-108.