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Séminaire CHOQUET ' 2-01
(Initiation & 1'Analyse)
17e année, 1977/78, n® 2, 13 p. 10 novembre 1977

SOME CONSEQUENCES OF A KIND OF HAHN-BANACH'S THEOREM

by Richard BECKER

Abstract. — The aim of this work is to give some consequences of a theorem of
H, DINGES used by M. F. SAINTE-BEUVE.

Preliminaries

1. THEOREM., - Let X be an ordered vector space, and p an extended sub-linear

functional on X , such that p(x) € Ru(+ ») for each x € X , and p(x) <0 for

each x <0 , Let Y a linear subspace of X , and f a linear form on Y majo-

rized by p . There exists a linear form on Z = {x ; 1 X, , X, € ¥ with

2

x, £x < x2] which extends f and is majorized by p on 2 ([5], [11]).

What is needed concerning conicalmmeasures ca: be found in [3] (§ 30, 38, 40).
Notation not included in [3]. In this paper, C will be the class of weakly com-

plete convex cones, not necessarily proper.

2. Summary. — Part I is devoted to conical measures. We generalize specially
(proposition 12) the theorem of Cartier-Fell-Meyer ([10] p. 112) concerning dilata-
tions of measures on a metrizable convex compact set. Positive measures on a metri-
zable convex compact set can be considered as conical measures on a proper convex

closed cone of RN « Here, we will consider arbitrary conical measures on RN .

Part II (A) extends a result of STRASSEN ([87, p. 300-301), from which the theo-
rem of Cartier~Fell-leyer can be derived. We weaken, here, a condition of compact-
ness (proposition 21). Part II (B) extends some results about "theory of balayage"
([8], Pe 294, 297). This theory studies cones of continuous functions on a compact

set containing a strictly positive function. We weaken this condition.

Part I : The case of conical measures.,

I (4). Conical measures on an arbitrary weak space.

Recall the following proposition which enlightens the definition of the order < .

3. PROPOSITION. - Let E a complete weak space, and ' “E a convex cone of C .,
For each f e h(E), such that f is sub-linear, there exist 4., 4., eee, 4 €E
A A == wflay |r 17 %0 ’ % ’
such that we have on T, f = lub(.@1 y &

2,...,zn).

Proof. - We can suppose E of finite dimension.
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There exist U 5 eee , u_ € E' such that, for each x e E, f(x) is equal to

one of the up(x) . Hence, for each pair x , ye I' , there exist Py v an inte-
?

ger < p , such that

f(x) = up (x) , and f(y) > u (y) .
X, ¥ X,y
For each xe I' , let Ve = g%byer(up ) « The family (Vx)xEF 9 is finite, and

) ?
we have on T f = IUbYEF(vX) s as (—vighe S(E) s we cen conclude with the Lelp of

the elementary form of the theorem of HahneBanach becaunse dimension of E <« o

4. PROPOSITION. - If E is a complete weak space, and € M+(E) y then, for

each £ € E' with 4 # 0 , the two following properties are equivalent,

1° ¥ fen(E), we have u(f) = lim(u(f A ng¥)) when n —> .,

2° dm , o-additive and positive functional on the tribe on e = 4'1(1) gene-—
rated by h(E)I , such that u(f) = m(f‘ ) , for each f € n(E) .

If p satisfies to 1° and 2°, then each. \ € M+(E) sy With A < pu , satisfies

also to 1° gnd 2°,

Proof.1° and 2° are equivalent on account of ([37], 38.13). _
Proof that A satisfies to 1°. Note that h(E) = S'(E) - s™(E) . Let r € s%(m) ,
we have

SME - Al") < A(f -n8)) < ul((f -nt)t) —>0 when n —» ,

hence

h(f) Lim(A(f A & )) wvhen n —3 » ,

>+ PROPOSITION, — Suppose E is a weak space, and A, B E M(E) If A<y, then,

for each sequence A, , Ay, ee. N, of M (E) such that A = Zp A s

exists a sequence p; , M, 5 eee , W Of H "(E) such that u = Zn Wy » &nd

there

)\i<p’i fOI’ i=1’2,¢|n,no
Proof. - For each f € h(E) , let f such that :
10 f-gtb(l; 4£€E and 4 3f) if f is majorized by an element of E! .
(In fact, on account of [ 1] (chap. II, § 7, exercice 24), we have - te s(B) .)
2° Otherwise, f=+o on E.
For each v € N'(E) , let p,, such that :
10If £#w, pv(f) = gdb(v(g) 3 -ges(E), g=f) . We have Pv(f) €R.
20If =4 @, pv(f) =+ o,
For i =1, 2, 4eo , n, let P; =D, -

V.
1

On the space (h(E))n y let us consider the functional p , such that

iliga T P((fi)) = Z? pi(fi) .



p is sub-linear with values in R u (+®) , and
(£;€0, for i=1,2,..,n)= (p((g;)) <0) .
Let p the linear form on the diagonal of (h(E))" , such that

p(f, £, cee, 1)) = ()

g is majorized by p . As each element of (h(E))n is majorized by an element of
the diagonal, we can apply the version of the theorem of Hahn-Banach recalled in 1,
- . ~ Nyy . ~ . ~ .

p  has an”extens1on (TS (h(E) )+ vith p < p « We can write pu = (“i)lsiSh with
pli € h(E)-: ’ for i=1 ’ 2 ) eee Nn .

The W, are convenient.

6. PROPOSITION. - Suppose E is a complete weak space, and A , u N'(E) . The

two following properties are equivalent.

1° A <puo

2° There exists a conical measure 1 € M+(M+(E) x M+(E)) carried by the cone
B:—.{(ex,v); x€E and e <v}, such that r(m) = (A, p) .

Proof. - For simplification, we will write sometimes M instead of H(E) and
Mt instead of M+(E) .
19 == 29 : For each sequence hl ’ hz y see hn satisfying the hypothesis of
proposition 5, let us choose a sequence By oo Ho oy see s satisfying the conclu-
sion of 5.
We say that a sequence s' = ki ’
s=MA s Ay y oo, A if, and only if, there exists a partition of {1,2,...,m}

hé y see o h& is finer than a sequence

. — 1 —
into n subsets Py s Pys eee 5 Py such that Xi = Zjepi kj for i=1,2,.00yn .

Let Us the set consisting of all the (finite) sequences finer than s . The fa-
mily of sets US is a filter basis over U(k) where (A) means the sequence A .

Let ¢ be the application

s > ols) = n = I « 2(h,) b )
we have m_ € N'(M" x N') . The family of sets ¢(U,) is a filter basis over
M (et x *) . We have r(ﬂé) = Z? (Er(hi) , ui) .

Bach element of h(E)" is majorized by an element of S(E)Y , and for each
£ e 3(E)* , we have

28 = =
) (Er(hi))(f) 20 e(x(0)) < 27 A (£) = A(s)
Hence the filter basis ¢(Us) has at least a cluster point, let m . The element
T answers the question, since each Ty 1s carried by B, and we have
r(m = Lin(r(n)) = (A, w) .

2° =3 1° If me M (M" x u*) with r(n) = (A, ), and if 7 is carried by B,
then for each f € S(E) , we have w((- £, £)) 20 , since the element (- f , )
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of h(E) x n(E} is >0 on B . Hence we have A <p, .
7. Remark., - We can prove 6 with the method of [10] (p. 108) (and without the
theorem of § 1) by looking at the convex closure of the set
{(ex y v) 3 x€E and r(v) = x}
in wt.t « Then § 5 can be obtained for r? as in [10] (p. 112) and in the gene-

ral case by a projective limit argument.

8. Definition (of a pure pair and a pure measure). - Suppose A , p€ M'(E) . We

say the pair (A , p) is pure if, ans only if,
(ue M+(E) and W' <p, A<p' ) involves (' =u) .

Suppose A € M'(E) . We say that A is pure, when the two following equivalent

condition are fulfilled.

10 (er()\) , A) is a pure pair,

2° K, admits O as an extremal point.

A
Proof.,
10 == 2°3 Suppose 2° is false. Let Ay A, and A, A with r()\l) = - r(xz)#o.
If )\O=)\-()\1+)\2)/2 , we have O\<}\O\<)\, )\O;fl, and r()\o)=r(>\) , then
(Er()\) s A) is not a pure pair.
2° ==% 1%: Suppose pu <A with >0 and r(p,) =0 . Let u= Byt ol Foeee oW
be any decomposition of u where My >0 . We have W € K>\ , and %..<1.<n r(p,i)=0,
hence r(p,i) =0 for i=1,2, .. ,n.Then p=20.,

9. Example. ~ In the cartesian product R2 y let a, b, c, d be the consecu~

tive vertices of a square of center 0 . If

X=e+ab+ec+e

a at E(era) ?

)\2 = ec + €3 + E—(c+d) ’
we have r(hl) = r()\z) =0, and (A - }‘1) , (A= >‘2) are pure.

10. PROPOSITION. - Suppose E is a complete weak space, and A , y e M'(E) with

A < p o Then, the three following properties are equivalent,

1° The pair (A , p) is pure.

20 For each m e M (M* x ut) , representing (A , w) according to § 6 and car-

ried by the cone B , then the restriction ™ of m to the cone
A={00, v); v eV (B and r(v) = 0} is equal to zero,

3° Bach me M'(MY x MY) representing (A » B) , and carried by the cone B , is

carried by the cone Bp = {(ex yv) 3 xe B, r(v)=x, v is pure} .

Proof.
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1° == 2°: Suppose 2° is false. If m represents (A, p) with g # 0 (for the
definition of m, , see [3], 30.8), we have r(ﬁo) =(0, v) with v#0 and
I'(\)) =0 .

For each f € S(E) , we have (- f , f) >0 on B , Hence

w(£) = my((- £, £)) sn((- £, £)) = = M£) + plf)

Therefore A <y - v, and (A , 4) is not pure.

20 == 3°: We can write m = lim J € with (e_, v) € B where U is an
U (EX ’ \)) X

ultrafilter,

For each v e M'(E) , let us choose D, € MT(E) such that :

(a) p, is pure ,
() p,sv,
(e) k.p, =P, , forany k20.

. - 15 € o
We will prove that 1lm«u(z (gx , pv))

We have

ayw =0, lim“(zpv)) + (0, 1 ((v-p)) .

On account of the hypothesis, we have limu Av - pv) = 0 , hence
img, (2 = €
llmu( E(O,v—pv)) 0 . For each f € S(M x M) , Wwe have

fleg » p) =0, p,-v) (e, v) (0, v-p)+£le ,p) .

As we have llmu(Z. €0 , then m(f) = 1mu(Z £( e pv)) . Therefore m

=0
,\"‘Pv))
is carried by Bp .

30 = 1°: Suppose 1° is false. We have (A, ) = r(e(A o * &0 B)) with (A, a)
’ 1
pure, and (0 , B) € A with P # O . Therefore £(0, p) is not carried by Bp .
’

2 .
11. Example (. CHOQUET). - In R° suppose C1 and Cp are the circles (for
the classical distance) of center O with radius 1 and p>1. For each x € Cl’

€ Cp so that (xl , x2) is tangent to C, at x . Let dx be the

let x, , x 1

1 2
Haar measure on Cl « We have

J (e +e)dx=p"[ g_ dx (with pr > 1)
Cl X, X, Cl X

as conical meagsures.,

The pair (ex y &t E ) is pure for each x € C but the resultant of

X 1°?

1 % | [
JCJ_ e, e +c ) dx is the pair (JC e dx , p' Uy e dx) which is not pure
X X, % 1 1
since p' >1 .

I (B). Conical measures on R' or R,

12, PROPOSITION, - Suppose A , p€ M+(RN) with A <y, and the pair (A, w)

is pure. Then, there exist :
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1° g Kb of (RN\Q) , let X such that each half-line issued from O inter-

sects X into at most one point,

2° a Radon measure A on X,

3% a Borel application x 3 M defined on X where My is a Radon measure on
X such that r(px) =X .
And we have :

(a) A is a localization of A (Note that A is unique when X is given).

(b) p= '[x b an(x) .

Proof (with the notations of the proof of § 6)., - We had

For each n e N, let x, be the function n-th coordinate on RN « We have

ﬂs((lxp| , lxpl)) < X(lxpl) + u(|xp|) < ZH(IXP') .

Let 4 ©be the affine 1. s. ¢. function defined on Mt o« nt

o, 8) = 2 ((a+ B)]x,1)/2%" Wiz |) .

by

We have
#(e(ng)) = 2 m(lx |, 1= /2% wllx ) s T1/28 <1

m has a localization by a Radon measure m on a cap K of Mt x ot , with
K={(e,B); a,Beh” , and 4(c, B) <1} . Horeover m can be assumed to be
carried by the cone B .

Let ¥ be the 1. s. c. function defined on RN by ¥(x) = z(ex , gx) . For each
neN, let Kn={(sx,oz); (ex,oz)eK,and 1/(n+ 1) <¥(x) €£1/n} . Let
m ~be the restriction of m to Kn . We have m = E:mn on account of § 10 ,

since (A, p) is a pure pair. Let M be the conical measure on ut o« ut

loca~
lized by m e
Let m& be the Radon measure on (n + 1)K such that, for each continuous function

f on (n+ 1)K, we have
mr’l(f) = "[K ¥(x) f(ex/‘i'(x) , o/¥(x)) dmn( e s a) ,
then m! localizes m_ .
n n

Suppose p is the projection on the first factor of the product Mt o mt , then
p(mﬂ) is carried by K = {e,5 x€ B with ¥(x) =1} « R is a Borel set be-
cause Y is l. s. c., moreover K intersects each half-line issued from O in
at most one point.

Suppose X b—> m: is a disintegration of m& with respect to p ([2], Pe 58).
Then each mz has a resultant which is a conical measure v: on RN » and we have
u(v:) =x .

Now A= Zn.p(mé) can be seen as a Radon measure on a K& subset XX of K . We
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can write, for each ne€ N , p(m;l) =u, A where u is a Borel function on X)\ .
We have Zn w = 1, A-a.e.
Recall that A represents A , and that Bo= Zn .[ \)2 d(p(mr‘l)) (equality of coni-

J n _ n .
cal measures), then we have o= (Zn u vx) dA . Therefore He = Zn u vy exists

as a conical measure A-a.e., and we have I'(p.x) =X .

On account of [3] (38.8), there exists a compact subset H of R with
H= ﬂ‘:(- kn ’ kn) where kn >0 , such that p is localizable on H by a Radon
measure.
For simplification we shall use the same notation for p , and its unique ([7],
prop. 2.13) localization on the set E(H) = {x ; xe H, Yk >1, kx¢ H} .
As p_ is a Daniell integr:l on h(RN) ([3] 38.13), and since

B(H) = {x; 1b(|x |/ ) =1},

then ([9] prop. II.7.1) W, can be extended to a o-additive measure, called also

., for simplification, on the tribve & of E(H) generated by the closed half-

p'
spaces containing O . Recall we know that, for each f € h(RN) , the map

X b—3 p,x(f) is Borel-measurable. Then, for each e € G , we have u(e)= J p.x(e) dA.
Let XH be a Kc subset of E(H) which bears p o In order to show that e

lives on Xp‘ for A-a.e.x , it is sufficient to prove the following lemme.

13. LEMMA. - Each compact subset A 9_{ E(H) is a member of © .,

N

Proof. - Let us suppose the sequence (wn) is a basis of open subsets of R .

Let .£ be the subset of N guch that n € geNif, and only if, there exists

ne h(E) , with h=0 on 4 yand h >0 on « . For each ne€ T, we choose

h € n*(E) , with By=0 on A, and b >0 on w .

Let us show that, for each x ¢ B A s we have hn(x) >0 for at least one ne % .
For each y € A, there exists h_€ E' with h (x) >0, and n (y) <0 . By
compacity, there exists h_e n*(B) , with n (x) >0, and h =yo on A . As the
set {z ; hx(Z) >0} is open, then there exists ne€ N such that xe w ~and

hx >0 on W . Therefore, we have n€ ¥ and hn(x) >0 .

Now, if we let h = 1ubm2(hn) , then we have h =0 on A, and h(z) >0 for
each z¢ RY A « Hence A€ G ,

Now, it is easy to complete the proof of § 12 by a mixture of Xh and XM R

14, Remark (M. F. SAINTE BEUVE [11], theorem 3). - In the case of R% , We can
take the unit sphere of R™ (for the usual distance) for X .

15. Example (Answer to a question of G. CHOQUET). - Let M be the set of Radon
measures on (0O ’ 1) y and JTLI the subset of probability measures.
Let E the vector subspace of M generated by the Dirac probabilities, E is
equiped with the weak¥#—topology.

Suppose | is the maximal measure on m'{ which represents the element dx e JTL'; .
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The measure p and dx induce, in a canonical way, elements of M (E) , § and

. + . +
€3¢ » Since En ml is dense in Jﬁl .

Let ¢ Dbe the canonical injection from (o , 1) into W , and X = cp([O ’ 1])
We have €ix < o (in fact, €ix = er(ﬁ.') in the weak completion of E ), however
p has a localization on the compact subset X of E , while €ax does not have

such a localization.

Part II : Extension of a result of STRASIEN and "theo of balaya

IT (4). Extension of a result of STRASSEN.

16. Notations and definitions. - Suppose X and Y are two compacts(HAUSDORFF)

spaces and X > Mx is a mapping of X in the set of closed convex subsets of
T(Y) (positive Radon measures on Y )

For each f € C(Y) (continuous real functions on Y ), we let

Vxe X, f‘(x) = lub\EMx(v(f)) ,

we have f(x) € B, and ($(x) = - =) &= (M =¢) .
The map f t—> # has been previously con51dered by P.-A. MEYER ([8], p. 301).
Suppose A e M (X) . For each function ¢ on X with falues in R , we let

k*(cp) = geb(A(u) 5 w29, u l.s8.c. on X, with values in Ry (+ ®)).

We have M*(¢p) e R .
If Ael(X) and pe 7 (Y) , we write A < if, and only if, for each
fe C(Y), we have u(f) < A*(2) . We 1let p, (£) = A*() .

17, PROPOSITION. - Suppose A e M(X) and pe M'(Y) with A <y . For each sem
quence )\1 ) ses }‘n s such that A = )‘1 + ees + }‘n with }‘i 2 0 , there exists a

Sequence g oo eee y By with by 20 , such that u = My + oeee o+ oy o and )\i < by
fOI‘ i=1’2,oo.,no

Proof. - Let 1 be the constant function equal to 1 on Y .
We have A\ (\) 2 u(- 1) > - = . Hence, for each f € C(Y) , we have

xi(%)eRU(+m) for i=1,2, 4e. , n,

then we can use the same proof than in proposition 5.

18. PROPOSITION, - We let H= {(e_, v) ; x€ X, ve M L} e If Ae W(x)

and pe€ wt (Y) , the two following properties are equlvalent

1° (A, pe conv(R" H) in MY(X).M(Y) equiped with the weak——topology.

2° Tor each f € C(Y) , we have

w(f) < etb(Mg) ; g ec(x) and ? < g)
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Proof. - We apply the theorem of Hahn-Banach. _
Suppose ge€ C(X) and f € C(Y) . Then (g, - f£f) is in the polar of H if, and
only if, £ £ 8 o

10 == 20: If f e C(Y) , we have A(g) > p(f) for each ge C(X) with £< g,
hence 2° is fulfilled.

20 =3 10: For each g € C(X) and each f e ¢(Y) with f < g, we have, on
account of 2°, u(f) < A(g) . Hence 1° is fulfilled on account of the bipolar

theoren.

19, Definition of the relation <<, - If A€ mf(x) , proposition 18 invites us
to let, for each f e ¢(Y)

q,(£) = gb(M(g) 5 ge c(X) and g21).

Note we have p, < q, . Noreover, if H is a closed subset of mh(x) = ;M(y)
then we have ph(' 1(y)) = qk(' 1(y)) bvecause - 1(y) is negative, and u. s. c.

If pe(Y), we write A << p if, and only if, u <gq, . We have
(}\<p..)—..=;~.(?\<<p,).

Of course, we can prove the analogous of proposition 17 for the relation <<,
Note, in the case, study by P.-A. MEYER ([8] p. 302) (i. e. H is compact), f is
U. Se C. 50 that £ = gtb(g ; ge X)), g >=%) . Hence P, =4,

20. PROPOSITION, - Suppose K is the closure, in M (X) x M(Y) , equiped with
the weak-*-topology, of the set

K={(e/(1+v (1), v/Q+v(1)); xex, v en)

If )€ M(X) and w € M(Y) , the two following properties are equivalent :

10 )t<-<p,,

20 There exists a positive Radon measure m on the compact set K such that
r(ﬂ)‘:(}\’ U') .

19 ==3 2°: Each element u of conv(R+ H) can be written u = Z?EX k;(;x ’ v:)
where the k; are unique, positive, and equal to O except for a finite number of
x € X . We have v: € Mx .

On account of § 18, there exists an ultrafilter U on conv(R+ H) such that
Lmgu) = (A, p) »

u 1is the resultant of the following conical measure m, on ﬂ?(x) x mﬁ(Y) with

o= 2 éu € where
u xeX “x ((bY,cl))

u u u u u

a = (1+ vi(l))kx y b= e /(14 ux(l))
and

c; = g:/(l + g:(l)) .
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m, can be also seen as a positive Radon measure on X .

We have llm,u(ﬂu-(-l)) = AM1) + p(1) . Hence llmu(nu) exists as a positive Radon
measure 1 on K and r(m) =G, u) .

2° =3 1°: Each discrete positive Radon measure on K can be written

m m m m m
m =ZpeK a e((bnf),c%)) where (bp , cp) €K, a, 20 and a_ =0,

except for a finite number of p e K .

There exists an ultrafilter U on %the discrete positive measures on K such that
limu(m) =T .

If ge C(X) and f € (‘B(Y) with g > $ , we have

Mg) = Lim (20 & 0(1) e(o]/00(1)))
and
w(f) = 1imu§z§ex a? cg(f) .

As g >f, we have b;l(l) g(br;/bz(l)) >,c$(f) , hence A(g) > u(f) .

21, PROPOSITION (Extension of a result of STRASSEN [8], p. 302). - Suppose more-

over that X and Y are metrizable, and that H is a closed subset of

M(X) x W(Y) equiped with the weak—*~topology. If reMW(X) and ue W(Y)
with A <<, then, there exists a Borel mapping x t+—> Vi defined on X such
that v, € Mx A-a.e., and ;.[ Vg dh(x) y and 0 << p - j Vg dh(x) .

Proof. - Note that {x ; M_ = g} is a Gg A-null subset of X since
M- 1(y)) > ul- 1(y)) > - » . We shall use the notations of the proof of §-20,
Suppose v is the projection of W (X) x ' (Y) on M (X) . We have v(m) = A as

conical measures on Ji (X) . Let A = {0,8); Be JI('{(Y)} » and 1, the part
of 1w carried by AO .

Let ' =1 - M *

Suppose ! = ni + eee + M + ... is a decomposition of ®' such that, for each

n
n, m! lives on A = {(¢, B) ;3 aednt(x) , Bel(Y) and o1) > 1/n} .
Let m the Radon measure on (1 , n)X such that, for each f e (1, n)X) , we

have

m(f) = | o1) £(o/ol1) , B/oA1)) am(a, B) .

111‘1 and nr'i induce the same conical measure on JE"’(X) x .'II’L+(Y) « Then v(nﬁ) is
carried by {ex sy X € X} ; the image of A\ by the map x & of X into
W(x) is z v(m) . It e 32 is a disintegration ([27, p. 58) of i th
respect to v , then, for each n , we have v(nl'{)—a.e., that \): lives on the set

{(e, »v) 5 ve M. end v(1) <0}, let vz €M_ such that

n n
r(sew®rrx) = (Ex ’ Vx) .

For each x € X s We identify =x and ex « Let Ho € m"(Y) be such that
(o, “‘0) = r(no) . We have A\ = Zn V(n;’l) and p - My = Zn vil dv(ﬁﬁ) .
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If we let v_ =2 2 (av(mr)/dn) , then, we have v_e M_, A-a.e. and
x ‘n'x n X - x

b=y = j Vy d‘)\(x) . As s is carried by AO » Wwe have 0 << Ho »

22. Remark. - Stri€tly speaking, in [8] (chap. 11), Strassen theorem is T51 which
admits T52 as a consequence, but T51 can be also derived from T52, We sketch a
proof, with the notations of [87]. Suppose B} is the unit ball of E' equiped
with the weak-x-topology. For each we€ Q , let P“D be the set

b ve® , ysp}.

We suppose P Ci‘E‘l e Let N = {v; ve ﬂq(Ei) , r(v) e Pw} .

Now, suppose (xn) is a sequence of E everywhere nomm-dense in the unit ball E
of Be Let ¢ be the map Oy (- 1, 1)N such that (c;)(w))n = pw(xn) . We let
X=oY) and A= @(X) , which is a regular Borel measure on X ([9] prop. IL7.2).
For each t = (tn) in X , because of [8] (p. 300 footnote), there exists a sub-

1

linear form p; on E such that pt(xn) = tﬁ s for each n , and pt(El) € (-l, 1),
Then the definition of Pt and Mt (given for t = Py ) are meaningfull, and the
set {(t,v); tex, ve Mt} is a compact subset of X x ﬂq(Ei) .

Now it is sufficient to apply T52 to X and measure A y with Y = Ei using the
map X —s OD(JKI(Y)) defined by t = M, , and teking for u an extension of x!
to C(Y) such that, for each f e C(Y) , w(f) < a(?) , then T51 follows since in

X, ¢(Q) is of A-outer measure equal to A(1) .

11 (B). Theory of balayage.

23. Notations. - Suppose X is a compact (HAUSDORFF) space, I' a convex subcone
of C(X) which is an inf-lattice (i. e. if £, ge ', then gb(f , g) e D),
and I° is the polar of T in x;(X) .

Using the previous notations, we take Y = X ’

Moo= (e —I‘o)nm+(X)={u; uem+(X) and p,,l-.SE 1.
Note that we do not suppose as in [8] (p. 294-297) that I contains a strictly po-
sitive function. '

24, Definition (_g_f_‘_ fl“ and ry )e = For each f e C(X) y we let
fr=gtb(g; ge Tl and g >1)
and for each A e N (X) , we let r)\(f) = )\(fr) » r, 1is a sublinear functional on

C(X) , with values in R U (+ =) , and we have Py $qy STy &

25. PROPOSITION (Extension of a balayage formula of lCKOBODZKT [8] chap. 11 T45).
For each f e C(X) with f <0 , we have fF =f .
Moreover the following properties are equivalent :

1o There is no element > 0 in T,
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RN

20 = + @ everywhere on X ,

[t

30

is equal to infinity in at least one point of X ,

4° 1 is unbounded on X .

Proof, - Let us prove that f = f for each f <0 of C(X) .
It A e mf(x) , because of the theorem of Hahn-Banach recalled in § 1, for each
_ - . . _ < .
ke )-r(-1), 7, (£)) , there exists p_e€ M (x) with w(f) =k and p <1,
It suffices now to take A = & and k = fr(x) =T, (£) . Now 1° == 2° can be

proved in the same way, and we see that 4° = 1°. x

26, PROPOSITION,

(a) Suppogse f is an u. s. ¢, function <0 on X . We have fF =T (the defi-

nition of ¥ is as in § 16 and that of f. as in § 24).

(b) if (fi) is a family of u. s. c. functions <0 on X , directed downward,

having a limit f , we have (fi) — fF .

Proof.

(a) can be proved as in [7] (prop. 5.6) because it is enough to work, for each

x € X, on a compact subset of Mx .

(b) can be proved as in [7] (prop. 5.6).
Proposition 25 enables us to give a balayage proof of the following result of
CHOQUET-DENY [4].

27. PROPOSITION, - Suppose I is a closed convex subcone of € (X) whick is an

inf-lattice and contains -~ 1 . If we let

t = {f; fec(X) with n(r) < f(x) ,
Vxe X, Vmnell (X) with mp < ex“,] ,

then we have I = f o

Proof. - f* is a closed convex subcone of C (X) which is an inf-lattice and
I <{ . For each fe€ C(X) such that f <O , we have, because of 25,
fr(x) = 1Ub\EDE(V(f)) , and we see that ff(x) = luvaMi(v(f)) , hence fp = fp .
Therefore, by %ini lemfa, we have f = fF if, and only if, fe I and f = ff
if, and only if, fe ', hence I'n {f <0} = I n {f <0} . Then T' =1, since
I and [' are the closure of I'n {f <0} and I'n {f <0} .

28. Remark. - Suppose I' is separating., Then we can apply to I' the theorem 48
of [8] (chap. 11) about the Silov compacts. It is enough to apply [8] (chap. 11,
th. 48) to the cone 1“1={f; f=g+a with g€ I' and a >0} which is an

inf-lattice,
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