SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

JEFFERY COOPER

Régularisation d'un opérateur intégral singulier elliptique

Séminaire Choquet. Initiation à l'analyse, tome 7, n° 1 (1967-1968), exp. n° A9, p. A1-A6 http://www.numdam.org/item?id=SC 1967-1968 7 1 A10 0>

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1967-1968, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

1er février 1968

RÉGULARISATION D'UN OPÉRATEUR INTÉGRAL SINGULIER ELLIPTIQUE par Jeffery COOPER

1. Introduction.

 CZ_1 est l'algèbre des opérateurs linéaires continus S de $L^2(\underline{R}^n)$ dans $L^2(\underline{R}^n)$ de la forme

$$S = H + K$$

où $H \in CZ^0_{\beta}$ avec $\beta > 1$ et K est un opérateur appliquant $L^2(\underline{\mathbb{R}}^n)$ dans $H^1(\underline{\mathbb{R}}^n)$ continuement. Il existe un homomorphisme d'algèbres

$$\sigma : CZ_1 \rightarrow \bigcup_{\beta \geq 1} G_{\beta}^{0}$$

défini par $\sigma_S = \sigma_H(x$, $\xi) \in G^0_\beta$ (avec $\beta > 1$). σ_S est appelé le symbole de l'opérateur S .

On se pose la question suivante : Soit $S \in CZ_1$ tel que $\sigma_S(x, \xi) \neq 0$ pour tout $x \in \mathbb{R}^n$ et $\xi \in \mathbb{R}^n - \{0\}$. Est-ce que S a un inverse ? L'exemple très simple qui suit implique qu'en général la réponse doit être négative.

Soit P: $L^2(\underline{\mathbb{R}}^n) \to H^1(\underline{\mathbb{R}}^n)$ un projecteur de rang fini. Alors $S = I - P \in CZ_1$ et $\sigma_S(x, \xi) = 1$ mais S n'a pas d'inverse.

Cependant, nous allons voir que S a un inverse, à un opérateur régularisant près.

2. Régularisation d'un opérateur intégral singulier elliptique.

THEOREME. - Soient $S \in CZ_1$ et $\sigma_S(x, \xi) \in G_\beta^0$ son symbole. On suppose qu'il existe une constante a > 0 telle que

$$|\sigma_{S}(x, \xi)| \geqslant a$$
 pour tout $x \in \mathbb{R}^{n}$, $\xi \in \mathbb{R}^{n} - \{0\}$.

Alors, il existe un opérateur $T \in CZ_1$ qui est inversible de $L^2(\underline{\mathbb{R}}^n)$ dans $L^2(\underline{\mathbb{R}}^n)$ et dont le symbole vérifie

$$\sigma_{S} \sigma_{T} = 1$$
 .

 $\frac{\text{D\'{e}monstration.}}{F(x\ ,\ \xi)=\sigma_S(x\ ,\ \xi)^{-1}} |_{\sigma_S}(x\ ,\ \xi)| \geqslant a>0 \quad \text{pour tout} \quad x\in\underline{\mathbb{R}}^n \quad \text{et} \quad \xi\in\underline{\mathbb{R}}^n-\{0\}\ ,\ \text{donc}$

 $\sigma_S(x,\xi)$ est borné uniformément en x et ξ , donc $|F(x,\xi)|$ est borné inférieurement par un nombre >0. Soit $\xi_0\in\Sigma_n=\{\xi\in\mathbb{R}^n:\,|\xi|=1\}$ un point fixé, et posons :

$$a(x) = F(x, \xi_0) F(0, \xi_0)^{-1} \in C^{\beta}(\underline{R}^n)$$

$$G(x, \xi) = F(x, \xi) a^{-1}(x) F(0, \xi)^{-1}$$
.

 $G(x, \xi) \in C_{\beta}^{0}$ et il existe une constante c > 0 telle que

$$|G(x, \xi)| \ge c > 0$$
 pour tout $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n - \{0\}$.

De plus,

(1)
$$\begin{cases} G(x, \xi_0) = 1 & \forall x \in \mathbb{R}^n \\ G(0, \xi) = 1 & \forall \xi \in \mathbb{R}^n - \{0\} \end{cases}.$$

LEMME. - $G(x, \xi)$ a une racine m-ième (m entier $\geqslant 0$) $G_m(x, \xi)$ appartenant $\underline{\grave{a}}$ G_{β}^0 , telle que $G_m(x, \xi_0) = 1$ \forall $x \in \underline{\mathbb{R}}^n$.

Démonstration. - Soit $\xi \in \Sigma_n$, et soit C un grand cercle passant par ξ_0 et ξ . On pose

$$\Phi(x, \xi) = \int_{C} \frac{dG}{G} = \int_{0}^{T} \frac{\sum_{j=1}^{n} G_{j}(x, \xi(t)) \xi_{j}(t)}{G(x, \xi(t))} dt$$

où $G_{\bf j}({\bf x}$, .) = $\frac{\partial}{\partial \xi_{\bf j}}$ $G({\bf x}$, .), et t \Rightarrow $\xi(t)$ est une paramétrisation de C telle que $\xi(0)=\xi_0$ et $\xi(\tau)=\xi$.

L'intégrale existe parce que $|G(x,\xi)|\geqslant c>0$ pour x et ξ . La définition est bonne parce que l'intégrale est indépendante du choix de la courbe entre ξ_0 et ξ . En effet, soient C_1 et C_2 deux courbes entre ξ_0 et ξ . Soient C_1 et C_2 leurs images dans le plan complexe par $G(x,\xi)$,

$$\int_{\Gamma_1} \frac{du}{u} = \int_{C_1} \frac{dG}{G} \qquad \text{et} \qquad \int_{\Gamma_2} \frac{du}{u} = \int_{C_2} \frac{dG}{G} .$$

Or, la courbe $\Gamma_1 - \Gamma_2$ est l'image de la courbe $C_1 - C_2$; $\Gamma_1 - \Gamma_2 \subseteq C - \{0\}$ et les conditions (1) entraînent que $\Gamma_1 - \Gamma_2$ est homotope au point + 1 . Donc, d'après un théorème de la théorie des fonctions ([2], p. 6)

$$\int_{\Gamma_1 - \Gamma_2} \frac{d\mathbf{u}}{\mathbf{u}} = 0$$

et, par conséquent,

$$\int_{C_1} \frac{dG}{G} = \int_{C_2} \frac{dG}{G} .$$

Montrons que Φ est bornée. Pour $\xi\in\Sigma_n$, nous prenons pour C le grand cercle passant par ξ_0 et ξ , tel que C = $\{\xi(t)\}$ avec

$$\begin{cases} \xi(0) = \xi_0 \\ \xi(\tau) = \xi \\ |\xi'(t)| = 1 \end{cases} \quad 0 \le \tau \le \pi$$

Alors,

$$|\Phi(x, \xi)| = |\int_C \frac{dG(x, \xi)}{G(x, \xi)}|$$

$$= \left| \int_{0}^{\tau} \frac{\sum_{j=1}^{n} G_{j}(x, \xi(t)) \xi_{j}^{t}(t)}{G(x, \xi(t))} dt \right| \leq \frac{1}{c} \int_{0}^{\tau} \left(\sum_{j=1}^{n} |G_{j}(x, \xi(t))|^{2} \right)^{1/2} dt ;$$

et $\sum_{j=1}^{n} |g_j(x, \xi)|^2$ est borné uniformément en x et ξ parce que $G(x, \xi) \in G^0_\beta$ $\beta > 1$.

 ξ_1 est continue. Soient ξ_1 et ξ_2 deux points de Σ_n . Soient C_1 : $\xi_0 \xi_1$, C_2 : $\xi_0 \xi_2$, C_3 : $\xi_1 \xi_2$ des courbes géodésiques. Alors C_2 - C_3 - C_1 est une courbe fermée, donc

$$\Phi(x, \xi_2) - \Phi(x, \xi_1) = \int_{C_2} \frac{dG}{G} - \int_{C_1} \frac{dG}{G} = \int_{C_3} \frac{dG}{G}$$

Quand $\xi_2 \to \xi_1$ sur la sphère Σ_n , la distance géodésique le long de $^{\rm C}_3$ tend vers zéro, et une majoration du type (2) entraîne que

(3)
$$\Phi(x, \xi_2) \rightarrow \Phi(x, \xi_1)$$
 uniformément $\forall x \in \mathbb{R}^n$.

Maintenant, pour ξ fixe et $C: \widehat{\xi_0} \xi$, x , $y \in \mathbb{R}^n$,

$$\Phi(x, \xi) - \Phi(y, \xi) = \int_{C} \frac{dG(x, \xi)}{G(x, \xi)} - \int_{C} \frac{dG(y, \xi)}{G(y, \xi)}$$

$$= \int_{C} \frac{G(y, \xi) dG(x, \xi) - G(x, \xi) dG(y, \xi)}{G(x, \xi) G(y, \xi)}.$$

Donc

$$|\Phi(x, \xi) - \Phi(y, \xi)| \le \frac{1}{c^2} \int_C |G(y, \xi)| \sum_j G_j(x, \xi) - G(x, \xi) \sum_j G_j(y, \xi)| dt$$
.

Alors $G(x, \xi) \in G_{\beta}^{0}$ implique que

(4)
$$\forall \xi \in \Sigma$$
, $\Phi(x, \xi) \rightarrow \Phi(y, \xi)$ quand $x \rightarrow y$.

On déduit de (3) et (4) que Φ est continue sur $\underline{R}^n \times \Sigma_n$.

Localement, $\Phi = L \circ G$ où L est une détermination du logarithme complexe. Donc Φ est un logarithme continu de G sur $\mathbb{R}^n \times \Sigma$; et nous pouvons prolonger Φ à $\mathbb{R}^n \times (\mathbb{R}^n - \{0\})$ en une fonction homogène de degré zéro telle que

(5)
$$G(x, \xi) = e^{\tilde{\Phi}(x, \xi)} \quad \forall (x, \xi) \in \mathbb{R}^n \times (\mathbb{R}^n - \{0\}).$$

Du fait que Φ est un logarithme continu de G , on a

$$\frac{\partial x^{i}}{\partial \Phi(x, \xi)} = \frac{\partial x^{i}}{\partial G(x, \xi)} G(x, \xi)^{-1}$$

$$\frac{\partial \tilde{\Phi}(x, \xi)}{\partial \xi_{j}} = \frac{\partial G(x, \xi)}{\partial \xi_{j}} G(x, \xi)^{-1}$$

et on en déduit que $\phi(x, \xi) \in G_{\beta}^{0}$ parce que $|G(x, \xi)| \geqslant c$ pour tout $(x, \xi) \in \mathbb{R}^{n} \times (\mathbb{R}^{n} - \{0\})$.

Alors, pour m entier, m > 0, nous posons

$$G_{m}(x, \xi) = e^{\frac{1}{m}\phi(x, \xi)}.$$

C. Q. F. D.

Revenons à la démonstration du théorème. $\Phi(x, \xi)$ est bornée sur $\mathbb{R}^n \times \{|\xi| \ge 1\}$ donc $G_m(x, \xi) \rightarrow 1$ uniformément sur $\mathbb{R}^n \times \{|\xi| \ge 1\}$ quand $m \rightarrow +\infty$. De plus,

$$\frac{\partial G_{m}(x, \xi)}{\partial \xi_{j}} = \frac{1}{m} \frac{\partial \Phi(x, \xi)}{\partial \xi_{j}} G_{m}(x, \xi)$$

et du fait que $\Phi(x, \xi) \in G_{\beta}^{0}$, on déduit que

$$\frac{\partial G_{m}(x, \xi)}{\partial \xi_{j}} \rightarrow 0 \quad \text{uniformément sur } \mathbb{R}^{n} \times \{|\xi| \geqslant 1\}$$

quand m \rightarrow $+\infty$. De la même façon, on démontre que

(6)
$$\frac{\partial^{|\alpha|} G(x, \xi)}{\partial \xi^{\alpha}} \rightarrow 0 \quad \text{uniformément sur } \mathbb{R}^{n} \times \{|\xi| \geqslant 1\}$$

quand m $\rightarrow \infty$, pour tout α , $1 \leqslant |\alpha| \leqslant 2n$.

Soit $H \in CZ_{\beta}^0$ l'opérateur tel que $\sigma_H = G_m(x, \xi)$. On fait appel au théorème 2 de l'exposé 5 et on voit que pour m suffisament grand,

$$\|H - I\| < \frac{1}{2}$$

où la norme est celle des opérateurs linéaires continus de $\ L^2$ dans $\ L^2$. Donc pour m grand, H est inversible, ainsi que $\ H^m$.

Soit $H_1 \in CZ_\beta^0$ tel que $\sigma_{H_1} = a(x)$ et $H_2 \in H \in CZ_\beta^0$ tel que $\sigma_{H_2} = F(0, \xi)$. On a $|a(x)| \geqslant c_1 > 0$ pour tout $x \in \mathbb{R}^n$, donc H_1 est inversible, $|F(0, \xi)| \geqslant b > 0$ pour tout $\xi \in \mathbb{R}^n - \{0\}$, donc d'après le théorème de l'exposé 4, H_2 est inversible. Il en résulte que $T = H_1$ H_2 H_2^m est inversible et

$$\sigma(T) = \sigma_{H_1} \sigma_{H_2} (\sigma_{H})^m = a(x) F(0, \xi) G(x, \xi) = F(x, \xi)$$
.

C. Q. F. D.

<u>Application</u>. - Soit $S \in CZ_1$ vérifiant les hypothèses du théorème, et soit T l'opérateur inversible tel que $\sigma_S \sigma_T = 1$. On a TS - I = K où K est un opérateur qui applique L^2 dans H^1 . Donc l'équation

$$Sf = g \qquad (f, g \in L^2)$$

équivaut à l'équation

$$f + Kf = Tg$$
.

Quand K est compact de L^2 dans L^2 , cette dernière équation est du type de Fredholm dans L^2 et on peut appliquer la théorie de l'exposé 1.

3. Une décomposition des opérateurs différentiels.

THEOREME. - Soit $P(x, D) = \sum_{\substack{|\alpha|=m \\ \alpha}} a_{\alpha}(x) D^{\alpha}$ un polynôme différentiel, homogène de degré m, à coefficients $a_{\alpha}(x) \in C^{\beta}(\underline{R}^{n})$, $\beta \geqslant 0$. Alors, si $u \in H^{m}(\underline{R}^{n})$

$$P(x , D)u = H\Lambda^{m} u$$

 $\underline{où}$ H est un opérateur intégral singulier de CZ_{β}^{0} et

$$\sigma_{\mathrm{H}} = (-\mathrm{i})^{\mathrm{m}} \frac{\mathrm{P}(\mathrm{x}, \xi)}{|\xi|^{\mathrm{m}}} .$$

$$D^{\alpha} u = (-i)^{m} R_{1}^{\alpha_{1}} R_{2}^{\alpha_{2}} \dots R_{n}^{\alpha_{n}} \Lambda^{m} u = (-i)^{m} R^{\alpha} \Lambda^{m} u$$

et $P(x, D)u = \sum_{\alpha} a_{\alpha}(x) D^{\alpha} u = (-i)^{m} \sum_{\alpha} a_{\alpha}(x) R^{\alpha} \Lambda^{m} u$. Mais, on sait que $\sigma(R_{j}) = \frac{\xi_{j}}{|\xi|}$ et, par conséquent,

$$\sigma_{\mathrm{H}} = \sigma[(-i)^{\mathrm{m}} \sum_{\alpha} a_{\alpha}(x) R^{\alpha}] = (-i)^{\mathrm{m}} \sum_{\alpha} a_{\alpha}(x) \frac{\xi^{\alpha}}{|\xi|^{\mathrm{m}}} .$$

C. Q. F. D.

BIBLIOGRAPHIE

- [1] CALDERÓN (A. P.) and ZYGMUND (A.). Singular integral operators and differential equations, Amer. J. of Math., t. 79, 1957, p. 901-921.
- [2] HEINS (Maurice). Selected topics in the classical theory of functions of a complex variable. New York, Holt, Rinehart and Winston, 1962 (Athena Series: Selected Topics in Mathematics).
- [3] SEELEY (R. T.). Singular integrals on compact manifolds, Amer. J. of Math., t. 81, 1959, p. 658-690.