SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

MICHEL TALAGRAND

L'image réciproque d'un ultrafiltre sur N par une application continue surjective n'est pas borélienne

Séminaire Choquet. Initiation à l'analyse, tome 15 (1975-1976), exp. nº C8, p. C1-C2 http://www.numdam.org/item?id=SC_1975-1976_15_A18_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Février 1976

L'IMAGE RÉCIPROQUE D'UN ULTRAFILTRE SUR N PAR UNE APPLICATION CONTINUE SURJECTIVE N'EST PAS BORÉLIENNE

par Michel TALAGRAND

THEOREME. - Soient K et L deux compacts, et ϕ une surjection continue de K sur L. Soit A une partie de L. Alors si $\phi^{-1}(A)$ possède la propriété de Baire forte, il en est de même de A.

<u>Démonstration</u>. - Supposons que $\phi^{-1}(A)$ possède la propriété de Baire forte. Soit L' un fermé de L . Prouvons que A $_{\Omega}$ L' possède la propriété de Baire relativement à L' . La famille des compacts M de K tels que $\phi(M) = L'$ est inductive pour l'ordre inverse de l'inclusion, donc possède un élément minimal K' . Par hypothèse, $\phi^{-1}(A)$ $_{\Omega}$ K' possède la propriété de Baire relativement à K' . Il existe donc un fermé F de K' et un ensemble maigre G de K' tels que

$$(\varphi^{-1}(A) \cap K^{\bullet}) \triangle F = G .$$

On en déduit

$$\varphi(\varphi^{-1}(A) \cap K^{\bullet}) \Delta \varphi(F) \subseteq \varphi(G)$$

Puisque $\varphi(K^{\dagger}) = L^{\dagger}$, on a

$$\varphi(\varphi^{-1}(A), \cap K^{\bullet}) = A \cap L^{\bullet},$$

d!où

(A
$$\cap$$
 L') $\land \varphi(F) = \varphi(G)$.

Puisque $\phi(F)$ est un fermé de L¹, il suffit pour conclure de prouver que $\phi(G)$ est maigre dans L¹, ce qui résulte du lemme suivant :

LEMME. - Soient K et L deux compacts, et ϕ une surjection continue de K sur L . Supposons que, pour tout fermé M de K, on ait

$$(M \neq K) \Rightarrow (\varphi(M) \neq L) .$$

Alors, pour tout fermé F de K, on a

$$\hat{F} = \emptyset$$
 $\Rightarrow (\widehat{\varphi}(\widehat{F}) = \emptyset)$.

$$\phi(K \ \backslash \ V)_{i} \ \supseteq \ \left[\phi(K \ \backslash \ V)_{i} \ \cup \ \phi(V)_{i}\right] \ = \ \phi(K)_{i} \ = \ L \ ,$$

ce qui contredit l'hypothèse (1), et termine tout.

COROLLAIRE. — Si L = {0, 1} $\stackrel{N'}{\sim}$ et A est un ultrafiltre non trivial sur $\stackrel{N}{\sim}$, $\phi^{-1}(A)$; n'est pas borélien.

On sait en effet que la partie A de L n'a pas la propriété de Baire.

Ce résultat répond à une question posée par D. H. FREMLIN au Séminaire, lors de son séjour à Paris.

(Texte reçu le 29 avril 1976)

Michel TALAGRAND Equipe d'Analyse, Tour 46 Université P. et M. Curie 4 place Jussieu 75230 PARIS CEDEX 05