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INTRODUCTION TO THE THEORY OF GROUP REPRESENTATIONS

by Stephen GELBART

Séminaire CHOQUET
(initiation a 1’analyse)
11-12e annees, 1971-1973, n° 3, 7 p. 15 juin 1972

It is not our purpose to give a complete survey of the theory of group represen-

tations. Rather we hope to quickly exhibit the subject’s flavor and to collect some

elementary facts which are needed for the conpanion article C2~. Since ~2~, princi-
pally the group SL( 2 , R~ , our presentation is clearly biased toward that

group. The reader interested in a more comprehensive account of representation

theory should consult the text of VILENKIN ~5 ~ and its exhaustive bibliography.

1. Definitions.

Let G denote a locally compact group which is separable and unimodular. Let H

denote a complex separable Hilbert space, and U(H) the group of unitary operators
on H equipped with the topology of strong operator convergence..

By a unitary representation of G on H , we shall understand a continuous homo--

morphism from G to U(H) , that is, a mapping g such that

(a) g ~ -- TI(g2) , V and

(b) for each x E H , the map g --~ is continuous from G to H .

Such a representation is called reducible when there exists a closed proper sub-

space of H invariant for all or equivalently, when there exists a non-
trivial projection operator P in II which commutes with every n(g) . (In this
case, Tr is the direct sum of the subrepresentations o ~r and 

When 03C0 is expressible as the direct sum of countably many irreducible subrepre-
sentations we say that n is completely reducible.

EXAMPLE 1. - Let r denote a closed unimodular subgroup of G , and H the

Hilbert space ~) where , is G-invariant measure on r~G . Then the
right shif t representat ion of G on H is given by

where g E G, f E H , and x e rBG . As we shall see, this representation is ra-
rely completely reducible.

Two representations ~~t , H~) and ~~ , H~) are said to be equivalent when-
ever there exists an isometry A from H 1 onto H~ such that

Note that two finite-dimensional representations will be equivalent if and only
if the matrices describing them coincide for an appropriate choice of bases.. Thus



it is natural to deal not with the set of irreducible unitary representations but

rather with the set of equivalence classes of such representations. we shall denote
this set by G .

2. The fundamental problems of representation theory.

These are :

PROBLEM I : Describe G completely ; and

PROBLEM II : Decompose a given unitary representation into irreducibles ; in par-

ticular, decompose the right shift representation of Example 1.

(Here we must allow for continuous direct sum decompositions as well.)

For compact and abelian groups these problems are essentially solved. However,

for non-compact non-abelian groups (even non-compact semi-simple Lie groups) the
situation is more complicated. Therefore, after surveying the basic results for

compact and abelian groups, we shall focus attention on a special example, namely

SL(2 , R) . For this group the first problem is solved., but the second (in all its
generality) certainly is not (See [2J).

3. A basic principle of representation theory.

If L is a linear space of functions defined on then G operates on E

by the familiar formula

Suppose that A is an operator defined in L , and that A permutes with every
R(g) . Then obviously every eigenspace of A is an invariant subspace for R(g) ;
in particular, each eigenvalue B of A defines a subrepresentation n. of

R(g) . This simple observation proves to be surprisingly useful. A special case of
of it is :

Schur’s lemma. - Suppose A is a bounded operator which commutes with an irre-
ducible representation n ; that is, A is defined in the representation space of

n y and

Then A is a multiple of the identity operator I.

Proof. - Without loss of generality, we may assume that A is self-adjoint.
Indeed

Then, by the spectral theorem,



where each of the projections P(03BB) commutes with 03C0 . But rr being irreducible,

we must have P(B)==0 or I .

Q. E. D.

4* Abelian groups.

From Schur’s lemma it follows that the irreducible unitary representations of an

abelian group &#x26; are one dimentional. Moreover, such representations are of the

form where I denotes the identity operator on C , and )( is a conti-

nuous homomorphism from G to the circle group T . Thus G coincides with the
~.

familiar character group G .

An important example for arithmetic is the additive group of the rational number

field Q whose character group is A/Q where A denotes the ring of adeles of
~-~ /-~ /~/ 2014’- 

"’ ’ 

"

Q . Simpler examples are the additive real line R and its compact subgroup
~-~ ~~

T = R/Z whose character groups are well known.

As regards problem II with r the trivial subgroup we note that for abelian

groups a solution is provided immediately by Plancherel’s theorem (see, for example,
[6]).

5. 

The basic facts are as follows (for proofs, see E3D) :

(a) Every irreducible unitary representation is finite dimensional;

(b) Every unitary representation of G is completely reducible (this fact is

certainly special to compact groups ; witness the representation discussed in [~
or the representation R(g) for G = R and r = (0~ ) ;

(c) In the right regular representation R(g) (take r to be trivial) every ir-
reducible unitary representation of G occurs with multiplicity equal to its di-

mension ; equivalently, the matrix coefficients of the irreducible unitary repre-
sentations of G comprise a complete orthonormal set in L (c) (this is the cele-
brated Peter-Weyl theorem).

To describe the flavor of an explicit solution to problems I and II in this set-

ting we consider the following :

EXAMPLE 2. - Suppose G = S0(3) .

(a) / B Description of  . - Fix k a non-negative integer. Let K. denote the

(2k + 1)-dimensional space of solid spherical harmonics in R .i.e. harmonic
polynomials in R homogeneous of degree k . Let n. (g) denote the representa-
tion of G on ?. given by Ti.(g) p(x) = p(xg) . Then these rr, exhaust G .

(b) A decomposition problem. - Let S denote the unit sphere in R , and H

the Hilbert space L2(S2 , ) where  is the (essentially unique) rotationally



invariant measure on S2 . Since S0(3) acts transitively on S~ (by right matrix

multiplication) and since the stability group for 0 , 0) is isomorphic to

SO(2) , we may identify S2 with SO(2)BSO(3) and consider the right shift repre-

sentation r(g) of S0(3) on H. Our problem is to decompose this representationo

To illustrate the basic principle of section 3, we introduce the angular Lapla-

cian A defined for smooth functions in L 2(S2) by 
- 

where (cp , e) denote the familiar spherical coordinates.

This operator is self-adjoint in L2(S2 and permutes with each r(g) .

Now it is a simple matter to compute that 
’

when p is the restriction to S~ of a solid harmonic of order k . Thus, by our

"basic principle", the decomposition of r(g) (namely the statement that each ir-
reducible representation of G occurs exactly once in r(g) ) is entirely equiva-
lent to the spectral decomposition of the differential operator a (namely the
statement that (2) gives the complete set of eigenfunctions for A ).

6. The representations of SL(2 , R) .

The group G = SL(2 , R) consists of all 2x2 real matrices with determinant

1 . It is the simplest example of a non-compact semi-simple Lie group of matrices.

Its Lie algebra, by definition the set

consists of all 2x2 real matrices of trace zero equipped with the bracket ope-

ration

(Any Lie group of matrices is called semi-simple when its Lie algebra is semi-
simple, i. e. the direct sum of simple ideals ; these algebras and groups have an

especially rich structure theory that facilitates the study of their representa-
tions : see, for example, ~4~]).

It can be shown that the non-trivial irreducible unitary representations of semi-

simple groups must be infinite-dimension al. According to BARG~~AI~N ~ 1 ~, every such

representation for SL(2 , R) belongs to one of the following series of represen-
tations s

(a) The principal series of representations 03C0~it , where t is a real number and

e = 0 or 1 .

The representation space is L2(R) and



Roughly speaking, these representations are indexed by the characters 

of the abelian subgroup

(b) The discrete series of representations indexed by integers 

For k > 1 , the representation space consists of all the holomorphic functions

in the upper half-plane such that

The operators 03C0k for k  1 are defined similarly in the lower half-plane.

Roughly speaking, the discrete series representations are indexed by characters

of the compact subgroup K = S0~ 2~ .

(c) The complementary series of representations, indexed by points of the inter-

val (-1,1).

We shall not describe these representations explicitly, except to say that they

are indexed by certain non-unitary characters of the subgroup A .

Summing up, the set G for SL(2 , R) consists of continuous as well as dis-

crete components. It must be emphasized that although a great many representations

of an arbitrary semi-simple group have been constructed~ a complete description of

G is not yet available (except for scattered special examples).

7. Infinitesimal representations.

Let 03C0 denote a unitary representation of G . Then 03C0 defines a representation
of the Lie algebra of G (called infinitesimal representation of as follows.

For set

for v in H , the representation space of n . The set of v in H for which

this limit exists is dense and comprises the space C~(03C0) of so-called C~-
vectors for 03C0 .

It is not difficult to show that the map X -~-s: defines a representation of

@ in C°°~~~ (in particular, this map preserves the bracket operation in § ). The

study of these "infinitesimal operators" plays a crucial role in the general theory
of Lie group representations. For example, Bargmann’s description of G for

SL(2 , R) proceeds from a classification of the irreducible (infinitesimal) repre-
sentations of  . Of particular interest is the Casimir operator of 03C0 which we

shall presently describe.



Fix ~r any representation of G , and consider the basis for @

where

To this ~t and these .~ . (j = 0 , 1 , 2) correspond the infinitesimal opera-

tor H. = ~(~ . ~ ~ These latter operators are unbounded self-adjoint operator in
the representation space of ~r with dense common domain C (~r~ , The Casimir ( or

Laplacian) associated to n is, byr definition, the operator

This operator, in addition to being essentially self-adjoint in H , commutes

with the operators n(g) . In particular, one can prove that when 03C0 is irreduci-

ble its associated Casimir operator is a scalar multiple of the identity. Specifi-

cally, if 03C0 is the discrete series representation then

and if n is the principal series representation then

It should not seem surprising that in problems concerning the decomposition of

representations of SL(2 , R) this operator plays a role analogous to that of the

angular Laplacian of example 2 (See [2]) .

EXAMPLE 3. - Let G denote SL( 2 , R) and R(g) the right regular representa-
tion of G in (where is Haar measure on G ). By examining the ei-

genfunction expansion of the Casimir operator of R(g) , BARGMANN [1] was able to

show that only the principal and discrete series representations of G occur in

R(g) . In other words, the representations of the complementary series do not appear
in the Fourier expansion of square integrable functions on G . (This fact is in
direct contrast with the situation for compact G.)
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