SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

ELIAS SAAB

Familles absolument sommables et propriété de Radon-Nikodym

Séminaire Choquet. Initiation à l'analyse, tome 14 (1974-1975), exp. nº C7, p. C1-C4 http://www.numdam.org/item?id=SC_1974-1975_14_A22_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1974-1975, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Mars 1975

FAMILLES ABSOLUMENT SOMMABLES ET PROPRIÉTÉ DE RADON-NIKODYM

par Elias SAAB (*)

RÉSUMÉ. - Dans ce travail nous démontrons que l'espace $A(I,G)=\ell_I^1\{G\}$ des familles absolument sommables d'éléments d'un espace de Fréchet G possedant la propriété de Radon-Nikodym possède cette propriété.

Comme conséquences, nous obtenons une réponse partielle affirmative à une question posée par J. DIESTEL [1], et nous démontrons le théorème suivant :

Pour un espace de Banach F et un espace compact K, les propriétés suivantes sont équivalentes : K est clairsemé, et F^{\bullet} possède la propriété de Radon-Nikodym, $(C(K,F))^{\bullet}$ possède la propriété de Radon-Nikodym.

Soient G un espace localement convexe séparé (e. l. c. s.), et I un ensemble. Désignons par A(I,G) l'ensemble des familles $(x_i)_{i\in I}$ absolument sommables d'éléments de G [4]. Si $(p_{\alpha})_{\alpha\in A}$ est la famille de semi-normes définissant la topologie de G, nous définissons sur A(I,G) la famille de semi-normes $(q_{\alpha})_{\alpha\in A}$ de la façon suivante :

$$q_{\alpha}((x_i)_{i \in I}) = \sum_{i \in I} p_{\alpha}(x_i)$$
.

Cette famille de semi-normes définit sur A(I,G) une topologie d'e.l.c.s.

Si G est complet, il en sera de même de A(I, G) [4].

Si E est un autre e. l. c. s. et si $(s_{\beta})_{\beta \in L}$ est la famille de semi-normes définissant sa topologie, nous désignerons par $E \otimes_{\pi} G$ le produit tensoriel de E et de G muni de la π -topologie définie par la famille de semi-normes

$$(s_{\beta} \otimes p_{\alpha})_{(\beta,\alpha) \in LxA} : s_{\beta} \otimes p_{\alpha}(x) = \inf \sum_{i=1}^{n} s_{\beta}(y_{i}) p_{\alpha}(z_{i})$$
,

où l'inf est pris sur toutes les représentations de x sous la forme

$$x = \sum_{i=1}^{n} y_i \otimes z_i.$$

Dans toute la suite, E $\stackrel{\bullet}{\otimes}_{\Pi}$ G désignera le complété de E \otimes_{Π} G .

PROPOSITION 1 [2]. - Pour tout e. 1. c. s. complet G , A(I , G) est isomorphe $\underline{\grave{a}}$ $\ell^1(I) \, \hat{\otimes}_{\pi}$ G .

Toutes les notions concernant la propriété de Radon-Nikodym seront supposées connues ; le lecteur pourra consulter [5] et [6].

LEMME 2. - Soit G un espace de Fréchet possédant la propriété de Radon-Nikodym; alors A(N, G) possède la propriété de Radon-Nikodym.

^(*) Attaché de recherche au C. N. R. S. libanais.

<u>Démonstration</u>. - Soient (T, Σ, P) un espace mesuré de mesure finie, et m une mesure sur Σ à valeurs dans A(N, G) absolument continue par rapport à P et de variation finie.

L'ensemble A(N,G) est un sous-ensemble de G^N , et la topologie produit de G^N induit sur A(N,G) une topologie moins fine que sa topologie initiale.

Pour tout n dans N , désignons par pr_n la restriction de la n-ième projection à A(N , G) , et soit m_n la mesure définie par m_n = pr_n \circ m .

Si $(p_k)_{k\in\mathbb{N}}$ et $(q_k)_{k\in\mathbb{N}}$ sont les semi-normes définissant les topologies de G et de A(N , G) respectivement, nous aurons, pour tout $k\in\mathbb{N}$,

$$|\mathbf{m}|_{q_k}(\mathbf{T}) = \sum_{\mathbf{n} \in \mathbb{N}} |\mathbf{m}_{\mathbf{n}}|_{p_k}(\mathbf{T}) < + \infty .$$

Donc m est une mesure à valeurs dans G, absolument continue par rapport à P, et de variation finie. Il existe donc une application P-intégrable f de T dans G, telle que

$$m_n(X) = \int_X f_n dP$$
 pour tout X dans Σ ,

et pour tout k dans N,

$$|\mathbf{m}_n|_{\mathbf{p}_k}(\mathbf{T}) = \hat{\mathbf{J}}_{\mathbf{T}} \mathbf{p}_k(\mathbf{f}_n) d\mathbf{P}$$
 .

Soit f l'application de T dans G qui, à tout t dans T , associe l'élément $\left(f_n(t)\right)_{n\in\mathbb{N}}$.

La relation (a) implique que, pour tout k dans N,

(b)
$$|\mathbf{m}|_{q_k}(\mathbf{T}) = \sum_{\mathbf{n} \in \mathbb{N}} |\mathbf{m}_{\mathbf{n}}|_{p_k}(\mathbf{T}) = \sum_{\mathbf{n} \in \mathbb{N}} \int_{\mathbf{T}} p_k(\mathbf{f}_{\mathbf{n}}) dP < + \infty .$$

Ceci entraîne que $\sum_{n \in \mathbb{N}} p_k(f_n(t))$ est finie P-presque partout.

Soit

$$X_k = \{t \in T \text{ tel que } \sum_{n \in N} p_k(f_n(t)) = + \infty\}$$
;

nous avons $P(X_k) = 0$. Si Z est égale à la réunion des X_k nous avons P(Z)=0 . Soit g l'application définie par

g(t)=f(t) si t n'appartient pas à Z , et g(t)=0 si t appartient à Z . L'application g prend ses valeurs dans A(N , G) .

Soit t un élément de $T \setminus Z$, et soit $h_n(t) = (f_1(t), \dots, f_n(t), 0, 0, \dots)$ l'application h_n est P-mesurable, et pour tout k dans N,

$$\lim_{n} \varsigma_{k}(g(t)) - h_{n}(t)) = \lim_{n} \sum_{i \ge n+1} p_{k}(f_{i}(t)) = 0.$$

Donc g est P-mesurable de T dans A(N,G); de plus, l'application, qui à t associe le nombre réel $q_k(g(t))$, est P-intégrable à cause de (b), donc g est une application intégrable de T dans A(N,G).

Soit X un élément de Σ ; nous avons

 $m(X) = (m_n(X))_{n \in \mathbb{N}} = (\int_X f_n dP)_{n \in \mathbb{N}} = (\int_{X \setminus Z} f_n dP)_{n \in \mathbb{N}} = \int_{X \setminus Z} g dP = \int_X g dP .$ Donc $A(\mathbb{N}, \mathbb{G})$ possède la propriété de Radon-Nikodym.

Si I est un ensemble quelconque, nous avons le même résultat :

THEORÈME 3. - Si G est un espace de Fréchet qui possède la propriété de Radon-Nikodym, alors A(I, G) possède la propriété de Radon-Nikodym.

<u>Démonstration</u>. - Il suffit de remarquer que toute mesure à valeurs dans A(I,G), et de variation finie, a son image dans A(J,G) avec J dénombrable.

COROLLAIRE 4. - Si G est un espace de Fréchet qui possède la propriété de Radon-Nikodym ; $\ell^1(I) \stackrel{\sim}{\approx}_{\pi}$ G possède la propriété de Radon-Nikodym.

<u>Démonstration</u>. - C'est immédiat à partir de la proposition 1 et du théorème 3.

Ce corollaire donne une réponse partielle affirmative à une question posée par

J. DIESTEL dans [1], à savoir :

Si E et F sont deux espaces de Banach qui possèdent la propriété de Radon-Nikodym, est-ce que E $\stackrel{\sim}{\otimes}_{\Pi}$ F possède cette propriété ?

Dans la suite F désignera un espace de Banach. Si K est un espace compact, C(K,F) sera l'espace des fonctions continues de K dans F muni de la norme uniforme $\|f\| = \sup_{k \in K} \|f(k)\|$; cette norme fait de C(K,F) un espace de Banach.

Rappelons (voir [2]) que si F' possède la propriété de Radon-Nikodym, alors le dual (C(K, F))' de C(K, F) est isométrique à M(K) $\tilde{\otimes}_{\Pi}$ F', où M(K) est l'ensemble des mesures de Radon sur K.

DÉFINITION 5. - Un espace topologique est dit clairsemé s'il ne contient aucun parfait non vide.

La proposition suivante découlte de [3] et [7]:

PROPOSITION 6. - Pour tout espace compact K, les propriétés suivantes sont équivalentes :

- (i) K est clairsemé.
- (ii) M(K) est isomorphe à un espace $l^1(I)$. .
- (iii) M(K) possède la propriété de Radon-Nikodym.

Le théorème 3 permet d'étendre cette proposition de la façon suivante :

PROPOSITION 7. - Si F' possède la propriété de Radon-Nikodym, alors, pour tout espace compact, les propriétés suivantes sont équivalentes:

- (i) K est clairsemé.
- (ii) $(C(K, F))^{1}$ est isomorphe à l'espace $A(I, F^{1})$ pour un certain I.

(iii) (C(K , F)) possède la propriété de Radon-Nikodym.

<u>Démonstration</u>. - (i) \Longrightarrow (ii) : En effet, (C(K , F))' est isomorphe à $M(K) \stackrel{\sim}{\otimes}_{\pi} F' ,$

et puisque K est clairsemé, alors M(K) est isomorphe à un espace $\ell^1(I)$, donc $(C(K , F))^*$ est isomorphe à $\ell^1(I) \overset{\sim}{\otimes}_{\Pi} F^*$ qui est lui-même isomorphe à A(I , F') d'après la proposition 1.

- (ii) => (iii) d'après le théorème 3.
- (iii) \Longrightarrow (i): M(K), qui est isométrique à un sous-espace de M(K) \lessapprox_{π} F¹, possède la propriété de Radon-Nikodym, donc K est clairsemé d'après la proposition 6.
- THEOREME 8. Soient F un espace de Banach, et K un espace compact, alors les deux propriétés suivantes sont équivalentes :
 - (i) K est clairsemé, et F' possède la propriété de Radon-Nikodym.
 - (ii) (C(K , F)) possède la propriété de Radon-Nikodym.

Démonstration. - (i) => (ii) d'après la proposition 7.

(ii) \Longrightarrow (i): Puisque M(K) possède la propriété de l'approximation métrique, alors l'application linéaire canonique de M(K) $\widetilde{\otimes}_{\Pi}$ F' dans (C(K , F))! est une isométrie [2], donc M(K) et F' possèdent la propriété de Radon-Nikodym, comme étant isométriques à des sous-espaces de M(K) $\widetilde{\otimes}_{\Pi}$ F', et par suite K est clair-semé d'après la proposition 6.

BIBLIOGRAPHIE

- [1] DIESTEL (J.). Notes on the Radon-Nikodym property, Kent State University, 1972.
- [2] GROTHENDIECK (A.). Produits tensoriels topologiques et espaces nucléaires. Providence, American mathematical Society, 1955 (Memoirs of the American mathematical Society, 16).
- [3] PELCZYNSKI (A.) and SEMADENI (Z.). Spaces of continuous functions, III, Stud. Math., Warszawa, t. 18, 1959, p. 211-221.
- [4] PIETSCH (A.). Nuclear locally convex spaces. Berlin, Heidelberg, New York, Springer-Verlag, 1972 (Ergebnisse der Mathematik, 66).
- [5] SAAB (E.). Points extrémaux et propriété de Radon-Nikodym dans les espaces de Fréchet dentables, Séminaire Choquet, 13e année, 1973/74, nº 19, 14 p.
- [6] SAAB (E.). Dentabilité, points extrémaux et propriété de Radon-Nikodym, C. R. Acad. Sc. Paris, t. 280, 1975, Série A, p. 575-577.
- [7] STEGALL (C.). The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. math. Soc., t. 206, 1975, p. 212-223.

(Texte reçu le 27 mai 1975)