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23-01

SOME PROBLEMS ARISING IN CONNECTION

WITH THE THEORY OF VECTOR MEASURES

by Joe DIESTEL

Séminaire CHOQUET
(Initiation a l’analyse)
17e année, 1977/78, n° 23~ 11 p. ler juin 1978

Introduction* - This lecture’s aim is to discuss some problems arising in connec-

tion with the theory of vector measures. The problems discussed come in two varie-

ties : The first class are among those discussed in the recent work "Vector measures"

of J. Jerry UHL, Jr. and myself (henceforth referred to as ~Vr~I~ ) ; in discussing pro-
blems of this class I’ve restricted myself to those problems on which I’m aware that

there~ s been some progress. In a sense then the. discussion of this class is a pro-

gress report. The second class of problems concerns questions that have come to the

foreground since the appearance of [VM]. I hope a few of these find interest (and
even solution).

A word of admission. At the time of the lecture itself many of the present ques-

tions were mentioned without the accompaniment of relevant progress. Ignorance was

the main culprit ; I’ve tried to minorize its presence herein and have been aided in

this by discussions with Jean BOURGAIN, Bill JOHNSON and Gilles PISIER. I’ d welcome

any and all further information regarding examples and relevant news regarding ques-

tions contained here.

Incidentally, any unexplained tenninology or notation can easily be gleaned from

either or [LT].

1. The basic linit theorems for measures.

The following theorems are classical (or nearly so).

Vitali-Nahn-Saks THEDREM. - If U is a p-complete Boolean algebra and

J.1n: a -.-.~ R is a sequence of bounded additive measures each absolutely continuous

with respect to a fixed bounded additive measure  : 03B1 ~ R , then should

limn n (a) exist, for each a E a , the absolute continuity of the n ’s with ,

respect to  is uniform, i. given e > 0 ~ there is g > 0 such that whenever

a ~ 03B1 and | (b)| (  s , for all b b  a then | n(b)|  e , for all n and

all ba.

Nikodym boundedness THEOREM. - If t is a a-complete Boolean algebra and

fu ? a E A) is a family of bounded additive real-valued measures defined on

a for which

then



A THEOREM of Grothendieck and is the Stone space of a 03C3-complete

Boolean algebra and X is a separable Banach space, then every bounded linear

operator T : ~ X is weakly compact.

Each of these theorems finds many applications throughout measure theory and gene-

ral functional analysis. What’ s more they are not completely dependent upon the a

a-completeness of the Boolean algebra a nor do any of them hold for every Boolean

algebra. The complete classification of those Boolean algebras t~ for which any of

the above theorem’s conclusions still hold is open. Several years ago, in a rather

futile effort to understand the interrelationships of the above theorems, Barbara

FAIRES, Bob HUFF, and myself formulated the natural properties of a Boolean algebra
03B1 called the Vitali-Hahn-Saks property, the Nikodym boundedness property and the

Grothendieck property that insure that the corresponding statements for 03B1 be true.

We were able to show that the Vitali-Hahn-Saks property implies both the Nikodym

boundedness property and the Grothendieck property and that conversely the Nikodym

boundedness property and the Grothendieck property taken together imply the Vitali-

Hahn-Saks property. The arguments were, after the dust had settled a bit, purely
formal. The questions of whether or not either the Nikodym boundedness property or

the Grothendieck property above suffice to deduce the Vitali-Hahn-Saks theorem was

open. After had been sent away to the publishers, Walter SCHACHEMAYER [22] gave
an elegant example of a Boolean algebra having the Nikodym boundedness property but

failing the Grothendieck property ; his example is the algebra of Jordan measurable
subsets of (0 , 1~ . Recall that A c (0 , ~~ is Jordan measurable if tne boundary

of A ~ ~ ~A ~ has Lebesgue measure zero. However, the following remains open and its

solution is probably a function Qf knowing sufficiently many nontrivial Boolean

algebras.

(Ql) Does the Grothendieck property for a Boolean algebra d imply the Vitali-

Hahn-Saks property for 03B1 or equivalently, does the Grothendieck property for OL

imply the Nikodym boundedness property ?

The easiest way to see what really is involved here is to give a convenient alter-

native version of each of the properties involved. .

THEOREM. - Let 03B1 be a Boolean algebra. 
’

(a) CL has the Grothendieck property if whenever (n) is a uniformly bounded

sequence of bounded additive real valued measures defined on ~. such that

lim (a) = 0 , for each a E a , then the additivity of the ~, n ~ s is uniform, i.e.

given e > 0 and any sequence (am) of dis j oint members of A , there is an DL.
such that’ for and any b   V a k+1 V ... V we have



has the Nikodym boundedness property if and only if given any sequence
of bounded additive real valued measures defined on 03B1 such that

(a) = 0 , for each then the n ’ s are uniformly bounded 

Another not-yet-classical result, due to H. P. ROSENTHAL, concerning 03C3-complete
Boolean algebras must be mentioned here.

THEOREM (ROSENTHAL). - is a p-complete Boolean algebra and Q is the Stone

space of then a~y nonweakly compact linear operator T : ~-~ X fixes a

copy of l~ . [An operator fixes a copy of Z if there’s an isomorph of Z in the

operator’s domain on which the operator is an isomorphicm.]

This result is a consequence of c,, remarquable lemma (called aptly enough ~’ Ro sen..

thal’ s le~ms,~~ ) which is closely tied to a-complete objects.

If one assumes just the Grothendieck property, then one still has the following
theorem.

THEOREM (DIESTEL-SEIFERT). - If OC is a Boolean algebra with the Grothendieck ro.-
perty and 03A9 is the Stone space of then any nonweakly compact linear operator
T : .~ X f ixe s a copy o f 1) . 

’

(Q2) If 03B1 is a. Boolean algebra with the Grothendieck property (or the Vitali-
Hahn-Saks property) and Q is its Stone space; need each nonweakly compact operator
T : C (0) ~ X fix a copy 

Actually there’ s a more general form of (Q2) having to do with a class of Banach
spaces having the so-called "Grothendieck property" , i. e., spaces in whose dual

weak null sequences are ’ ’ A ronsonable objective for this class would
be a rosponse to the following property.

(Q3) Need every nonreflexive Grothendieck space have l as a quotient ?

In trying to answer the above questions and relatives of them a constant bugaboo
was the desire to obtain boundedness from countable additivity 9 recall that a measu~

re 11 defined on the Boolean algebra d with real values is countably additive if
given any in 03B1 which is decreasing to 0 , then tends to
zero as well. Curiously a complete answer to the following is still unknown.

(Q4) For what Boolean algebras d are countably additive real-valued measures on
OL bounded ?

Actually, when this lecture was delivered there were no examples other than
03C3-complete Boolean algebras for which boundedness could be derived from countable
additivity. Michel TALAGRAND [26] has given several relatively easy and elucidating
examples regarding this problem, In particular, he has shown there are non-03C3-complete
Boolean algebras on which eveiy measure is bounded and there are



nearly o-complete Boolean algebras that admit unbounded countabl y additive measures’)

2. The Radon-Nikodym property.

At the time of the publication of and indeed at the time this lecture ~as

actually given, the most basic problem in the theory of vector measures was UHL’ s

question : If X is a separable Banach space with the Radon-Nikodym property (RNP),
need X imbed in a separable dual ? Almost simultaneously (with the leeture’ s deli-

very unbeknownst) to the lecturer, J. BOURGAIN and F. DELBAEN were devilishly esta-

blishing the RNP for certain separable E -spaces constructed by BOURGAIN for other
devious purposes ; it follows from the work of LINDENSTRAUSS, PELCZYNSKI and ROSM-

THAL ([13], [14]) that separable L~-spaces are not allowed in separable duals. The-
refore, UHL’ s question was answered in the negative. However, a close relative of

UHL’s question remains open and, particularly in light of the BOURGAIN-DELBAEN

result, should be enlightening as regards to the relationship of RNP and separable
dual spaces« It comes, by way of PELCZYNSKI, the following propertyo

(Ql) Does every space with the contain a separable dual subspace ?

Noteworthy, here is the fact that BOURGAIN’ s example is i. e s 9

each sub sp ace contains an isomorph o f ~ ~ .
Frequently, isomorphic concepts (such as reflexivity, weak sequential, oorpleteness

and superreflexivity) can be determined to hold or not hold for a given space by

checking the subspaces of the space that Schauder bases.

(Q2) Need X have the if ~,-’~^~~~.~^ having Schauder basis has the

RNP ? 

Here all the progress has been due to Jean BOURGAIN. For general he has

shown that, if every subspace Y having a finite dimensional Schauder decomposition
has the RNP, then X has the RN?. If X is a dual space, then BOURGAIN has shown

X has the RNP provided each subspace of X having Schauder basis has the RNP.

Neither of these results is yet published and neither is easy. In tandem, they make
a final response to (Q2) appear difficult.

Part of the difficulty in resolving questions relating ideas from basis theory and

Radon-Nikodym theory might well lie in the fact that they are not natural bedfellows.

Bob HUFF has suggested that perhaps the kir.d of relationship that ought to be

investigated is in the line of finding a class ? (my lettering ! ) of basic sequen-
ces such that X has the RNP cy if, each basic sequence in X belongs to

H . The existence of such a class is, of in doubt ; its identification (should
it exist) would be welcomed news o

The Radon-Nikodym property can be loca.l ized in the sense that one can define what

it means for a set to have the property. 0ne way of doing this is to say that a set

X has the RNP if each subset of B is dentable. O;ce this is allowed it is



natural to define’ an RNP operator as an operator T : ~ .~-~:~ Y that takes bounded

sets in X to sets with the RNP. Such operators arise throughout the Grothendieck

liemoir, and, in light of the Davis-Figiel-Johnson-Pelczynski factorization scheme,
one might hope for an affirmative response to the next property.

(Q3) If T : X is an RNP operator need T factor through a Banach space
with the RNP ?

In case T is itself the odjoint of some other operator then S. HEINRICH [6],
0. REINOV [19] and C. STEGALL [24] have independently given a positive response,
using in fact variations on the theme of DAVIS and al. ~Jhether or not the DAVIS and
a1 scheme can be used in general is open to serious doubts due to some pathological
examples of sets with the RNP discovered by Jean BOURGAIN.

Much of the work regarding the RNP and sets with the RNP has gone to establishing
that these sets want to be weakly compact, but just do not quite make it. Their

geometry is quite similar ; in fact a weakly closed set with the RNP is a Baire

space in its weak topology (this was noticed by Y. BENYAMINI and G. weakly
closed bounded sets with the RNP have lots of strongly exposing functionald (BOUR~
GAIN again with HUFF and P. MORRIS providing background music) and RNP operators pro-
perly composed with integral operators give nuclear operators. Mhat kinds of Banach

spaces are RNP generated ? To be precise we say that the Banach space X is RNP

generated (RNPG for short) if there is a set K c X with the RNP such that K s

linear span is dense. Little (practically nothing) is known regarding RNPG spaces.
To date only one "theorem" exists regarding these spaces and that, as with most of

the progress reported herein, is due to J. BOURGAIN.

THEOREM. - ~f X is a separable Banach space which contains no copy 
then X* is RNPG if and only if X* has the RNP.

(Q4) Is ae RNPG ?

By Bourgain’s cited theorem, there are non RNPG spaces? indeed the dual JT of

James tree sp ace does the trick. Of couBse, (Q4) is aimed at obtaining a more natu-
ral example. In fact, one can ask a perhaps more specific question.

((~~~ Is every operator .....~ x i X RNPG, weakly compact ?

By way of examples, we might mention that weakly compactly generated spacer spaces
with the Radon-Nikodym peoperty, arbitrary lp-sums (1  p  co) of RNPG spaces
and countable of RNPG spaces are RNPG. In particular, for any 1 ~ p  oo
and any measure  and any RNPG space X, L p ( , X) is RNPG. Incidentally that

L 1 (~, ~ X) is RNPG whenever is finite and X is RNPG follows from the argument
of TURETT and UHL [27] suitably localised ; this was noticed in a conversation with
(who else ?) Jean BOURGAIN.

Finally as a terminal question regarding the RNP, we ask the following property.



(Q6) If X has the RNP and By denotes the closed unit ball of X, need every

nonexpansive map c? : EX --~ BX have a fixed point.

Of interest here is the work of Les KARLOVITZ [9] who has the answer to be

yes if X is either £’1 or JT . Of possible relevance here is the remarkable re-

cent result of Charles STEGALL [25] which states (in particular) the following
theorem.

THEOREM - If X has the K is a clo sed bounded convex subset of X and

~ ; K .~..~ Y (any Banach space) is continuous and bounded on K ~ then given

e > 0 (no matter how small), there is a bounded linear operator T : X ~ Y ,
dimension T X  1 , such that ~T~  e and attains its maximum norm

on K .

3. The Lebesgue-Bochner spaces.
In the past five years, the Lebesgue-Bochner spaces have found interesting and irn~

portant applications in Banach space theory, probability and even harmonic analysis.
Shunned for a considerable time, these spaces have only recently come to be recogni-
zed as mi schieviously elusive objects of study in their own right. So, though much

is known about them, most of it is still surface-level and a number of questions re-

main. Typical of many of these questions is the following repeater from 

~~11 ) If X is weakly sequentially complete, is L (~, , X) of the same type ?

Here 1 ~ p  ~ .

Before entering a discussion of some recent progress related to (Ql) a few remarks

are in order regarding other questions of the same genre as (Ql).

It is quite often the case that good properties shared by ,~ given L (~,) , and X

are inherited by L p (~, ~ X) . For instance, we cite : separability, weakly compactly

generated, reflexivity , uniform convexity ([3], [15]), uniform smoothness, the
Banach-Saks property [23J, strict convexity [27J, local uniform convexity [27],
uniformly nonsquare [27], smoothness [12], Frechet differentiability of the norm [12]
Beck convexity [21J, type [16], cotype [16], the Radon-Nikodym property [27 ] , being
an Asplund space [27]~ t noncontainment of c 0 and noncontainment o f 1
(~~~ f ~ 18~ ) . (It is to be remarked that many of the above are highly nontrivial

though none are unexpected. In fact, this is probably the reason that L p (  , X)

spaces have not been studied too much as yet-highly nontrivial results are often met

with a shrug and a comment ’bf course Not every good property shared by a given

L p (~) and X goes over to X) .

Undoubtedly the most interesting reversals in form are those exhibited by David

He has shown that 1) , X) has an unconditional basis only when

L [0 , 1] and X are superreflexive (i. e., 1  p and X has an equivalent

uni fo rmly convex norm). I n particular L2([0 , 1] , c ) does not have an uncondi-



tional basis. Further, ALDOUS has noted that L2([0 , 1] , c0) fails to have the

weak Banach-Saks property though L2[0 , l) and c0 enjoy this property. All in

all it appears clear from ALDOUS’s work and other results to be discussed below

that L ((0 ~ l) ~ c~) space worth knowing.

The difficulty with lies largely with the lack of understanding of the weak

topology of L (~ ~ X) . The classical duality of L (~) (~) ~ where p

~ "o
and p 

* 
are conjugate indices, goes only so far ; in the vector case it holds

(i. e~ L ~ (p~ X)~ = L 
P 
~(~ ~ X~) ) if~ and only if, X~ the R~P with respect

to (o ~ 2 ~ ~) * Though the dual of L (~ , X) can be described in general~ as yet
no one has really cracked open the meaning of these alternative descriptions in

terps of weak convergence. This gives gusto to several other repeaters from [VM].

(Q2) Give (simultaneous) necessary and sufficient conditions that a bounded 
if p = 1 , uniformly integrable) subset X of L (  , X) be relatively weekly

compact.

(03) What are the criteria that a bounded if p = 1 , uniformly integrable)
set K in L (~ , X) be conditionally weakly compact ?

[A set B is conditionally weakly compact if each sequence in B has a weakly

Cauchy subsequence.]

Some progress has been made regarding the above problems especially (Q3). In fact
thanks to the beautiful Rosenthal l1-theorem [20], .the work of Jean BOURGAIN [2]
and Gilles PISIER [l8J gives the following improvement of theorem from [VM].

THEOREM. - Suppose X ~ ~ and K c L (~ ~ X) .

~ p = 1 ~ then K is conditionally weakly compact if~ and only if~ ? is boun-

ded and uniformly integrable.

If p > 1 , then K is conditionally weakly compact and only K is boun-
ded.

In trying to resolve (Q2)~ one is led to the following condition concerning a set
K X) : 

’

(G ) Given e > 0 ~ there is a weakly compact set K in X such that

~((o) : K ))  e ~ for each f e ? . 
e

Similarly~ one can obtain the condition (G ) by replacing the weakly compact set
K 
e 

by a conditionally weakly compact set G 
e 

throughout. In [4]~ it is essentially
shown that ~f K is bounded p = 1 ~ uniformly integrable) and satisfies

then K is relatively weakly compact. More recently, BOURGAIN has observed
that an analogous statement holdsfor conditional weak compactness : _If K is boun-

ded (and, if p == 1 , uniformly integrable) and satisfies (Gc), then K is condi-



tionally weakly compact.

Neither (G ) nor (G ) is necessary £or relative or conditional weak compactness
r c

in general. In c;*se of (Gr), if one looks at X = then given any bounded se-

quence (xn) without a weakly convergent subsequence, the sequence (rn g. xn) ,
where r n is the n-th Rademacher function, tends to zero weekly in L P ( (0 , 1 ) , c0)
but fails (G ) . The situation with (G ) is a bit touchier, but BOURGAIN has construc-

ted a counterexample in [2] .

What at first appears to be a curiosity is the observation (not as trivial as it

first appears!) that, if X is an L1 (x) -space, then (G ) is necessary for relati-

ve weak compactness in L (, , X) . Of course, this also occurs if X is reflexive.

What ve’ re leading upto is the keen observation of P . HIERMEYER 17] : Tf (G ) is ne-
cessary for weak compactness in Lp p,, , x> , then Lp v , x> is weakly sequentially
complete. The preceding remarks made the next question obvious.

(Q4) If X is weakly sequentially complete, need weakly compact sets in Lp (p , X)
satisfy (G ) ?.

r

This question has several natural test cases. Indeed, two of the most interesting
examples of Banach spaces produced in the past five years are weakly sequentially

complete. They are the dual of JH (J ames Hagler spaces) and the Bourgain example
cited above. Each in fact has the Schur property.

Somewhat noteworthy here is that Li«o , i ) , is not sequentially complete
in the weak topology generated by L,,,(0 , 1 ) , JiI**) . However, since in this case

L~([0 , 1 ) , JH**> is a small part; of L1 « 0 , 1) , JH*>* , this observation due
to L. EGGHE) is £ar from solving (Qi) .
Another unnerving indication of the present lack of understanding of weak compant-

ness in the Lebesgue-Bochner spaces is reflected in the following property.

(Q5) When does a weakly Cauchy sequence in Co) Converge weakly ?

[Keep in mind that the conditionally weakly compact sets in Lp (> , c0) are

known.]

The answer to (Q5) may well lie in -building good nontrivial operators on

Lp (  , X) spaces. In fact, the following was observed in 
and Jurgen BATT:.!! x is -a separeble Banach space, then .i necessary and

SUfficient Condition that X z Lp (, , X) be relatively weakly compact is that for
each bounded linear operator T : Lp (+ , X) e c0 , TH ,is relatively weakly
compact. The difficulty in using this criterionat present lies in the fact that non-
trivial operators on L (  , X) are elusive. In fact, constructing subsets ofP ..
L (  , X) that don’t come about coordinate...by-coordinate is a. stumbling block. For
P

instance, I don’t know the answer to the following problem.



(Q6) If K s L (  , X) is weakly compact, is there a weakly compactly generated
such (  , X0) ?

Enough about weak compactness.

There’s another line of questions about the Lebesgue-Bochner spaces that seem

intriguing. An indicative sampling from this line :

(Q7) For which Banach spaces X are j~(X) and L~((0 ~ l) ~ X) isomorphic ?

If X is Hilbert space or Pelczynski’s universal space then l2(X) and

L~((o ~ l) ~ X) are isomorphic. They are not isomorphic for every X ; for instance
if X = c~ then ~~(X) has an unconditional basis, but L~((0 ~ 1) , X):
hasn’t thanks to the Aldous results cited above.

For what separable X s does l2(X) imbed isomorphically in L ([0, 1] , X) ?

Sometimes this occurs. Again if X is a Hilbert space and (r ) denotes the Ra-

demacher sequence, then the map R : l2(X) ~ L1 ([0 , 1] , X) defined by

= 03A3n rn ~ xn defines an imbedding of into L1([0 , 1] ,X) ; on the
other hand, it is a beautiful result of S. KWAPIEN [lO] that only in case of a
Hilbertian X does R perform such am imbedding. Another example is given by
X = 0(0 , 1 ) ; this time the embedding exists thanks to Banach and Mazur. Still
another example is given by the Pelczynski universal space. On the other hand,

~2~1~ does not imbed in L.((o ~ 1) , ~) .

4. Miscellaneous.

We close with a couple of questions that are open-endede. Their asking is motivated

by the beautiful and effective Riesz representation theory for operators on spaces
C(K) of continuous real (or complex) valued functions defined on a compact Hausdorf
dorff space K . This theory is outlined for example in chapter VI of [VH]. The ques-
tions (and these are obvious variations on these themes) :

(Ql) Develop a representation theory for operators on the disk algebra A .

. (Q2) Develop a representation theory for operators on the spaces C of

k--bimes continuously differentiable scalar-valued functions defined on the n-cube

(n>l) .

In the case of (Ql) there is a body of results already known; the monograph of
PELCZYNSKI [l7] is an excellent source for such information. In case of (Q2) , I 

’.

don’t even know of a description oR any case, the overriding conside-
ration in the representation theories that are developed should be the effectivity
of the theory. Here a quote of one J. Jerry UHL, Jr. is worth repeating : ~’A repre-

sentation theorem is good for a publication ; an application of that theorem is good
for mathematics".
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