SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

MARYVONNE DAGUENET

Propriété de Baire de βN muni d'une nouvelle topologie et application à la construction d'ultrafiltres

Séminaire Choquet. Initiation à l'analyse, tome 14 (1974-1975), exp. nº 14, p. 1-3 http://www.numdam.org/item?id=SC_1974-1975_14_A10_0

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1974-1975, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

27 février 1975

PROPRIÉTÉ DE BAIRE DE βN MUNI D'UNE NOUVELLE TOPOLOGIE ET APPLICATION À LA CONSTRUCTION D'ULTRAFILTRES

par Maryvonne DAGUENET

Résumé

Notations. - N désigne l'ensemble des entiers ; $\mathcal{P}(N)$ (resp. $\mathcal{P}_{\mathbf{f}}(N)$), resp. $\mathcal{P}_{\infty}(N)$) désigne l'ensemble des parties (resp. finies, resp. infinies) de N ; $\mathcal{P}(N)$ est identifié à $\{0,1\}^N$ muni de la topologie produit.

 βN désigne l'ensemble des ultrafiltres sur N ; si h : N -> N , alors h de prolonge de βN à βN .

Soient h: $N \longrightarrow N$, et $A \subseteq N$; h A désigne la restriction de h à A.

Soit $h: N \longrightarrow N$; h est dite <u>finijective</u> si, pour tout $n \in N$, l'ensemble $h^{-1}(n)$ est fini.

Définitions. - Soit & un ultrafiltre libre sur N.

- 0 est δ -stable si, \forall h: N--> N, \exists A \in 9 tel que h A est constante ou finijective.
- Q est <u>rare</u> si, \forall h: N \longrightarrow N finijective, \exists $A \in Q$ tel que h |A| est injective.
 - @ est absolu si @ est 6-stable et rare.
- 0 est <u>rapide</u> si, $\forall~X\in P_{\infty}(N)$, il existe une dilatation de N, θ , telle que $\theta(X)\in 0$, une dilatation étant une application θ : N —> N telle que, pour tout n, $\theta(n)\geqslant n$.
- a la propriété C si, \forall f, g: N \longrightarrow N, soit $\{n ; f(n) = g(n)\} \in \mathcal{O}$, soit $f(\mathcal{O}) \neq g(\mathcal{O})$.

Topologie habituelle sur βN . - Les ouverts élémentaires sont les

$$\tilde{A} = \{ 0 \in \beta N ; A \in 0 \}$$

pour tout $A \subseteq N$.

Attention: Bien distinguer le filtre $\mathfrak F$ (qui en tant que partie de $\mathfrak P(N)$ peut être analytique, ou borélien, ou ...) du fermé $\mathfrak F$ de βN . Noter que si $\mathfrak F\subset \mathfrak F$, alors $\mathfrak F\subset \mathfrak F$.

Topologie nouvelle sur βN . - Soit Ω une famille de fermés (habituels) de βN comprenant tous les fermés \check{A} pour $A\subseteq N$ d'une part, et stable par intersection finie et intersection dénombrable décroissante d'autre part. Prenons comme ouverts élémentaires de la nouvelle topologie sur βN tous les fermés appartenant à Ω . Pour cette topologie, nous avons le résultat suivant.

THEORÈME. - L'intersection de & ouverts partout denses est partout dense.

Exemples.

 $\Omega_1 = \{ \check{\mathfrak{T}} : \mathfrak{T} \quad \text{est un filtre analytique} \}$,

 $\Omega_{2} = \{ \tilde{\mathfrak{F}} ; \mathfrak{F} \text{ est un filtre } K_{0} \}$

 $\Omega_0 = \{ \bigcap_n \tilde{A}_n \}$ (BLASS).

Notations. - Un ultrafiltre Q est dit image d'un ultrafiltre E s'il existe h: $N \longrightarrow N$ tel que Q = h(E).

Si h: N \longrightarrow N est telle que, pour tout $n \in \mathbb{N}$, $h^{-1}(n)$ est infini,

 $\{N \stackrel{\centerdot}{\cdot} X ; h(X) \text{ est fini ou } h | X \text{ est finijective} \}$

engendre un filtre $K_{\sigma \delta \sigma}$, noté \mathfrak{N}_h .

Si g: N \longrightarrow N est telle que la cardinalité de $g^{-1}(n)$ tend vers l'infini,

 $\{N - X ; g | X \text{ est injective}\}$

engendre un filtre K, noté \mathbb{R} .

Si A \subset N est de densité nulle à l'infini, ({N $\stackrel{\centerdot}{\cdot}$ $\theta(A)$ }) pour toutes les dilatations θ de N dans N, engendre un filtre K noté R_A .

A une partie R de N^2 correspond un graphe GR dont les sommets sont les entiers, et dont les arêtes correspondent aux couples $(a, b) \in R$. Quel que soit

$$\rho : \mathbb{N} \longrightarrow \mathbb{N}^2$$

posons

 ρ est un filtre K_{σ} .

Dans βN muni de la topologie des filtres analytiques (exemple Ω_1):

L'ensemble des ultrafiltres δ -stables est un fermé, d'intérieur vide (SIERPIN-SKI); si h : N --> N , alers h : βN --> βN est continue et ouverte,

l'ensemble des ultrafiltres rares est un fermé, d'intérieur vide (MATHIAS, BAUM-GARTNER),

l'ensemble des ultrafiltres rapides, également (LOUVEAU),

l'ensemble des ultrafiltres ayant la propriété C également.

Conséquences: si $2^{\circ} = \aleph_1$: existence de "beaucoup" d'ultrafiltres dont aucune image n'est δ -stable ni rare (PITT), dont aucune image n'est rapide, et dont aucune image n'a la propriété C.

Dans βN muni de la topologie des filtres K (exemple Ω_2):

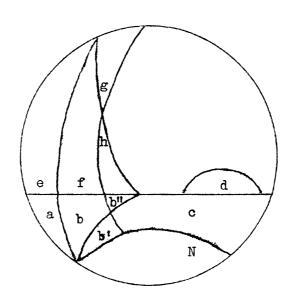
si h : N \longrightarrow N , alors h : β N \longrightarrow β N est continue,

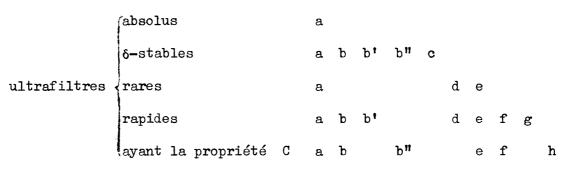
si $2^{*0} = k_1$, et si \$ est un filtre \$ alors \$ contient un ultrafiltre \$ stable,

l'ensemble des ultrafiltres rares est un fermé d'intérieur vide (démonstration rapide),

l'ensemble des ultrafiltres rapides et des ultrafiltres ayant la propriété C également (comme avant).

Conséquences: si $2^{\circ} = \aleph_1$: existence de "beaucoup" d'ultrafiltres δ -stables dont aucune image n'est rare (MATHIAS-PITT), dont aucune image n'est rapide, et dont aucune image n'a la propriété C.





(Texte reçu le 22 mai 1975)

Maryvonne DAGUENET 79 rue du Faubourg Saint-Jacques 75014 PARIS