SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

MICHEL TALAGRAND

Une remarque sur les espaces de Banach réticulés

Séminaire Choquet. Initiation à l'analyse, tome 17, nº 2 (1977-1978), exp. nº C14, p. C1-C2

http://www.numdam.org/item?id=SC_1977__17_2_A19_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

UNE REMARQUE SUR LES ESPACES DE BANACH RÉTICULÉS par Michel TALAGRAND

Le but de cette communication est de donner une preuve directe et élémentaire d'un résultat de N. GHOUSSOUB [1] (et même d'un résultat plus général) concernant les espaces de Banach réticulés (e. B. r.), et établi par celui-ci à l'aide de la théorie des martingales. On renvoie à [2] pour toutes les définitions et résultats élémentaires concernant les e. B. r.

THEOREME [1]. - Soit E un e. B. r. possédant la propriété de Schur et tel que E possède un système orthogonal topologique. Alors, il existe un ensemble Γ tel que E soit isomorphe (en tant que e. B. r.) à $\ell^1(\Gamma)$.

<u>Preuve.</u> - La première étape consiste à montrer qu'en fait E' possède un point quasi-intérieur. Pour cela, si $(x_{\alpha})_{\alpha\in\mathbb{A}}$ désigne un système orthogonal topologique de E', on va montrer que \mathbb{A} est fini. Pour tout α , désignons par \mathbb{F}_{α} la bande de E' engendrée par x_{α} , et par \mathbb{G}_{α} celle engendrée par les x_{β} , pour $\beta \neq \alpha$. Puisque $\mathbb{E} \not= \mathbf{c}_0$, \mathbb{G}_{α} est $\mathbb{G}(\mathbb{E}^!,\mathbb{E})$ -fermée. En particulier, son polaire \mathbb{F}_{α} n'est pas réduit à zéro. Soit donc $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$, avec $\|\mathbb{F}_{\alpha}\| = 1$. Pour $\mathbb{F}_{\alpha} \neq \alpha$, et \mathbb{F}_{α} , on a $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$ est dense en norme dans $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$, on en déduit que la famille des $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$ tend faiblement vers 0 suivent le filtre des parties cofinies de $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$ est dense en Schur, ceci montre que $\mathbb{F}_{\alpha} \in \mathbb{F}_{\alpha}$ est fini.

On peut donc maintenant supposer que E' contient un point quasi-intérieur, $u \in E_+^!$. Désignons par C le polaire de l'intervalle d'ordre (-u,u) et prouvons que C est borné. Sinon, pour tout n , il existe $x_n \in C$, avec $\|x_n\| \geqslant n$. Posons $y_n = x_n/\|x_n\|$, et prouvons que la suite y_n converge faiblement vers O . Du fait que $ny_n \in \Lambda$, il résulte que, pour $t \in (-u,u)$, on a $|t(y_n)| \leqslant 1/n$. Ainsi, si z est une valeur d'adhérence de la suite y_n dans la boule unité de E' (pour la topologie $\sigma(E^n,E^n)$), alors z=0 sur (-u,u). Mais, par hypothèse U_n n(-u,u) est dense en norme dans E', et ainsi z=0, ce qui prouve que y_n converge faiblement vers O . Puisque E possède la propriété de Schur, cette contrad con montre que C est borné. Puisque (-u,u) étant préfaiblement compactest préfaiblement fermé, il est égal au polaire de C , donc contient une boule.

Il existe donc une norme équivalente sur E telle que la boule unité de E' soit l'intervalle (-u,u). Ainsi E' est un M-espace, et donc E', et ainsi E est un L-espace. Pour cette nouvelle norme, E est donc isométrique à un $L^1(\mu)$. Pour conclure il reste à montrer que μ est atomique. Mais, si A est un ensemble mesu-

rable de mesure finie ne contenent aroun atome, l'ensemble des fonctions mesurables, nulles en dehors de A, bornées par 1 sur A, est faiblement compact non compact, ce qui termine tout, puisque E possède la propriété de Schur.

BIBLIOGRAPHIE

- [1] GHOUSSCUB (N.). Orderaments: A class of asymptotics martingales, J. of multiv. Analysis, 19/8 (à paraître).
- [2] SCHAEFER (H. H.). Banach lattices and positive operators. Berlin, Springer-Verlag, 1)74 (Grundlehren der mathematischen Wissenschaften, 215).

(Texte regule 23 octobre 1978)

Michel TALAGRAND Equipe d'Analyse, Tour 45 Université Pierre et Marie Curie 4 place Jussieu 75230 PARIS GEDEX 05