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THE DECOMPOSITION OF L2(0393BG)
by Stephen GELBART

Seminaire CHOQUET
( Initiation a 1’analyse)
11e-12e années, s 1971-1973, n° 4, 10 p. 22 juin 1972

Let G denote the real unimodular group SL( 2 , R) and r its discrete sub-

group of integral matrices. By R(g) p we denote the right shift represehtation of
G on the Hilbert space 12(rBG) . Thus

We note that is formed with respect to a G-invariant measure ~, defi-

ned on the quotient 

This exposition concerns the following :

PROBLEM. - Decompose the representation R(g) into irreducibles ; equivalently,
find a measure on G such that

in the sense of direct integrals of Hilbert spaces and unitary operators.

By the theory of von NEUMANN and F. MAUNTNER, we know a priori that such a decom-

position is possible (See, for example, ~1~~. Moreover, all the irreducible unitary

representations 03C003BB of G are known for a convenient summary). Thus it
remains only to describe We shall refer to the support of this measure as

the spectrum of R(g) .

We note that since is finite the identity representation of G occurs

once in R(g) . The space of constant functions in is one-dimensionsal.

In particular, the discrete spectrum of R(g) is non-empty,

We shall see that the continuous spectrum of R(g) is also non-empty and is com.~~

pletely known. The remainder of the discrete spectrum, on the other hand, has not

yet been completely described.

Part 1 : Spectral decomposition of the Laplacian.

1. Automorphic forms.

We recall the principle which asserts that a unitary representation is reduced by
the eigenspaces of an operator commuting with it. ,

In the context of the representation R(g) , we are thus led to introduce the



Casimir operator Q , described This operator is essentially self-adjoint
in L2(rBG) and commutes with R(g) . Its eigenfunctions of immediate interest to

us are the following.

Definition. - An automorphic form of type (k , ~ , r) on G is a C~ function

f : rBG ~ C such that

(i) Af = Xf ;

(2) (ii) exp(- for r(e) = and
sin 8 cos 8

(iii) f satisfies a mild growth condition.

We denote the space of such functions by A...(r) . The question immediately
arises as to whether such functions exist for given B and k .

Remarks. - The essential feature of an automorphic form is that it is an eigen~.

function of p . Condition (iii), which varies from example to example, is also

crucial. It is included to insure that (possibly) non square-integrable eigenfunc-
tions of a still have to do with the decomposition of Condition (ii),
on the other hand, is unimportant, and is really no restriction at all. (The res-
triction of R(g) to K = SO(2) is completely reducible.) It is included merely
for the sake of convenience.

2. Coordinates for G .

Before describing some examples of automorphic forms, it will be convenient to

collect several facts related to the parameterization of G .

(i) Let § denote the upper half-plane (z=x+iy; y ~ 0~ . Then G acts

transitively on © by the fractional linear transformations

The stability subgroup of G at i is

and therefore ~ ~ G/K .

(ii) To g in G, y we associate the coordinates (z=x+iy,e) if

(iii) The quotient rBG is parameterized by pairs (z, e) where z belongs to

the fundamental domain F of r in ~ :



In particular, if f(g) is right K-invariant and left r-invariant, it defines

a function on § such that

(iv) For the coordinates just described the operator ð assumes the form

3. Examples of automorphic forms.

Suppose H is a closed subspace of equivalent to an irreducible repre-
sentation ~r of G . Then the restriction of p to H coincides with the Lapla-

cian for n , and is described by the scalar k 2(k 2 - 1) or 1 + t2 q. (See [2], §
7). These considerations motiv ate the following examples.

EXAMPLE 1 : Holomorphic cusp forms.

(4) (ii) k is an even positive integer ; and

(iii) our growth condition is that f(g) be bounded (in particular,

since r~G has finite measure).

We consider the formula

where g is such that and

Then cp defines a single-valued function in § satisfying the properties :

(i) q)(z) is holomorphic in



(iii) z)k~2 is bounded (in particular,

is finite). 
-

Establishing this claim is completely straight forward since

(i. e. j is a factor of automorphy for G ) and j(g, i) = y for g = 

The result is that A ~k~2~~~k~2~~1 ~,k ~r~ is isomorphic to the classical space
of cusp forms of weight k for r .

Holomorphic cusp forms are known to exist and the dimension of the space they

span is well known (See, for example, ~6 ~~ .

It will be convenient to reinterpret the growth conditions 4(iii) and 5(iii) as
follows. From property 4(ii) (with [~ ~] = [~ it follows that we may ex-

pand in a Fourier series

The boundedness of implies then that

hence that a 
n 
= 0 for 

. 

n ~ 0 (let y ~~ + ~ ~ . In particular,

for all y > 0 and r(e) , so the condition that f(g) be bounded is equivalent
to the "cuspidal condition"

(or to the condition that the zeroth Fourier coefficient of vanish).

EXAMPLE 2 : Non-holomorphic cusp forms.

and the growth condition is the "cuspidal condition" of example 1 (i. e. f(g) sa-

tisfies (6)).

We denote this space of functions by M t ~r~ , Since k = 0 , it follows immedia-

tely from the formula for A that is identifiable with the space of func-

tions f(z) in § such that



of the Laplace-Beltrami operator in the Poincaré upper half-space ) ;

(~ ~~H-?) =- ~~ ’ " ~ ~ ~ r’ -"
(iii) lim f(x , y) = 0 uniformly in x (in particular,

Thus consists of cuspidal "wave forms" in the sense of MAASS ~8~. Unfor-

tunately, it is not yet known for which values of t such functions exist.

EXAMPLE 3 : Eisenstein series.

and the growth condition is that f(g) = f(z ) = 0(yc ) as y -.~ + oo ~ for some po-

sitive constant c .

It is possible to construct automorphic forms satisfying this growth condition as

follows. Let f (z) = yf’ . Then f (z) is an eigenfunction for p (with eigen-

value- (  - l) ) and is already invariant (on the left) by N = {[10 x1] ; x 

To obtain a function invariant for r, we must sum the y-translates of f 
 

for

y in r. Thus we define (the Eisenstein series) 
~~’

and compute that

This serie converges, for Re(s) > 1 , has a meromorphic continuation to the
whole plane, and satisfies a simple functional equation of Riemann type (See, for
example, SELBERG [10]). In particular, for

z) is a well defined element of A

4. Prelimina decomposition of R(g) .

Roughly speaking, the three examples just described already suffice to decompose

SELBERG [~10J proved that if f(z) is a smooth function which is simultaneously
of mild growth and orthogonal to all cuspidal r-invariant eigenfunctions of A

(in the sense that

for all such §$ ) then



Thus Eisenstein series provide the complete continuous spectrum of A restric-

ted to To obtain an analogous result for one need only cons-

truct "slightly more general" Eisenstein series ( "’slightly more general" meaning
that these functions should transform according to some character of K, but not

necessarily the trivial character ; see condition 2(it)) . Since Eisenstein series
are obviously parameterized by the principal series representations (see [2]),
the following result should not seem surprising.

THEOREM 1.

(a) = 0 ~0 Hit dt @ denotes the 1-dimensio-

nal space of constant functions on H.. dt is the direct integral of the

representation spaces of the principal series (with respect to Lebesgue mea"
sure dt ), and denotes the space of cuspidal functions in 

(functions satisfying the cuspidal condition (6)).

(b) The restriction of R(g) to is the direct sum of irreducible uni-

tary representations of G each occuring with finite multiplicity ; therefore

with m(n) finite (usually zero t).

(c) Multiplicity formula for the discrete spectrum : .

m(Tr) = dimension (A (r)) ,

for 03C0 = 03C0it . (We call A(r) the space of automorphic cusp forms 
the representation n .)

Remarks concerning the proof of THEOREM 1.

(a) Part (a) is essentially due to SELBERG [l0]. (SELBERG stated his results in-
dependently of the language of group representations.) A more rigorous and modem
proof may be found in GODEMENT ~5].

(b) Part (b) is due to GEL’FAND and PJATECKIJ-0160APIRO, and first appeared in [3].
(c) Part (c) is an immediate consequence of the fact that in the representation

space of a principal series representation (resp. discrete series representa-
tion there is precisely one vector v such that m(r(0 ) )v = v (resp.
n(r(e))v = exp(- ike) v) for all r(e) ~ K .

Theorem 1 provides an almost complete solution to our initial problem.. The solu-
tion is not complete because we do not yet know (for example) which representations



03C00it occur discretely in R(g) . Clearly new methods and approaches must be found.

Part 2 : An alternate approach : Hecke theory

5. Classical Hecke theory.

An alternate approach to our problem is motivated by the pioneering work of HECKE

relating automorphic forms to Dirichlet series with functional equation.

Following HECKE, we associate to each cusp form

in the Dirichlet series

According to HECKE, this serie converges for Re(s) ~2014 + 1 , extends to an en-
tire function in C, and satisfies the functional equation where

Conversely, every Dirichlet series possessing these properties arises in this

fashion. The proof of this result rests on the fact that

that is, L(f, s) .is the Mellin transform of f(iy) . HECKE also proved that
~ a has an Euler product expansion

n

if, and only if, f is an eigenfunction of a certain family of self-adjoint opera-
tors T p defined on (the so-called Hecke operators).

The results of HECKE were extended first by MAASS [8] to his space of non-holo-

morphic wave forms M t (r) and then considerably improved and generalized by WEIL

in[11] so as to deal with Dirichlet series defined over arbitrary number fields
(not just Q ). As a result the construction of cuspidal automorphic forms is equi-
valent to the problem of constructing " L-functions" which are defined by Euler

product expansions and which possess an analytic continuation and prescribed func-

tional equation.

By the last section, a basis for the space of cuspidal automorphic forms of type
n is in one-to-one correspondence with irreducible summands of L2(fBG) equiva-
lent to TI. Therefore it is clearly indicated that one should reinterpret Hecke

theory from the point of view of group representations.

This is precisely the aim ~f JACQUET-LANGLANDS’ work.



6. Jacquet-Langlands theory.

To describe this theory, it will be necessary to view automorphic forms not as

functions on SL(2 , R) but rather as functions on the adele group of the general
linear group GL(2) e Therefore we must introduce some more notation.

For each prime p let Q denote the completion of Q with respect to a p-

adic valuation | |p . Let 0 denote the ring of integers of Q , that is., the

set &#x26; ; ( x) I  1} . Then the groups G = GL(2 , Qp) are locally compact~p p p Np
and the subgroups K = GL(2 , 0 ) are compact.

By Q we shall understand R , and by A the ring of adeles of Q . Thus
/-~’ ~-* -

where the direct product is restricted with respect to the subrings O . Similarly,
p

Moreover, if G+~ = (g E GL(2 , R) ; det(g) > 0) then

Given f in S (r) , we may use (1Q~ to define

if G+ and This function ? is well-

def ined on G (since NG Q n G+~ K = r and 
0 

f is an automorphic form for r ) and
satisf ies the "cuspidal" condition

since f(z) is itself a cusp form.

By definition, f is actually a function on the quotient of &#x26; by its discrete

subgroup G . Therefore, as in part 1, it is natural to Consider the space
consisting of all cuspidal functions in and to introduce

the right shift representation of G in this space.
~*~ /~~

In direct analogy with Hecke’s theory, JACQUET and LANGLANDS characterize the re-

presentations of G~ which occur in in terms of associated L-functions.
More precisely, let TT denote an arbitrary irreducible unitary representation of

Then rr is expressible in the form

where each TT 
~ 

is an irreducible unitary representation of G 
p 

(See, for example,
[4], chapter 3). To each rr is associated a canonical Euler factor L(n , s)
which for finite p is of the form [(l - A-sp)(1 = B-sp)]-1 (compare with (9)) and
for p = co is a product of gamma functions (possibly one). Then to rr itself is

associated the L-function



THEOREM 2. - -n occurs in if, and only if, L(r , s) has a speci-

fied analytic behaviour and functional equation of Hecke type.

7. Epilogue.

To relate this theory to part 1 (and the classical Hecke theory), let us suppose
that f e is such that T f = a f for all Hecke operators T . Then ?

(defined by (ll)) belongs to an irreducible subspace H03C0f of such

that n., =~p~ TT with rr = n (each discrete series representation n. of

SL(2 , R) canonically determines the representation n" of GL(2 , R) ) and n
’-~ ~~ P

for each finite p is determined by the eigenvalues a of T . (Thus to f is

naturally associated the L-function L(’Hp , s) which, of course, agrees with the

L-function s) described by (s)).

Conversely, if -n = 0 n occurs in and each n has a vector fi-

xed by K ~ p then n 
oo 

occurs in L (rBG) and H 
Ti 

contains a one-dimensional

space of automorphic forms of type 03C0~ (whose elements satisfy T 
P 

f = a 
P 

f with

the a 
p 

determined by rr ). 
~ 

Roughly speaking, the problem of constructing automorphic forms of type n for

r (hence of finding the spectrum of is reduced to constructing "nice~’

L-functions, determining which representations n they belong to, and unraveling
the consequences for SL(2 , R) . Unfortunately, this recipe remains somewhat theo-
retical since such L-functions are themselves difficult to find. Nevertheless (to
close on a less sour note) let us remark that the study of a certain L-function

(introduced first by leads to the conclusion that the principle series re-

presentation where

occurs discretely in not necessarily for r the full modular group of

part 1 but for r some subgroup of finite index in 5~~2 , Z~:
N
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