SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

BERNARD BEAUZAMY

Approximation des optima de Pareto

Séminaire Choquet. Initiation à l'analyse, tome 17, nº 2 (1977-1978), exp. nº 17, p. 1-3 http://www.numdam.org/item?id=SC_1977_17_2_A2_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

30 mars 1978

APPROXIMATION DES OPTIMA DE PARETO

par Bernard BEAUZAMY

Le but de cet exposé est de présenter le § II de [1].

Intuitivement, le résultat que nous allons énoncer a la signification suivante : Si l'on dispose d'un grand nombre de contraintes, et que l'on cherche à calculer un optimum par rapport à ce grand nombre, il suffit de choisir un petit nombre parmi elles, et de calculer l'optimum par rapport à ce petit nombre. Pourvu que ce choix ait été fait au hasard, on tombera près du résultat. Mieux, la plupart des choix possibles donnent un bon résultat.

Soit E un espace de Banach uniformément convexe. On considère une famille finie de fonctions u_1 , ..., u_N de E dans $\underline{\mathbb{R}}$, possédant les propriétés suivantes :

- (1) Chaque u est strictement concave, continue, minorée sur chaque ensemble borné.
- (2) Chaque u_i tend vers $-\infty$ à l'infini : $\forall \ C \in \mathbb{R}$, l'ensemble $\{u_i \geqslant C\}$ est borné.
- (3) Chaque u_i est Gâteaux-différentiable en tout point : $\forall x$, on peut trouver une forme linéaire $u_i^!(x)$ telle que, $\forall t \in \mathbb{R}$, $\forall y \in E$,

$$u_{\mathbf{i}}(\mathbf{x} + \mathbf{t}\mathbf{y}) = u_{\mathbf{i}}(\mathbf{x}) + \mathbf{t}u_{\mathbf{i}}(\mathbf{x})(\mathbf{y}) + \mathbf{t}\lambda_{\mathbf{i}}(\mathbf{t}), \quad \lambda_{\mathbf{i}}(\mathbf{t}) \longrightarrow 0$$

(et, comme u_i est concave, $t\lambda_i(t) \leq 0$, $\forall t$).

Il résulte de ces hypothèses que chaque $u_{\mathbf{i}}$ atteint sa borne supérieure en au moins un point, et que, pour tout \mathbf{i} , l'ensemble des $\|u_{\mathbf{i}}^{\mathbf{i}}(\mathbf{x})\|$ est majoré, lorsque \mathbf{x} se trouve dans un ensemble borné :

$$\forall$$
 i , \forall \mathbb{N} borné, \mathbb{R} C tel que $\|\mathbf{u}_{\mathbf{i}}^{!}(\mathbf{x})\| \leqslant C$, \forall $\mathbf{x} \in \mathbb{N}$.

Nous ferons une hypothèse supplémentaire.

(4) Chaque u_i est uniformément concave sur les ensembles bornés. \forall M borné, \exists $\delta_{M}(\epsilon)$, avec $\delta_{M}(\epsilon) > 0$ si $\epsilon > 0$, tel que, \forall \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbb{N}$, on ait, \forall $\mathbf{i} = 1$, ..., \mathbb{N} ,

$$\mathbf{u_{i}}(\frac{\mathbf{x_{1}} + \mathbf{x_{2}}}{2}) \geq \frac{1}{2}(\mathbf{u_{i}}(\mathbf{x_{1}}) + \mathbf{u_{i}}(\mathbf{x_{2}})) + \delta_{\mathbf{M}}(\|\mathbf{x_{1}} - \mathbf{x_{2}}\|).$$

Plus précisément, pour simplifier les calculs, nous supposerons qu'il existe $q < \infty$ et une constante C_M telles que

$$u_{i}(\frac{x_{1} + x_{2}}{2}) \ge \frac{1}{2}(u_{i}(x_{1}) + u_{i}(x_{2})) + C_{M} \|x_{1} - x_{2}\|^{q}$$
.

Nous appellerons fonctions d'utilité des fonctions u_1 , ..., u_N vérifiant ces hypothèses. Nous dirons qu'un point $x \in E$ est un optimum de Pareto pour les

 $(u_i)_{i=1,...,N}$ si, $\forall y \neq x$, $\exists i$ tel que $u_i(y) < u_i(x)$. Le lemme suivant est bien connu (voir [2]).

LEMME 1. - Pour une famille finie de fonctions d'utilité, les conditions suivantes sont équivalentes, pour un point $x \in E$:

- (a) x est un optimum de Pareto,
- (b) Il existe des coefficients positifs p_1 , ..., p_N , de somme 1, avec $\sum_{i=1}^{N} p_i u_i^i(x) = 0$,
- (c) Il existe des coefficients positifs p_1 , ..., p_N , de somme 1, tels que la fonction $\phi(z) = \sum_1^N p_i u_i(z)$ prenne son maximum pour z = x.

Remarque. - Il résulte de la condition (2) que l'ensemble des optima de Pareto est borné : Soit $A = \min_{1 \le i \le N} u_i(0)$. On sait qu'il existe K tel que $\|z\| \geqslant K \Longrightarrow u_i(z) < A$, et donc $u_i(z) < u_i(0)$, et z ne peut être optimum de Pareto.

Notons O l'ensemble des optima de Pareto, $d=\sup_{z\in O}\|z\|$, et D la boule, centrée à l'origine, de rayon d. Finalement, notons o. p. $(u_1$, ..., $u_n)$ le point qui maximise $(1/n)\sum_1^n u_i(z)$ $(1\leqslant n\leqslant N)$.

THÉORÈME. - Soit u_1 , ..., u_N une famille finie de fonctions d'utilité. Il existe une constante K>0 et un nombre $\gamma>0$ tels que, si p_1 , ..., p_N sont des coefficients positifs de somme 1, x_0 l'optimum de Pareto associé à ces coefficients, si X_1,\ldots,X_k,\ldots , est une suite de variables aléatoires indépendantes, de même loi, définies sur (Ω, α, P) , prenant les valeurs u_1 , ..., u_N avec les probabilités respectives p_1 , ..., p_N , on ait, pour tout $n\in N$

E
$$\|o. p. (X_1(\omega), ..., X_n(\omega)) - x_0\| \leq \frac{K}{n\gamma}$$
.

La constante K et le nombre $\gamma>0$ dépendent seulement du module de convexité de E , du nombre d , de la constante C_{M} et du nombre q intervenant dans les hypothèses, mais ne dépendent pas de N .

La signification intuitive de cet énoncé est bien celle qui avait été donnée au début : Le point o. p. $(X_1(\omega)$, ... , $X_n(\omega))$ correspond à un choix au hasard d'un petit nombre de contraintes, celles qu'indiquent les X_1 ... X_n (remarquons au passage que ces contraintes ne sont pas nécessairement toutes distinctes, on peut très bien avoir $X_1(\omega) = X_2(\omega) = u_1$, par exemple). La probabilité que la distance entre cet optimum et x_0 soit, par exemple, supérieure à 1/10 est de la forme K_1/n^γ , et ces estimations sont uniformes au sens défini plus haut.

BIBLIOGRAPHIE

- [1] BEAUZAMY (B.) et ENFLO (P.). Théorèmes de point fixe et d'approximation, Michigan J. of Math. (à paraître).
- [2] SMALE (S.). Global analysis and economics, I: Pareto optimum and a generalization of Morse theory, "Dynamical systems" [1971, Salvador], p. 531-544.

 New York, Academic Press, 1973.

(Texte reçu le 19 juin 1978)

Bernard BEAUZAMY 93 quai de Valmy 75010 PARIS