SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

MICHEL TALAGRAND

Algèbres d'ensembles sur lesquelles toutes les mesures σ-additives sont bornées

Séminaire Choquet. Initiation à l'analyse, tome 17, n° 2 (1977-1978), exp. n° C6, p. C1-C3

http://www.numdam.org/item?id=SC_1977__17_2_A11_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Séminaire CHOQUET (Initiation à l'Analyse) 17e année, 1977/78, Communication nº 6, 3 p.

ALGEBRES D'ENSEMBLES

SUR LESQUELLES TOUTES LES MESURES G-ADDITIVES SONT BORNÉES

par Michel TALAGRAND

Soit α une algèbre de parties d'un ensemble. Une fonction μ de α dans α est dite une mesure σ -additive, lorsqu'elle est additive et que $\mu(A_n) \longrightarrow 0$, pour toute suite $(A_n) \downarrow 0$. Lorsque α est une σ -algèbre, il est bien connu que toute mesure σ -additive sur α est bornée. J. DIESTEL demande [1] si la réciproque est exacte. Nous allons voir qu'il n'en est rien. Plus précisément, disons qu'une algèbre possède la propriété d'interpolation si la condition suivante est vérifiée :

(PI) Pour toute suite croissante (A_n), et toute suite décroissante (B_n) de α telles que A_n α B_n, pour tout n, il existe α α et α avec A_n α c α pour tout n.

Naturellement, si a est une o-algèbre, elle vérifie (PI).

EXEMPLE 1. - Il existe une algèbre α qui ne vérifie pas (PI) (donc n'est pas une σ-algèbre), mais telle que toute mesure σ-additive sur α soit bornée.

Pour montrer cela, fixons un ultrafiltre non trivial u sur N. Considérons l'ensemble u des éléments u cels que l'on ait

$${n \in \underline{N} ; n \in A} \cup {n \in \underline{N} ; -n \in A} \notin \mathcal{U}$$

ou bien

$$\{n \in \underline{\mathbb{N}} ; n \in A\} \cap \{n \in \underline{\mathbb{N}} ; -n \in A\} \in \mathcal{U}$$
.

Il est bien clair que a est une algèbre.

Montrons que toute mesure σ -additive est bornée sur α . Soit μ une mesure non bornée sur α . Alors la construction standard donne une suite (A_n) d'éléments disjoints de α tels que $\lim_{n\to\infty}\mu(A_n)=+\infty$. Pour $A\in \alpha$, on a

$$A = \bigcup_{n} A \cap (-n, n)$$
.

On peut donc supposer les A_n finis et même contenus dans N . Posons

$$B_1 = \bigcup_{p} A_{2p}$$
 et $B_2 = \bigcup_{p} A_{2p+1}$.

On a, par exemple, $B_1 \notin \mathcal{U}$, donc $B_1 \in \mathcal{C}$. Mais, alors $\mu(B_1) = \lim_k \sum_{p=1}^k A_{2p}$, ce qui est absurde.

EXEMPLE 2. - Il existe une algèbre a vérifiant (PI), et portant une mesure additive non bornée.

On prend, pour α , l'algèbre des ouverts fermés de $\beta \underline{N}$. Pour $A \subset \underline{N}$, désignons par \widetilde{A} l'ouvert fermé associé.

Si (\tilde{A}_n) est une suite croissante, et (\tilde{B}_n) une suite décroissante de \mathfrak{A} , et si $\tilde{A}_n \subset \tilde{B}_n$, pour tout n, on a $\tilde{A}_n \subset \tilde{B}_n$, pour tout n, et la suite (\tilde{A}_n) est croissante, la suite (\tilde{B}_n) décroissante. Donc si $\tilde{C} = \bigcup_n \tilde{A}_n$, on a $\tilde{A}_n \subset \tilde{C} \subset \tilde{B}_n$, pour tout n, ce qui montre que $\tilde{\mathfrak{A}}$ possède (PI).

Si, pour $\texttt{C} \in \mathfrak{A}$, on a $\texttt{C} = \bigcup_n \texttt{C}_n$, avec $\texttt{C}_n \in \mathfrak{A}$, par compacité, C est une réunion finie des \texttt{C}_n . Donc, toute mesure additive sur \mathfrak{A} est $\sigma\text{-additive}$.

L'ensemble des éléments de ℓ_∞ de la forme χ_A , pour $A\subset N$, engendre un sous-espace vectoriel de ℓ_∞ de dimension algébrique infinie. Il existe donc une forme linéaire h (non continue) sur ℓ_∞ , qui n'est pas bornée sur l'ensemble des χ_A . La mesure μ , définie sur $\mathfrak A$ par $\mu(\widetilde A)=h(\chi_A)$, est alors une mesure σ -additive non bornée sur $\mathfrak A$.

Il semble donc que, pour une algèbre α , la propriété que toutes les mesures σ -additives sur α soient bornées est de nature assez nouvelle. Il serait peut être intéressant de l'étudier en détail.

PROPOSITION 3. - Soit α une algèbre de parties d'un ensemble. Supposons la condition suivante vérifiée : "Pour toute suite (A_n) d'éléments disjoints de α , il existe des partitions $(A_n^p)_{1\leqslant p\leqslant n}$ des A_n en des éléments de α tels que, pour toute suite α d'entiers α pour α pour

Alors toute mesure o-additive sur a est bornée.

<u>Preuve.</u> - Soit m une mesure non bornée sur α . Il existe alors une suite disjointe (A_n) de α , avec $|m(A_n)|\geqslant n$ (on le voit à l'aide du procédé d'extraction classique). Soit alors $(A_n^p)_{p\leqslant n}$ les partitions des A_n fournies par la condition de l'énoncé. Alors, pour chaque n, existe p_n tel que $|m(A_n^p)|\geqslant 1$.

En particulier, si $B_{\ell} = A_{n_{\ell}}^{n_{\ell}}$, on a $|m(B_{\ell})| = 1$. Mais, puisque les B_{ℓ} sont disjoints et que leur réunion est dans α , m n'est pas σ -additive.

C. Q. F. D.

<u>Problème</u> 4. - La condition de la proposition 3 est-elle nécessaire pour que toute mesure σ -additive sur α soit bornée ?

BIBLIOGRAPHIE

[1] DIESTEL (J.). - Problems in vector measure, Séminaire Choquet : Initiation à l'Analyse, 17e année, 1977/78, n° 21.

(Texte reçu le 19 juin 1978)

Michel TALAGRAND Equipe d'Analyse, Tour 46 Université Pierre et Marie Curie 4 place Jussieu 75230 PARIS CEDEX 05