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SOME PROBLEMS ARISING IN CONNECTION
WITH THE THEORY OF VECTOR MEASJRES

by Joe DIESTEL

Introduction. = This lecture's aim is to discuss some problems arising in connec-
p

tion with the theory of vector measures. The problems discussed come in two varie-
ties 1 The first class are among those discussed in the recent work "Vector measures"
of Je Jerry UHL, Jr. and myself (henceforth referred to as [VM]) ; in discussing pro-
blems of this class I've restricted myself to those problems on which I'm aware that
there!s been some progress. In a sense then the discussion of this class is a pro-
gress report. The second class of problems concerns questions that have come to the
foreground since the appearance of [VM]. I hope a few of these find interest (and
even solution). |

A word of admissione. At the time of the lecture itself many of the present ques-
tions were mentioned without the accompaniment of relevant progress. Ignorance was
the main culprit ; I've tried to minorizé its presenceherein and have been aided in
this by discmssions with Jean BOURGAIN, Bill JOHNSON and Gilles PISIER. I'd welcome
any and all further information regarding examples and relevant news regarding ques-
tions contained here,

Incidentally, any unexplained terminology or notation can easilj be gleaned from
either [VM] or [LT].

1+ The basic limit theorems for measures.

~

The following theorems are classical (or nearly so).

Vitali-Hahn-Seks THEOREM. - If € is a g~complete Boolean algebra and

by 3 @ —5 R is a sequence of bounded additive measures each absolutely contimuous
with respect to a fixed bounded edditive measure [, ¢ @ -3 R, then should

limn 'J‘n(a) exist, for each a € d , the absolute continuity of the b 's with

respect to |, is uniform, i. e., given ¢ >0 , there is § > O such that whenever

aefd and |u(b)] <5, forall bed, bga then |y (b)] ge, forall n and
allbsa.

Nikodym boundedness THEOREM, -~ If @ is a g~complebe Boolean algebra and
{ug 3 «€ A} is a family of bounded additive real-ralued measures defined an
& for which

sup, lp,a(a)l <« 4 for each a € 4 ,

then

R——
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SUP, o |p,a(a)| <

A THEOREM of Grothendieck and Ando. - If ( is the Stone space of a g=complete
Boolean algebra @ , and X is a separable Banach space, then every bounded linear
operator T : 0(Q) = X is weakly compact.

Each of these theorems finds many applications throughout measure theory and gene-
ral functional analysis. What's more they are not completely dependent upon the «
g-completeness of the Boolean algebra @ nor do any of them hold for every Boolean
algebra. The complete classification of those Boolean algebras @ for which any of
the sbove theorem's conclusions still hold is open. Seversl years ego, in a rather
futile effort to understand the interrelationships of the sbove theorems, Barbara
FAIRES, Bob HUFF, and myself formulated the natural properties of a Boolean algebra
4  called the Vitali-Hahn-Ssks property, the Nikodym boundedness property and the
Grothendieck property that insure that the corresponding statements for d be true.
We were able to show that the Vitali-Hahn-Saks property implies both the Nikodym
boundedness property and the Grothendieck property and that conversely the Nikodym
boundedness property and the Grothendieck property taken together imply the Vitali-~
Hshn-Sgks property. The arguments were, after the dust had settled a bit, purely
formal. The questions of whether or not either the Nikodym boundedness property or
the Grothendieck property above suffice to deduce the Vitali-Hahn-Saks theorem was
open. After [VM] had been sent away to the publishers, Walter SCHACHEMAYER [22] gave
an elegant example of a Boolean algebra having the Nikodym boundedness property but
failing the Grothendieck property ; his example is the algebra of Jordan measurable
subsets of (0, 1) . Recall that A c (0 , 1) is Jordan measurable if tne boundary
of A, A, has Lebesgue measure zero. However, the following remains open and its

solution is probably a function of knowing sufficiently many nontrivial Boolean
algebras.,

(Q1) Does the Grothendieck property for a Boolean algebra @ imply the Vitali-
Hahn-Saks property for & or equivalently, does the Grothendieck property for d
imply the Nikodym boundedness property ?

The easiest way to see what really is involved here is to give a convenient alter—
native version of each of the properties involved.

THEOREMs - Let 4 be a Boolean algebrae

(a) @ has the Grothendieck property if whenever (i ) is a uniformly bounded
sequence of bounded additive real valued measures defined on @ such that

limn “‘n(a) =0, for each a e & , then the additivity of the . 's is uniform, i.e.

given ¢ >0 and any sequence (am) of disjoint members of @ , there is an Iy

such that, for any Jj >k > m, and any bsakvak+1v...Vaj,wehave

lia®)| s e for all n;
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(b) @ has the Nikodym boundedness property if, and only if, given any sequence

(“n) of bounded additive real valued measures defined on & such that

lim y,.(a) =0, for ecach a e, then the . 's are uniformly bounded on & .

Another not-yet-classiceal result, due to H. P. ROSEWTHAL, concerning g-~complete
Boolean sglgebras must be mentioned here.

THEOREM (ROSENTHAL) . - If d is a g~complete Boolean algebra and ( is the Stone
space of @ , then any nonweakly compact linear operator T : C(p) -3 X fixes a

copy of 4 o [An operator fixes a copy of Z if there's an isomorph of Z in the
[eo]
operator's domain on which the operator is an isomorphism.]

This result is a consequence of s remarqusble lemma (called aptly enough "Rosen~
thal's lemma") which is closely tied to g-complete objects.

If one assumes just the Grothendieck property, then one still has the following
theorenm.

THEOREM (DIESTEL-SEIFERT). - If 4 1is a Boolean algebra with the Grothendieck pro-
perty and  is the Stone space of d , then any nonweakly compact linear operator
T: C(Q) ~= X fixes a copy of C(0, 1) . '

(Q2) If & is a Boolean algebra with the Grothendieck property (or the Vitali-
Hahn-Sgks property) and ( is its Stone space, need each nonweekly compact operator
T: C(Q) —3 X fix a copy of 2, ?

Actually there's a more general form of (Q2) having to do with a class of Banach
spaces having the so-called "Grothendieck p;;perty" s 1le €y spaces in whose dual
weak” w7 eequences are weal”s | . 4 ronscngble objective for this class would
be a response to the following property.

(Q3) Need every nonreflexive Grothendieck space have g as a quotient ?

In trying to answer the above questions and relatives of them a constant bugaboo
was the desire to obtain boundedness from countaoble additivity ; recall that a measu~
re . defined on the Boolzan algebra & with real values is countably additive if
given any sicuence (ah) in ﬂ. which is decreasing to O , then M(an) tends to

zero as well. Curiously a complete answer to the follewing is still mnknown.

(_9:&_) For what Boolean algebras & are countably additive peal~velued measures on
& bounded ?

Actually, when this lecture was delivered there were no examples other than
g—-complete Boolean algebras for which boundedness could be derived from countable ,
additivity. Michel TALAGRAND [26] has given seversal relatively easy and elucidating |
examples regarding this problem. In particular, he has shown there are non-y-complete
Boolean algebras on which every countrhly additive measure is tounded and there are
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nearly g—complete Boolean algebras that admit unbounded countably additive measures-

2. The Radon-Nikodym property.

At the time of the publication of [VM] and indeed at the time this lecture was
actually given, the most basic problem in the theory of vector measures was UHL's
question 3§ If X is a separable Banach space with the Radon-Nikodym property (RNP),
need X imbed in a separsble dusl ? Almost simultaneously (with the lecture's deli-
very unbeknownst) to the lecturer, J. BOURGAIN and F. DELBAEN were devilishly esta-
blishing the RNP for certain separable ﬁw—spaces constructed by BOURGAIN for other
devious purposes j; it follows from the work of LINDENSTRAUSS, PELCZYNSKI and ROSEN-
THAL ([13], [14]) that separsble £ -spaces arve not allowed in separable duals. The-
refore, UHL's question was answered in the negative. However, a close relative of
UHL's question remains open and, particularly in light of the BOURGAIN-DELBAEN
result, should be enlightening as regards to the relationship of RNP and separable
dual spaces. It comes, by way of PELCZYNSKI, the following property.

(QL) Does every space with the RI® contain a separable dual subspace ?

Noteworthy, here is the fact that BOURCGAIN's example is hereditarily by s ie €y

each subspace contains an isomorph of by e

Frequently, isomorphic concepts (such as reflexivity, weak sequential. corpletenecs
and superreflexivity) can be determin~d to hold or not hold for a given space by
checking the subspaces of the space theh here Schauder basese.

(Q2) Need X have the RN if erewv ewrmaors Af X heving Schauder basis has the
RNP ?

Here all the progress has been due to Jean BOURGAIN, For general X 's, he has
shown that, if every subspace Y having a finite dimensional Schauder decomposition
has the RNP, then X has the RNPe If X is a dual space, then BOURGAIN has shown
X has the RNP provided each subsnace of X having Schauder basis has the RNP.
Neither of these results is yet published and neither is easy. In tandem, they make
a final response to (Q2) appear difficult.

Part of the difficulty in resolving questions relating ideas from basis theory and
Radon-Nikodym theory might well lie in the fact that they are not natural bedfellows.
Bob HUFF has suggested that perhaps the kird of relationship that ought to be
investigated is in the line of finding a class % (my lettering !) of basic sequen-
ces such that X has the RNP? if; and cnly if, each basic sequence in X belongs to
% o« The edstence of such a class is, of ccvrse, in doubt ; its identification (should
it exist) would be welcomed news.

The Radon-Nikodym property can be localized in the sense that one can define what
it means for a set to have the property. One way of doing this is to say that a set
B c X has the RNP if each subset of B 1is dentable. Once this is allowed it is
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natural to define an RNP operator as an operator T : X - ¥ that takes bounded
sets in X 1o sets with the RNP. Such operators arige throughout the Grothendieck
Memoir, and, in light of the Dewis~Figiel-Johnson-Pelczynski factorization scheme,
one might hope for an affirmative response to the next property.

(@) If T: XY is an RNP operatoy need T factor through a Banech space
with the RNP ?

In case T is itsélf the odjoint of some other operator then S. HEINRICH [6],
O« REINOV [19] and C. STEGALL [24] have independently given a positive response,
using in fact variations on the theme of DAVIS and al. Whether or not the DAVIS and
al scheme can be used in general is open to serious doubts due to some pathological
exemples of sets with the RNP discovered by Jean BOURGAIN.

¥uch of the work regarding the RNP and sets with the RNP has gone to est-blishing
that these sets want to be weakly compact, but just do not quite make it. Their
geometry is quite similar ; in fact a weakly closed set with the RNP is a Baire
space in its wesk topology (this was noticed by Y. BENYAMINI and Ge EDGA:); weakly
closed bounded sets with the RNP have lots of strongly exposing functionals (BOURw
GAIN again with HUFF and P. MORRIS providing background music) and RNP operators pro-
perly composed with integral operators give nuclear operators. What kinds of Banach
Spaces are RNP generated ? To be precise we say that the Banach space X is RNP
generated (RNPG for short) if there is a set X c X with the RNP such thet K 's
linear span is dense. Little (practically nothing) is known regarding RNPG spaces.
To date only one "theorem" exists regarding these spaces and that, as with most of
the progress reported herein, is due to J. BOURGAIN.

THEOREM. = If X 1is a separable Banach space which contains no copy of by s
then X* is RNPG if, and only if, X' has the RNP.

(@4) Is z_RNPG ?

"

By Bourgain's cited theorem, there are non RNPG spaces; indeed the dual JT of

James tree space does the trick. Of cousse, (Q4) is aimed at obtaining a more natu-
ral examplee In fact, one can ask a perhaps more specific questione

(Q5) Is every operator T : 4 =3 X, X RNPG, weakly compact ?

By way of exemples, we might mention that weakly compactly generated speces, spaces
with the Radon-Nikodym peoperty, arbitrary 4,=sums (1 <p<w) of RNP spaces
and counteble Cy—sums of RNPG spaces are RNPG. In particular, for any 1 <P<w
and any measure ,, and any RNPG space X , Lp(u, s X) is RNPG. Incidentslly that
Ll (p, s X) 1is RNPG whenever p is finite and X is RNPG follows from the argument
of TURETT and UHL [27] suitably localised ; this was noticed in a comversation with
(who else ?) Jean BOURGAIN.

Finally as a terminal question regarding the RNP, we ask the following property.
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(26) If X has the RNP and By
nonexpansive map ¢ $ BX —_— By have a fixed pointe

denotes the closed unit ball of X , need every

Of interest here is the work of Les KARLOVITZ [G] who has shown the answer to be
yes if X is either 4, or JT « Of possible relevance here is the remarkable re-
cent result of Charles STEGALL [25] which stctes (in particular) the following
theorem.

THEOREMe ~ If X has the RNP, K is a closed bounded convex subset of X and
os K e B (any Banach space) is continuous and bounded on K , then, given

¢ >0 (no matter how small), there is a bounded linear eperator Te t XY,

dimension Te X <1, such that ”Teu <e and Te + @ atbains its meximum norm
on K .

3. The Lebesgue-Bochner spaces.

In the past five years, the Lebesgue-Bochner spaces have found interesting end ime
portant spplications in Banach space theory, probsbility and even harmonic analysis.
Shunned for a considerable time, these spaces have only recently come to be recogni-
zed as mischieviously elusive objects of study in their own right. So, though much
is known sbout them, most of it is still surface-level and a number of questions re-
main. Typicel of many of these guestions is the following repeater from [va].

(Q1) If X is weekly sequentially complete, is Lp(” , X) of the same type ?

Here 1 gp<w e

Before entering a discussion of some recent progress related to (Q1) a few remarks

are in order regarding other questions of the same genre as (3];) .

It is quite often the case that good properties shared by .. given Lp (p,) , and X
are inherited by Lp(u , X) . For instance, we cite : separability, weakly compactly
generated, reflexivity , uniform convexity ([3], [15]), uniform smoothness, the
Benech-Saks property [23], striet convexity [27], local uni forn convexity [27],
uniformly nonsquare [27], smoothness [12], Fréchet differentiability of the norm [12]
Beck convexity [21], type [16], cotype [16], the Radon-Nikodym property [27], being
an Asplund space [27], noncontaimment of ¢ [11] and noncontainment of 4y
([2], [18])s (It is to be remarked that many of the above are highly nontrivial
though none are unexpected. In fact, this is probably the reason that Lp(pu s X)
spaces have not been studied too much as yet-highly nontrivial results are often met
with a shrug and a comment 'f course (") Not every good property shared by a given
Lp(p,) and X goes over to Lp(u, y X) .

Undoubtedly the most interesting reversals in form are those exhibited by David
ALDOUS [1]. He has shown that LP((O , 1), X) hes an unconditional basis anly when
I.p(O , 1) and X are superreflexive (i. s, 1 <p <w and X has an equivalent
uniformly convex norm). In particular, L2((O , 1), co) does not have an uncondi-
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tionel basise. Further, ALDOUS has noted that L,((0, 1), cy) fails to have the
weak Banach-Ssks property though L2(0 ’ 1) and o enjoy this property. Al in
all it appears clear from ALDOUS's work and other results to be discussed below
that Lp((o , 1), ¢y) is a space worth knowing.

The difficulty with (QL) lies largely with the lack of understanding of the weak
topology of Lp(“, y X) . The classical duelity of Lp(“‘) and L *(M) , where p
P
and p* are conjugate indices, goes only so far ; in the vector case it holds
(50 ey LG, 0* =1 ,(, X ) if, and only if, X" has the RNP with respect

p
to (0, &, p) » Though the duel of Lp(P‘ , X) can be described in general, as yeb
no one has really cracked open the meaning of these alternative descriptions in
terms of weak convergence. This gives gusto to several other repesters from [VM].

(_9_?_) Give (simultaneous) necessary and sufficient conditions that a bounded (and,
if p =1, uniformly integrable) subset # of Lp(u , X) be relatively weeskly
compact.

(_92) What are the criteria that a bounded (and, if p=1, uniformly integrable)
set ® in 'Lp (4 5 X) be conditionally weakly compact ?

[A set B 1is conditionally weakly compact if each sequence in B has a weakly
Cauchy subsequence. |

Some progress has bean made regarding the above problems especially (Q3). In fact
thanks to the beautiful Rosenthal %, =theoren [20], the work of Jean BOURGAIN [2]
and Gilles PISIER [18] gives the following improvement of theorem from [VM].

THEOREM. - Suppose X P 2q and % ¢ Lp(.u, , X)

If p=1, then ¥ 1is conditionally weakly compact if, and only if, ¥ is boun-

ded and uniformly integrable.

If p>1, then ¥ is conditionally weakly compact if, and only if, ¥ is boun-
ded.

In trying to resolve (gg_), one is led to the following condition conmeerning a set
# in Lp (p, , X) ¢ '

(Gr) Given ¢ > 0 , there is a weakly compact set Ke in X such that
u({w s £(w) )éKe}) <ggy foreach f e .

Similarly, one can obtain the condition (Gc) by replacing the weakly compact set
Ke by a conditionally weakly compact set G€ throughout. In [4], it is essentielly
shown that if ¥ 1is bounded (and, if p =1 , uniformly integrable) and satisfies
(Gr), then ¥ is relatively weakly compact. More recently, BOURGAIN has observed
that an analogous statement holdsfor conditional wesk compactness 3 If # is boun-
‘ded (and, if p =1 , uniformly integrable) and satisfies (G,), then % is condi
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tionally weakly compacte

Neither (Gr) nor (Gc) is necessary for relative or conditicnel week compectness
in generale In case of (Gr), if one looks at X = ¢ , then given any bounded se-
quence (xn) without a weakly converzent subsequence, the sequence (rn & xn) s
where T is the n-th Rademacher function, tends to zero wesgkly in LP([O, 1], co)
but feils (Gr) o The situation with (Gc) is a bit touchier, but BOURGAIN has construc-
ted a counterexample in [2].

What at first appears to be a curiosity is the observation (not as trivial as it
first asppeers i) that, if X is an L, (\) =space, then (Gr) is necessary for relati-
ve weak compactness in Lp(“' , X) o Of course, this glso occurs if X is reflexive.
What we're leading upto :3%h~keen observation of P.HIERMEYER[7] : If (Gr) is ne-
cessery for wesk compactness in Lp(p, » X) , then Lp(l-" , X) is weakly seq entially

complete. The preceding remarks made the next question obviouse

(Q4) If X is weakly sequentislly completq need weakly compact sets in Lp(p" X)
satisfy (Gr) ?

This question has several natural test cases. Indeed, two of the most interesting
examples of Benach spaces produced in the past five years are weakly sequentially
complete. They are the dual of JH (James Hagler spaces) and the Bourgsin example
cited above. Each in fact has the Schur property.

Somewhat noteworthy here is that Ll((O y 1), JE*) is not sequentially complete
in the weak topology generated by L (0, 1), JH*™) . However, since in this case
L, 1), 58" 1is a small part of L (00, £, JH"*, this observation (dus
to Le EGGHE) is for from solving (Qi).

Another unnerving indication of the present lsck of understanding of weak compact-
ness in the Lebesgue-Bochner spaces is reflected in the following property.

(Q5) When does a weakly Cauchy sequence in Lp(!“’ s °O) converge weakly 2

[Keep in mind that the conditionally weakly compact sets in L (p, ’ co) are
P
known. |

The answer to (&5_) may well lie in building good nontriviel operators on
Lp (M s X) ‘spacese In fact, the following was observed in comwersations with HIER-
MEYER and Jurgen BATT ¢ If X is a separeble Banach space, then e necessary and
sufficient condition that # ¢ Lp (w s X) Dbe relubively weakly compact is that, for
each bounded linear operator T : Lp(u y X) = ¢y s T® is relativoly weskly
compacte The difficulty in using this criterionat present lies in the fact that non-

trivial operatars on Lp(“' » X) are elusive., In fact, constructing subsets of
Lp (p, ’ X) that don't come about coordinate-~by-coordinate is a stumbling blocke. For
instance, I don't know the answer to the following prcblem.
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(_gé) If % c Lp (b s X) is weakly compact, is there a weskly compactly generated
Xy X such that ¥ ¢ Lp(p, , xo) ?.

Enough gbout weak compactnesse.

There's another line of questions gbout the Lebesgue-Bochner spaces that seem
intriguinge &n indicative sampling from this line s

(Q7) For which Banach spaces X are ,e,z(X) and Lz((O , 1), X) isomorphic ?

If X is Hilbert space or Pelczynski's universal space [LT], then ,ez(X) and
L2((0 R i) s X) ere isomorphic. They are not isomorphic for every X ; for instance
if X=cy (or 4, ), then £,(X) has an unconditional basis, but L,((0, 1) , X}
hasn't thanks to the Aldous results cited above.

(3B) For whst separable X 's does ,e,z(X) ihbed isomorphically in L, (0,1}, 1) 2

Sometimes this occurse Again if X is a Hilbert space and (rn) denotes the Ra-
demacher sequence, then the map R 3 zz(X) — Ll([O , 1), X) defined by
R(xn) = Zn r @ x, defines dn imbedding of 22(){) into Ll((O , 1), X) ; on the
other hand, it is a beautiful result of S. KWAPIEN [10] that only in case of a
Hilbertian X does R perform such am imbedding. Another example is given by
X=20(0, 1) ; this time the embedding exists thahks to Banach and Mazure Still
another example is given by the Pelczynski universal spacee On the other hand,
25(4,) does not imbed in L, ((0, 1], 4,) .

4. Miscellaneous.
L e

We close with a couple of questions that are open-ended. Their asking is motivated
by the beautiful and effecpive Riesz representation theory for operators on spaces
C(X) of continuous real (or complex) valued functions defined on a compact Hausdorf
dorff space K o This theory is outlined for example in chppter VI of [VM]. The ques=
tions (and these are obvious variations on these themes) @

(_Ql ) Develop a representation theory for operators on the disk algebra A o

-(QR) Develop a representation theory for operators on the spaces Ck(In) of
k=times continuously differentizble scalar-valued functions defined on the n~cube
(n > 1) .

In the case of (,9,}_) there is a body of results already known ; the monograph of
PELCZYNSKI [17] is an excellent source for such information. In case of (gg), I
don't even know of a description ofl ct (12)*

ration in the representation theories that are developed should be the effectivity

« In any case, the overriding conside-

of the theory. Here a quote of one J. Jerry UHL, Jr. is worth repeating : "A repre-
sentation theorem is good for a publication ; an spplication of that theorem is good
for mathematics".



23-10

BIBLIOGRAPHY

{VM] DIESTEL (J.).and JERRY UHL (J., Jr). - Vector measures. - New York, Americen
mathematical Society, 1977 (Mathematical Surveys, 15).

[LT] LINDENSTRAUSS (J.) and TZAFRIRI (L.). = Classical Banach spaces, I : Sequence
spaces. = Berlin, Springer-Verlag, 1977 (Brgebnisse der Mathematik, 92).

[1] ALDOUS (D.). = Unconditional bases and mertingales in Lp(F) (Preprint) .
[2] BOURGAIN (J.)e = Handwritten notes, personal communications and legenc.

[3] DAY (M« M.)e - Some more uniformly comvex spaces, Bull. Amer. mathe Soce, t. 47,
1941, p. 504-5170

[4] DIESTEL (J.). - Remarks on weak compsctness in Iy(y , X) , Glasgow m :h. J.,
te 18, 1977, Pe 87—910

[5] DIESTEL (J.) and SEIFERT (Ce Je&)e = The Banach-Saks operator ideal, I : Opera-
tors on spaces of contimious functions, Commemt. Math. Orlicz Commemor. issue
(tO appear).

[6] HEINRIGH (S.)s = Closed operator idesls and interpolation (Preprint).
(7] HIERMEYER (P.). - Prethesis Munich, 1979.

[8] HOFFMAN~JPRGENSEN (J.). ~ Sums of independent Benach spaces valued random va-
risbles, Studia Math., Warszawa, t. 52, 1974, p. 159-186.

[9] KARLOVITZ (L.)+ = Some fixed point results for non-expensive meppings, Fixed
point theory and its applications, edited by S. Swaminathane - New York,
Academic Press, 1978.

[10] XWAPIEN (S.)s - Isomorphic characterization ef inner product spaces by orthogo-
nal seriss with vector-valued coefficiemts, Studia Math., Warszawa, t. 44,
1972, pe 583=595.

[11] KWAPIEN (S.)« = On Banach spaces conraining g » Studia Math., Warszawa, t. 52,
1978, p. 187-188s

[12] LEONARD (E.) and SUNDARESAN (K.). - Smoothness in Lebesgue-Bochner function spas-
ces and the Radon Nikodym theorem, J. of math. Analysis and its applic., ’
t. 46, 1974, p. 513=522,

[13] LINDENSTRAUSS (J.) and PELCZYNCKI (A.). = hLbsolutely summing onerstors in
spaces and their applications, Studia Math., Warszawa, t. 29, 1968, p. 275-326,

[14] LINDENSTRAUSS (J.) and ROSENTHAL (H. P.)e = The £p spaces, Israel J. Math.,
te 7, 1969, Pe 325—349-

[15] McSHANE (E. J.)e - Linear functionals on certain Banach spaces, Proc. Amer.
mathe Soce. ’ te 1, 1950’ Pe 402-408

[16] MAUREY (B.) and PISIER (G.). - Séries de varisbles sldatoires vectorielles indée
pendantes et propriétés géométriques des espaces de Banach, Studia lMath., Wars—
Zawa, te 58, 1976, Pe 45"'90.

[17] PELCZYNCKI (A.). = Banach spaces of analytic functions and absolutely swming
operators. - Providence, American mathematical Society, 1977 (Conference ‘
Board of the mathematical Sciences, Regional Conference Series in pure Mathe-
matics, 30). ' '

[18] PISIER (G.). — Une propriété de stabilité de la classe des espaces ne contenant
pas gL, Cu Re Acade Sce Paris, t. 286, 1978, Série A, p. 747-749. .

[19] REINOV (0.)e = Operator of type RN in Banach spaces (Preprint).

[20] ROSENTHAL (He P.)s = & characterization of Banach spaces not containing 4 ,
Proc. N&to Acad. SCQ Ue Se A., te 71’ 1974’ Pe 2411"2413.

[21] ROSENTHAL (He P.)e = Some applications of p-summing operators to Banach space
theory, Studia Math., Warszawa, te 58, 1976, p. 21=43.



23=-11
[22] SCHACHERMLYER (W.)s = Personal communication.

[23] SEIFERT (Ce Jo). = The Banach=Sgks property in Lebesgue=Bochner function spaces
(to appear).

[24] STFGALL (Ce)e = The Radon-Nikodym property in dual spaces, II, Trans. hmer.
math. Soc. (to appear).

[25] STEGALLL (C.)e = Optimization of functions on certain subsets of Banach spaces
(Preprint) . -

[26] T/(LiGRAND (M.). - Personsl communicatione

[27] TURETT (B.) and SMITH (M.). — Rotundity in the Lebesgue-Bochner spaces, Unive
of Miami (Ohio) (Preprint).

(Texte regu le 18 septembre 1978)
Joe DIESTEL

Mathematics Department
Kent State University
KENT, Ohio 44242
(Btats~Unis)




