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SOME OPEN PROBLEMS ON BEST APPROXIMATION IN NORMED LINEAR SPACES

by Ivan SINGER

Séminaire CROQUET
(initiation à 1~ Analyse)
6e année, 1966/67, n° 12 16 .,février 1967

[according to a draft by Ivan SINGER]

Notations.

E : normed linear space (real or complex).
G : linear subset of E.

x E E ~ go E G : best approximation of x if

llx - g0~ = inf ))x -. g!) ,0 
G

or nearest point.

. G is a Cebysev subset, if each x E E has exactly one (i. e. one and only one)
best approximation g0 E G .

In particular, if G is a linear subspace, G is a Cebysev subspace.

1. - In 1957, V. KLEE [13J has raised the following probl em (in somewhat dif-
ferent terms) : Does every m-dimensional Banach space E, where 3 $ m  oo ~
possess a one-dimensional eby0161ev subspace G (dim E = n t dim G = 1) ?

Geometrically : Does E possess a line G through the origin such that there
exists no segment on the unit sphere (x E E ~ I = 1,~ parallell to G ? If the

unit cell of E is a polyhedron (e. g. take a cube) , the answer is obviously af-
firmative. For the usual euclidean norm, the answer is again obviously affirmative.

History of the problem. - Student ~ KLEE himself - KAKUTANI, CHOQUET and others.

For m = 3 , T. J. McMINN [15] has proved that the answer is affirmative. Another
proof of this result has been given by A. S. BESICOVITCH [1].
For m > 3 , incorrect proofs have been given by G. EWALD [7], G. ROGERS, EWALD-

ROGERS and others.

2. - In 1964, A. L. GARKAVI [10] has posed the following problem : Does there
exist a separable Banach space which has no Cebysev subspace ?



*

Since, in every separable conjugate Banach space E = B , the unit cell S- has

at least one exposed point ( x ~ E ~ jjxj) = 1 , such that there exists a support
hyperplane H of S = (x e E ) I !!xjj ~ l) satisfying H n S~. == M )y one must

seek for the space E among those separable Banach spaces which are not isometric

to any conjugate space.

GARKAVI has constructed the following example of a non-separable Banach space E

which has no Cebysev subspace : If I is a set of cardinality I > c , then the

space E = E(l) of all bounded families x = {03BEi}i~I of scalars which have at

most a countable number of non-zero "coordinates" endowed with the usual vec-

tor operations and with the norm )!x() = sup has no Cebysev subspace.
iel 

~-

V. KLEE and myself have given (unpublished) the following example of a separable
non-complete normed linear space E which has no Cebysev subspace : the dense sub-

space of c.. consisting of all almost-zero sequences (i. e. whose coordinates are

= 0 , except a finite number of them).
v 

It is well known that the space E == Co has no eby0161ev subspaces of infinite di-

mension, but it has such subspaces of any finite dimension. It is also known that

E == l]) has no eby0161ev subspace of finite dimension or of finite codimen-
sion, but yet it has Cebysev subspaces. Thus it is natural to ask the following

problem : How to combine the spaces c.. and L ([0 y l]) in order to obtain a se-

parable Banach space which has no eby0161ev subspace ? [.The spaces c.. and L1([0 , 1])
are not isometric, not isomorphic even, to any conjugate Banach space. ]

3. - A related question of GARKAVI : Does the space C([0 y 1]) possess a

eby0161ev subspace of infinite dimension and infinite codimension

. (codim G = dim E/G) ?
v v ~ 

It is well known that it has Cebysev subspaces of any finite dimension, and eby0161ev
subspaces of codimension 1 , but has no Cebysev subspaces of finite codimension
n ~ 2 .

4. - Characterize (topologically) those compact spaces Q for which the com-

plex space C(Q) (of all continuous functions on Q with jjx = max )x(q)j ) con-

tains a Cebysev subspace of finite dimension n > 1 . 
q~Q 

°°°°°°~

This problem presents some interest from the following point of view : Although
the classical theorem of Banach-Stone,



shows, theoretically, that the vectorial-metric properties of the spaces C(Q) are

completely determined by the topological properties of the compact spaces Q and

conversely yet the effective, explicit study of this interdependence still presents

many open problems, and a solution of the above problem might be considered as a

contribution to this study.

According to the classical Haar (real) - Kolmogorov (complex) theorem, an n-

dimensional linear subspace

G = ... , C(Q)

is a eby0161ev subspace if, and only if, x y ... , x is a Cebysev system on Q
n

(i. e. each linear combination ~ cy. x. has at most n - 1 zeros on Q ). Thus
i=l ~ ~

the above problem amounts to the following : Characterize (topologically) those

compact spaces Q which admit a Cebysev system x y ... , xn with n > 1 .

In the case of real scalars (i. e. S. MAZUR has conjectured that if a
, 

v 

compact space Q admits a real Cebysev system x y ... , x with n > 1 , then

Q is homeomorphic to a subset of a circle. This conjecture has been proved for the

first time by J. C. ?.IAIRHUBIIIR [l6] under the additional hypothesis that Q is a

subset of a k-dimensional euclidean space. For general compact spaces, it has been

proved, independently, by K. SIEKLUCKI [20] and P. C. CURTIS [4-]~ A more simple
proof has been given by I. J. SCHOMBERG and C. T. YANG [l9j.

For the case of complex scalars, only the following partial result of I. J.

SCHOENBERG and C. T. YANG (lac. cit.) is known : If a compact space Q admits a
~ 

complex Cebysev system ... ~ x with n > 1 , and if Q is homeomorphic to

a subset of a finite polyhedron, then Q is homeomorphic to a subset of the eucli-

dean plane.

Other problems.

1° Similar problem for complex L1(T , v) spaces. For real L-(T . 03BD) , A. L.

GARKAVI [10] has proved...

2° Extension to dim k (x e E ~ G) .

~. 2014 Characterize (topologically) those compact spaces Q for which the real

space [or the complex space C(Q) ] contains a Cebysev subspace of finite
codimension n ~ 1 .

Concerning this problem, there exist only partial results of R. R. PHELPS [18 ]



and A. L. GARKAVI ([8J, [9J giving sufficient conditions or necessary

conditions on Q 9 in order that C (Q) contain a Cebysev subspace of codimension
~ 1 . Let us recall them :

1° Sufficient conditions.

(a) Q compact separable (in particular, compact metric) implies .

(b) Q compact separable, satisfying Q = Q ’ Q’ (i. e. Q = the closure of the

set of its isolated points), implies

codim G ~ n (n ~ 1, , 2 , ...) .

The compact spaces Q satisfying this condition (in particular, for Q counta-

ble) may also contain connected closed infinite subsets (continua).

There exist examples showing that the above conditions are not necessary. However,
at the International Congress of Mathematicians [1966. Moscow], A. L. GARKAVI has

announced that if Q is also metric, then the condition of (b) is both necessary

and sufficient in order that contain Cebysev subspaces of any finite co-
dimension n ~ 1 . Thus, for metric compact spaces, the problem is solved.

2° Necessary conditions.

(c) (Cebysev) and codim G imply that Q has at most a counta-

ble number of disjoint open subsets (imply, in particul ar, at most a countable num-

ber of isolated points).
(d) G (Cebysev) and codim G = n > 1 imply that Q contains no open

connected infinite subset.

(e) Corollary of (d) : when either Q is finite, or Q has an infinity of con-
nected components.

6. - Characterize those Banach spaces E which contain no closed linear sub-

space G with codim with the following property :

The set of all best approximation of x,

or, equivalently : such that there does not exist



For n = 1 y R. C. JAMES C12~ has shown (the proof is very difficult) that this
class coincides with the class of reflexive Banach spaces [his first proof for se-

parable spaces [ 11 ] was not correct, a stndent of V. 0 KLEE has discovered an irreme-

diable error in it]. I have posed this problem to Professor JAMES at the Interna-

tional Congress of Mathematicians in Moscow, ~966.

7. - Cebysev set G: each x E E has exactly one best approximation go E G.
It is obvious that in a reflexive strictly convex Banach space, every convex set is

a C ebys ev set. I. S. MOTZKIN [17] and others have proved that, 9 inversely, in a fi-

nite-dimensional smooth Banach space (i. e. for every x E E ~ 9 there exists exactly

one f E E* with jjfj) = 1 , f(x) = ~x~ ), every eby0161ev set is convex. In connec-
tion with this result, the following problem arises naturally : Characterize those

Banach spaces in which every Cebysev set is convex.

1° The case of n-dimensional Banach spaces, 9 where n  oo . N. V. EFIMOV and

S. B. STECKIN [5] and V. KLEE ( ~ 1.4 ~ or a Conference at the Colloquium on Convexity
[1965. Copenhagen] to appear) have claimed that the converse of the above is also
true, i. e. that a finite-dimensional Banach space in which every Cebysev set is
convex must be smooth. For n = 2 , this is obviously true. However, A. BRNDSTED
([2], [3]) has shown that for n >, 3 this is false ; 9 namely, for every integer

n >, 3 , there exists a non-smooth n-dimensional Banach space in which every Cebysev
set is convex. BR~NDSTED (~3 ~ has also solved the above characterization problem for
n = 3 , by proving that every C ebys ev set in E ( with dim E = 3 ) is convex if,
and only if, every exposed point of SE = fx E E i ~~x!  1~ is a smooth point of

SE .
For n > 3 , the problem is still open. 

’

2° The case of infinite-dimensional Banach spaces. In this case, considerably less

is known. Not only the possibility of extending MOTZKIN’s result to infinite-dimen-

sional smooth Banach spaces is unknown, but even the answer to the following ques-
tion is unknown : In a Hilbert space ~ , is every Cebysev set necessarily convex ?
The best result known until the present is the following theorem of L. P. VLASOV

~21 ~9 which contains as particular cases results of V. KLEE, N. V. EFIMOV and
v

S. B. STECKIN : In a smooth Banach space, y every boundedly compact (i. e. every boun-

ded closed subset of it is conpact) Cebysev set is convex. The proof is very short
and elegant, it makes use of the Schauder fixed point theorem.

Since the condition of being boundedly compact, is too restrictive, N. V. EFIMOV

and S. B. STECKIN [6J have introduced the notion of approximative compactness : a



set G c E is called approximatively compact if , for every x E E and every se-

quence

with lim ~x-gn~ = p(x ’ G) ,

there exists a subsequence {gnk} converging to an element of G (e. g. in a uni-

formly convex Banach space E, every weakly closed subset is approximatively com-

pact). N. V. EFIMOV and S. B. STECKIN [6] have proved that in a smooth uniformly
convex Banach space E., a Cebysev set G is convex if, and only if, it is appro-

ximatively compact. Hence (by the above), for a set G in a smooth uniformly con-

vex Banach space, the following statements are equivalent :

(1) G is convex and closed ; 

(2) G is Cebysevian and weakly closed ; 
(3) G is Cebysevian and approximatively compact.

We have thus useful infinite-dimensional characterizations of closed convex sets

in terms of eby0161ev sets, which show, among others, that the problem of convexity
of Cebysev sets in smooth uniformely convex Banach spaces is equivalent to each of
the following problems :

(a) Is a eby0161ev set weakly closed ?

(b) Is a eby0161ev set approximatively compact ?

Instead of imposing supplementary conditions directly on the eby0161ev set G in

order to be able to conclude that it is convex, one can impose conditions on the

mapping (assigning to each x the unique best approximation of x in G ; 9
this is well defined, once G is a eby0161ev set). Thus, V. s KLEE has proved [14]

v ~.

that, if G is a Cebysev set in a smooth and reflexive Banach space E y and if

admits a neighbourhood V(x) such that is both conti-

nuous and weakly continuous y then G is convex. The condition of continuity of the

mapping where G is a eby0161ev set, does not imply the weak continuity of

as shown by the example

E = (some Hilbert space) , G = SE ; ;
on the other hand, it is not known whether the weak continuity of where G

is a eby0161ev set, implies its strong continuity.

The problem of convexity of Cebysev sets in Hilbert spaces ? is also related to

the following problem on farthest points : If a closed convex set A c z has the

property that every admits a unique f arthest point in A ( i. e. which has

maximal distance from does A necessarily consist of one simple point ?



A. F. FICKEN and V. KLEE C 1~ ~ have shown that if the answer to this question would
y ~,

be affirmative, then every Cebysev set in ? would be convex.

Since the problem of convexity of Cebysev sets is open, it is natural to

pose the problem of convexity of sets A belonging to some larger classes of sets.

V. KLEE (Conference at the Colloquium on Convexity [1965. Copenhagen]) has consi-

dered two such classes, C1 and C2 . Let us mention C1 : A set G , in a normed

linear space E , is called a C1-set if G is semi-Cebysevian (i. e. each x E E

has at most one best approximation in G ) and closed. Every boundedly compact C1-
set in a smooth Banach space E is easily shown to be convex. However, V. KLEE has

shown, that, in every infinite dimensional Hilbert space H , there exists a C -
set G whose complementary set H B G is non-void, bounded and convex (hence G

is non-convex).

Some other interesting related problems have been raised in the same paper of

V. KLEE.
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