SÉMINAIRE CLAUDE CHEVALLEY

C. CHEVALLEY

Les groupes de type C_2

Séminaire Claude Chevalley, tome 2 (1956-1958), exp. nº 22, p. 1-11

http://www.numdam.org/item?id=SCC_1956-1958__2__A9_0

© Séminaire Claude Chevalley

(Secrétariat mathématique, Paris), 1956-1958, tous droits réservés.

L'accès aux archives de la collection « Séminaire Claude Chevalley » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

-:-:-:-

LES GROUPES DE TYPE C₂
(Exposé de C. CHEVALLEY, le 13.1.1958)

1. Le groupe Sp n .

Soit β la forme bilinéaire sur $K^{2n} \times K^{2n}$ définie par

$$\beta(x, y) = \sum_{i=1}^{n} (\xi_i \eta_{i+n} - \xi_{i+n} \eta_i)$$

si $x=(\xi_1,\ldots,\xi_{2n})$, $y=(\eta_1,\ldots,\eta_{2n})$. Nous désignerons par Sp n le groupe des automorphismes de K²ⁿ qui laissent la forme β invariante. On montre facilement que, si (x , y) et (x' , y') sont deux éléments de $K^{2n} \times K^{2n}$ tels que $\beta(x, y) = \beta(x', y') = 1$, il existe une opération de Sp n qui transforme x en x' et y en y' (cela résulte immédiatement de la théorie de la réduction des formes bilinéaires alternées). Soit (e₁, ..., e_{2n}) la base canonique de K²ⁿ. Les opérations de Sp n qui laissent fixes les points e_n , e_{2n} forment un sous-groupe G isomorphe à Sp(n-1), et on a une bijection naturelle de l'espace homogène Sp n/G sur l'ensemble des points (x , y) de $K^{2n} \times K^{2n}$ tels que $\beta(x, y) = 1$, ensemble qui est évidemment une hypersurface quadrique irréductible. Comme Sp $1 = SL(K^2)$ est connexe, on en déduit par récurrence sur n que Sp n est connexe. Comme Sp n opère transitivement sur l'ensemble des éléments \neq 0 de K²ⁿ, son application identique dans GL K²ⁿ est une représentation simple. Soit T l'ensemble des matrices diagonales appartenant à Sp n ; pour qu'une matrice diagonale diag (a_1, \ldots, a_{2n}) appartienne à T, il faut et il suffit que l'on ait $a_{i+n} = 1$ $(1 \le i \le n)$. Il en résulte que T contient une matrice $t_0 = diag(a_1, \ldots, a_{2n})$ telle que les a_1 soient tous distincts; le centralisateur de to dans GL K2n étant le groupe des matrices inversibles diagonales, on voit que T est son propre centralisateur dans Sp n , donc est un tore maximal de Sp n . Il résulte du lemme de Schur qu'une matrice z_0 du centre de Sp n est de la forme cI , $c \in K$, I étant la matrice unité; exprimant que cI & Sp n , il vient c = ± 1 ; le centre de Sp n est donc d'ordre 2 ou 1 suivant que la caractéristique de K est \neq 2 ou = 2. Ce centre étant fini, Sp n est semi-simple (exp. 20, lemme 1). Posons, pour $t \in T$, $t.e_i = \omega_i(t)e_i$; il est clair que l'on a (en

notation additive) $\omega_{i+n} = -\omega_i$ et que ω_1 , ..., ω_n forment une base du groupe X(T) des caractères rationnels de T.

Soient i et j des indices distincts entre 1 et n ; si $\xi \in K$, les formules

$$\begin{split} & \mathcal{T}_{ij}(\xi).\mathbf{e}_{i} = \mathbf{e}_{i} + \xi \mathbf{e}_{j} \\ & \mathcal{T}_{ij}(\xi).\mathbf{e}_{j+n} = \mathbf{e}_{j+n} - \xi \mathbf{e}_{i+n} \\ & \mathcal{T}_{ij}(\xi).\mathbf{e}_{k} = \mathbf{e}_{k} \quad \text{si } k \neq i, j+n \end{split}$$

$$\mathcal{C}'_{ij}(\xi).e_{i+n} = e_{i+n} + \xi e_{j}$$
 $\mathcal{C}'_{ij}(\xi).e_{j+n} = e_{j+n} + \xi e_{i}$
 $\mathcal{C}'_{ij}(\xi).e_{k} = e_{k}$ si $k \neq i + n, j + n$

$$\begin{aligned} &\mathcal{T}_{ij}^{"}(\xi).e_{i} = e_{i} + \xi_{e_{j+n}} \\ &\mathcal{T}_{ij}^{"}(\xi).e_{j} = e_{j} + \xi_{e_{i+n}} \\ &\mathcal{T}_{ij}^{"}(\xi).e_{k} = e_{k} \quad \text{si } k \neq i, j \end{aligned}$$

$$\begin{aligned} & & \Upsilon_{\mathbf{i}}(\xi) \cdot \mathbf{e}_{\mathbf{i}+\mathbf{n}} = \mathbf{e}_{\mathbf{i}+\mathbf{n}} + \xi \mathbf{e}_{\mathbf{i}} \\ & & \Upsilon_{\mathbf{i}}(\xi) \cdot \mathbf{e}_{\mathbf{k}} = \mathbf{e}_{\mathbf{k}} & \text{si } \mathbf{k} \neq \mathbf{i} + \mathbf{n} \end{aligned}$$

$$\tau'_{i}(\xi).e_{i} = e_{i} + \xi e_{i+n}$$

$$\tau'_{i}(\xi).e_{k} = e_{k} \quad \text{si } k \neq i$$

définissent des automorphismes $\mathcal{T}_{ij}(\xi)$, $\mathcal{T}'_{ij}(\xi)$, $\mathcal{T}'_{ij}(\xi)$, $\mathcal{T}'_{i}(\xi)$, $\mathcal{T}'_{i}(\xi)$ de K^{2n} . On vérifie facilement que ces automorphismes appartiennent à Sp n, et que les applications $\xi \to \mathcal{T}_{ij}(\xi)$, $\xi \to \mathcal{T}'_{ij}(\xi)$, sont des isomorphismes de K sur des sous-groupes de Sp n. De plus, on a, si $t \in T$,

$$t \mathcal{T}_{ij}(\xi)t^{-1} = \mathcal{T}_{ij}(\omega_{i}(t)(\omega_{j}(t))^{-1}\xi)$$
$$t \mathcal{T}'_{ij}(\xi)t^{-1} = \mathcal{T}'_{ij}(\omega_{i}(t)\omega_{j}(t)\xi)$$

$$t \tau_{ij}^{"}(\xi) t^{-1} = \tau_{ij}^{"}((\omega_{i}(t) \omega_{j}(t))^{-1} \xi)$$

$$t \tau_{i}(\xi) t^{-1} = \tau_{i}((\omega_{i}(t))^{2} \xi)$$

$$t \tau_{i}^{"}(\xi) t^{-1} = \tau_{i}((\omega_{i}(t))^{-2} \xi) .$$

Il en résulte que ω_{i} - ω_{j} , $\dot{}$ + $(\omega_{i}$ + $\omega_{j})$, $\dot{}$ 2 ω_{i} sont des racines de Sp n . Or il résulte de ce qui a été dit plus haut que l'on a, pour n>1 ,

$$\dim Sp \ n = \dim Sp \ (n-1) + 4n - 1$$
;

comme dim Sp 1 = 3 , on a dim Sp n = n(2n + 1) . Comme dim T = n , il en résulte que le nombre des racines de Sp n est $2n^2 = 2n(n-1) + 2n$, donc que les racines que nous avons déjà trouvées sont toutes les racines. Il est clair que $\omega_1 - \omega_2$, ... , $\omega_{n-1} - \omega_n$, $2\omega_n$ forment un système fondamental de racines et que le diagramme de Dynkin correspondant est de type C_n . De plus, on sait que le groupe des poids est engendré par les ω_1 ; le groupe Sp n est donc un groupe simplement connexe de type C_n (si n > 1).

Le groupe projectif associé à Sp n s'appelle le groupe symplectique projectif, et se note PSp n . Soit f l'application canonique de Sp n sur PSp n , et soit f(T) = T' . L'isogénie f définit un isomorphisme spécial φ de Q • X(T') sur Q • X(T) ; on sait que les exposants radiciels de φ sont tous égaux à 1 , d'où il résulte que PSp n est encore de type C_n . De plus, $\varphi(X(T'))$ est engendré par les différences mutuelles des éléments $\frac{1}{2}\omega_1$ de X(T) ; ce groupe n'est donc autre que le groupe des racines. Il en résulte que, dans le cas de PSp n , X(T') est engendré par les racines.

2. Le groupe SO(2n + 1).

Désignons par e_0 , ..., e_{2n} la base canonique de K^{2n+1} et par SO(2n+1) le groupe des automorphismes de déterminant 1 de K^{2n+1} qui conservent la forme quadratique Q définie par

$$Q(\Sigma_{i=0}^{n} \xi_{i} e_{i}) = \xi_{0}^{2} + \sum_{i=1}^{n} \xi_{i} \xi_{i+n}$$

Supposons d'abord que K ne soit pas de caractéristique 2. Dans ce cas, la forme quadratique Q est non dégénérée ; désignons par β la forme bilinéaire associée à cette forme quadratique. Il résulte du théorème de Witt que, si n>0, les opérations de SO(2n+1) permutent transitivement entre eux les couples (x,y) de points de K^{2n+1} tels que Q(x)=1, Q(y)=-1, $\beta(x,y)=0$;

ces couples forment une variété irréductible de dimension 4n-1 dans $K^{2n+1} \times K^{2n+1}$. Par ailleurs, les opérations de SO(2n+1) qui laissent fixes les deux points $x_0 = e_n + e_{2n}$, $y_0 = e_n - e_{2n}$ forment un groupe qui est manifestement isomorphe à SO(2n-1). On en conclut, en procédant par récurrence sur n, que SO(2n+1) est un groupe connexe de dimension n(2n+1). Procédant comme dans le cas de Sp n, on voit que les matrices diagonales

$$t = (a_0, a_1, ..., a_{2n})$$

contenues dans SO(2n + 1) sont celles pour losquelles on a $a_0 = 1$, $a_i a_{i+n} = 1$ (1 $\leq i \leq n$); elles forment un tore maximal T, et le groupe des caractères rationnels de T est engendré par ω_1 , ..., ω_n si $t.e_i = \omega_i(t)e_i$ $(0 \le i \le 2n)$. Montrons que l'application identique de SO(2n + 1) dans $GL(K^{2n+1})$ est une représentation simple. Soit V un sous-espace $\neq \{0\}$ de K²ⁿ⁺¹ stable par les opérations de SO(2n + 1); V est stable par les opérations de T ; comme les fonctions 1 , $\omega_{\mathtt{i}}$, $\omega_{\mathtt{i}}^{-1}$ sur T sont toutes distinctes, il en résulte que V est engendré par ceux des vecteurs e, e, e, ..., e_{2n} qu'il contient. Or, si n > 0 , les opérations de SO(2n + 1) permutent transitivement les vecteurs x tels que Q(x) = 1; si donc $e_0 \in V$, V contient aussi les vecteurs $e_0 + e_i$ $(1 \le i \le 2n)$, d'où $V = K^{2n+1}$. Par ailleurs, les opérations de SO(2n + 1) permutent aussi transitivement entre eux les vecteurs x tels que Q(x) = 0; si donc $e_i \in V$ pour un i > 0, V contient aussi e , donc contient e + e et par suite aussi e , ce qui achève de montrer que $V = K^{2n+1}$. Comme tout élément du centre de SO(2n + 1) est une matrice scalaire, on voit tout de suite que le centre de SO(2n + 1) se réduit à son élément neutre. Il en résulte que SO(2n + 1) est un groupe semi-simple.

Si K est de caractéristique 2 , la forme bilinéaire β associée à Q est dégénérée ; l'espace des vecteurs x tels que $\beta(x,y)=0$ pour tout $y\in K^{2n+1}$ est Ke . On en déduit l'existence d'une représentation linéaire ω de SO(2n+1) opérant dans K^{2n+1}/Ke_{O} . Cette représentation est injective. Soit en effet s un élément de SO(2n+1) tel que $\omega(s)$ soit l'identité ; on a donc

$$s.x = x + u(x)e_0$$

pour tout $x \in K^{2n+1}$; on a $\mathbb{Q}(x) = \mathbb{Q}(s.x) = \mathbb{Q}(x) + u^2(x)$, d'où u(x) = 0, ce qui démontre notre assertion. Par ailleurs, $\mathbb{S}(x,y)$ ne dépend que des classes de x, y modulo Ke_o , de sorte que \mathbb{S} définit une forme bilinéaire $\mathbb{S}(x,y)$ sur $\mathbb{S}(x,y)$ vévidemment invariante par les opérations de

 $\omega(SO(2n+1))$. On a $\beta(x,x)=2Q(x)=0$, co qui montre que $\overline{\beta}$ est alternée. La restriction de Q à l'espace engendré par e, ..., e_{2n} étant une forme quadratique non dégénérée sur cet espace, la forme bilinéaire β est non dégénérée. Montrons que tout automorphisme s de K²ⁿ⁺¹/Ke_o qui laisse la forme invariante appartient à $\omega(SO(2n+1))$. Soit r l'application canonique de K^{2n+1} sur K^{2n+1}/Ke_o , et soit W l'espace engendrée par e_1 , ..., e_{2n} ; il y a un automorphisme s^* de K^{2n+1} qui laisse e_o fixe, qui transforme W en lui-même et qui est tel que ros = sor. Il est clair que s laisse invariante la forme bilinéaire β ; si donc on pose $Q_1(x) = Q(s^*.x) - Q(x)$, Q_1 est une forme quadratique dont la forme bilinéaire associée est nulle. Comme K est algébriquement clos, Q_1 est le carré d'une forme linéaire u; on a $u(e_0) = 0$. Posons $s \cdot x = s^* \cdot x + u(x)e_0$; on a encore $r \cdot s = \overline{s} \cdot r$, $s(e_0) = e_0$, de sorte que s'est un automorphisme ; son déterminant est égal à celui de \overline{s} , donc à 1 . On a $Q(s.x) = Q(s^*.x) + u^2(x)$, ce qui montre que $s \in SO(2n + 1)$; il est clair que $\omega(s) = \overline{s}$. Le groupe $\omega(SO(2n + 1))$ est donc isomorphe à Sp n ; ω étant une isogénie, on voit que SO(2n + 1) est encore semi-simple dans ce cas. De plus, le groupe T des matrices diagonales contenues dans SO(2n + 1) est encore un tore maximal ; nous définirons les ω_{i} comme plus haut. On notera $\dim SO(2n + 1) = \dim Sp n = n(2n + 1)$.

Si i et j sont des indices distincts entre 1 et n , les formules

$$\begin{split} & \mathcal{T}_{ij}(\xi).\mathbf{e}_i = \mathbf{e}_i + \xi \mathbf{e}_j \\ & \mathcal{T}_{ij}(\xi).\mathbf{e}_{j+n} = \mathbf{e}_{j+n} - \xi \mathbf{e}_{i+n} \\ & \mathcal{T}_{ij}(\xi).\mathbf{e}_k = \mathbf{e}_k \qquad \text{si } k \neq i, j+n \end{split}$$

$$\tau'_{ij}(\xi).e_{i+n} = e_{i+n} + \xi e_{j}$$
 $\tau'_{ij}(\xi).e_{j+n} = e_{j+n} - \xi e_{i}$
 $\tau'_{ij}(\xi).e_{k} = e_{k}$ si $k \neq i+n$, $j+n$

$$\begin{split} &\mathcal{T}_{ij}^{"}(\xi).e_{i} = e_{i} + \xi e_{j+n} \\ &\mathcal{T}_{ij}^{"}(\xi).e_{j} = e_{j} - \xi e_{i+n} \\ &\mathcal{T}_{ij}^{"}(\xi).e_{k} = e_{k} \quad \text{si } k \neq i, j \end{split}$$

$$\tau_{i}(\xi) \cdot e_{i+n} = e_{i+n} + \xi e_{o} - \xi^{2} e_{i}$$
 $\tau_{i}(\xi) \cdot e_{o} = e_{o} - 2\xi e_{i}$
 $\tau_{i}(\xi) \cdot e_{k} = e_{k} \quad \text{si } k \neq 0, i + n$

$$\mathcal{T}'_{i}(\xi) \cdot e_{i} = e_{i} + \xi e_{o} - \xi^{2} e_{i+n}$$

$$\mathcal{T}'_{i}(\xi) \cdot e_{o} = e_{o} - 2\xi e_{i+n}$$

$$\mathcal{T}'_{i}(\xi) \cdot e_{k} = e_{k} \quad \text{si } k \neq 0 , i$$

définissent des automorphismes de K^{2n+1} ; on vérifie facilement que ces automorphismes appartiennent à SO(2n+1) et que les applications $\xi \to \mathcal{V}_{ij}(\xi)$, $\xi \to \mathcal{V}'_{ij}(\xi)$, $\xi \to \mathcal{V}'_{ij}(\xi)$, $\xi \to \mathcal{V}'_{ij}(\xi)$, sont des isomorphismes de K sur des sous-groupes de SO(2n+1). De plus on a , si $t \in T$,

$$\begin{split} & t \; \mathcal{T}_{ij}(\xi) t^{-1} = \; \mathcal{T}_{ij}(\omega_{i}(t)(\omega_{j}(t))^{-1} \; \xi) \\ & t \; \mathcal{T}'_{ij}(\xi) t^{-1} = \; \mathcal{T}'_{ij}(\omega_{i}(t) \; \omega_{j}(t) \; \xi) \\ & t \; \mathcal{T}''_{ij}(\xi) t^{-1} = \; \mathcal{T}''_{ij}((\omega_{i}(t) \; \omega_{j}(t))^{-1} \; \xi) \\ & t \; \mathcal{T}''_{ij}(\xi) t^{-1} = \; \mathcal{T}'_{i}(\omega_{i}(t) \; \xi) \\ & t \; \mathcal{T}'_{i}(\xi) t^{-1} = \; \mathcal{T}'_{i}(\omega_{i}(t) \; \xi) \\ & t \; \mathcal{T}'_{i}(\xi) t^{-1} = \; \mathcal{T}'_{i}((\omega_{i}(t))^{-1} \; \xi) \; . \end{split}$$

Procédant comme dans le cas de Sp n, on voit que SO(2n + 1) est de type B_n (en convenant que $B_1 = A_1$, $B_2 = C_2$).

On notera que, si K est de caractéristique 2, et si ω désigne l'isogénie construite ci-dessus, ω o \mathcal{T}_{ij} , ω o \mathcal{T}_{ij}' , ω o \mathcal{T}_{ij}'' sont des isomorphismes de K sur des sous-groupes de $\omega(\mathrm{SO}(2n+1))$, tandis que $(\omega$ o $\mathcal{T}_{i})(\xi) = \overline{\mathcal{T}}_{i}(\xi^{2})$, $\overline{\mathcal{T}}_{i}$ et $\overline{\mathcal{T}}_{i}'$ étant des isomorphismes de K sur des sous-groupes de $\omega(\mathrm{SO}(2n+1))$.

3. Les groupes de type Cn.

Soit G un groupe algébrique semi-simple de type C_n . Soient T un tore maximal de G et ω_1 , ..., ω_n des éléments de Q o X(T) tels que les racines soient les $\pm (\omega_1 \pm \omega_1)$ $(i \neq j)$, $\pm 2\omega_1$. Posons

$$\alpha_1 = \omega_1 - \omega_2$$
, ..., $\alpha_{n-1} = \omega_{n-1} - \omega_n$, $\alpha_n = 2\omega_n$;

les a forment alors un système fondamental de racines. Le poids dominant fondamental ϖ_1 qui correspond à α_1 est ω_1 ; soit γ une représentation projective simple admettant ω_1 comme poids dominant. Le poids ω_1 est un poids dominant minimal et n'est pas combinaison linéaire entière des racines ; les poids de ρ sont donc les transformés $\pm \omega_i$ $(1 \le i \le n)$ de ω_1 par les opérations du groupe de Weyl et sont de multiplicité 1 (exp. 20, proposition 1 et son corollaire). La représentation pest donc de degré 2n ; elle opère sur l'espace projectif 🎾 (V) associé à un espace vectoriel V de dimension 2n. De plus, l'automorphisme de Q * X(T) qui change tout élément en son opposé appartient au groupe de Weyl; toute représentation projective de G est donc équivalente à sa contragrédiente. On en conclut que, si G' est le groupe linéaire associé à ρ , les opérations de G^{\bullet} laissent invariante une forme bilinéaire non dégénérée β sur $V \times V$, symétrique ou alternée. Nous allons montrer que β est alternée. Posons $Q(x) = \beta(x, x)$; c'est une forme quadratique sur V, invariante par les opérations de G'; les opérations de G' laissent invariante la forme bilinéaire β' associée à Q . Comme l'application identique de G^{\bullet} dans GL(V) est une représentation simple, β' est ou bien nulle ou bien non dégénérée; dans le second cas, Q est non dégénérée. Or, on a

dim $G' = \dim \rho(G) = \dim G = n(2n + 1)$.

et on sait que le groupe orthogonal d'une forme quadratique non dégénérée sur un espace de dimension 2n est n(2n-1). Il est donc impossible que $\cancel{N}\neq 0$. Si K est de caractéristique $\neq 2$, il en résulte que $\mathbb{Q}=0$; si K est de caractéristique 2 , il en résulte que \mathbb{Q} est le carré d'une forme linéaire ; mais cette dernière, étant invariante par G' , est nulle. On a donc bien $\mathbb{Q}=0$ dans tous les cas, et β est alternée. Or le groupe de tous les automorphismes de V qui invarient la forme β est de dimension n(2n+1) égale à celle de G' , et lui est par suite identique ; il en résulte que ce groupe est G' , donc que G' est isomorphe à Sp n et que $\rho(G)$ est isomorphe à PSp n . Nous allons maintemant déterminer les exposants radiciels de l'isomorphisme spécial attaché à ρ .

Soit plus généralement f une isogénie quelconque de G sur un groupe \overline{G} ; posons $\overline{T}=f(T)$, et soit φ l'isomorphisme spécial de Q $X(\overline{T})$ sur Q X(T) associé à f . Soit $\overline{\alpha}$ la racine de \overline{G} telle que $\varphi(\overline{\alpha}_1)=q_1$ α_1 , etant une puissance de l'exposant caractéristique de K. Les racines α_1 , ..., α_{n-1} sont transformées les unes des autres par des opérations du

groupe de Weyl; les nombres q_1 , ..., q_{n-1} sont donc égaux entre eux (exp. 18, proposition 4); soit q' leur valeur commune, et soit $q'' = q_n$. Soient c(i, j) (resp. $\overline{c}(i, j)$) les entiers de Cartan du système fondamental $(\alpha_1, \ldots, \alpha_n)$ (resp. du système fondamental $(\alpha_1, \ldots, \alpha_n)$); on sait que l'on a

$$c(i, j) = \overline{c}(i, j) q_i q_j^{-1}$$

(exp. 18, proposition 4). On en conclut que c(i, i+1) = 1 si $1 \le i \le n-2$, $2 = \overline{c}(n-1, n)q'q''^{-1}$. Comme $\overline{c}(n-1, n)$ ne peut prendre que les valeurs 1, 2 ou 3, on a ou bien $\overline{c}(n-1, n) = 1$, q' = 2q'' ou bien $\overline{c}(n-1, n) = 2$, q' = q''. Dans le premier cas, K est nécessairement de caractéristique 2 et on a $\overline{c}(n, n-1) = 2$, de sorte que \overline{G} est de type B_n . Dans le second cas, \overline{G} est de type C_n .

Revenons maintenant au cas où f est la représentation projective ρ considérée ci-dessus ; on sait que l'on a alors $q_1=1$ (exp. 20 , corollaire au lemme 2), de sorte qu'on se trouve dans le second cas (cela résulte d'ailleurs aussi de ce que $\rho(G)$, étant isomorphe à PSp n , est de type C_n). Les exposants radiciels de ρ sont donc tous égaux à 1 . Nous avons donc montré que tout groupe G de type G0 admet une isogénie sur PSp n dont tous les exposants radiciels sont égaux à 1 .

Soit G^* un autre groupe de type C_n , et soit T^* un tore maximal de G^* . Soit $(\alpha_1^*,\ldots,\alpha_n^*)$ un système fondamental de racines de G^* tel que le diagramme de Dynkin correspondant soit

Il existe un isomorphisme de $\mathbb{Q} \otimes X(T^*)$ sur $\mathbb{Q} \otimes X(T)$ qui applique $\overset{*}{\alpha}_{\dot{1}}$ sur $\alpha_{\dot{1}}$ ($1 \leqslant i \leqslant n$). Si cet isomorphisme applique $X(T^*)$ sur X(T), les groupes G et G^* sont isomorphes (exp. 18, proposition 5). Par ailleurs, dans le cas d'un groupe de type G_n , le proupe des poids contient le groupe des racines comme sous-groupe d'indice G^* . On en conclut que, si l'indice dans G^* du groupe des racines de G^* est égal à l'indice dans G^* du groupe des racines de G^* sont isomorphes. Nous arrivons donc au résultat suivant :

THÉORÈME 1. – Tout groupe algébrique semi-simple de type C_n est isomorphe à l'un ou l'autre des groupes Sp n ou PSp n .

4. Isogénies d'un groupe de type C2.

Nous nous proposons de démontrer le théorème suivant :

THEOREME 2. - Soit G un groupe algébrique semi-simple de type C_2 ; soit T un tore maximal de G. Soient G' un groupe algébrique et T' un tore maximal de G'. Supposons qu'il existe un isomorphisme spécial ψ de Q * X(T') sur Q * X(T); ψ est alors attaché à une isogénie de G sur G'.

On sait déjà qu'il existe un groupe simplement connexo G_o de type C_2 et une isogénie f_o de G_o sur G; si T_o est le tore maximal de G_o tel que $f(T_o) = T$, f_o définit un isomorphisme spécial ϕ_o de Q * X(T) sur $Q * X(T_o)$. L'application ϕ_o o ϕ est un isomorphisme spécial de Q * X(T') sur $Q * X(T_o)$; s'il est associé à une isogénie de G_o sur G', le théorème sera établi en vertu de la proposition 5, exp. 18. On peut donc supposer G simplement connexe. Soit $(\alpha_1$, $\alpha_2)$ un système fondamental de racines de G tel que le diagramme de Dynkin correspondant soit

1 ___ 2

Soient q_1 et q_2 les exposants radiciels de φ relativement à α_1 et α_2 ; on a ou bien $q_1=q_2$ ou bien $q_1=2q_2$. L'isogénie des puissances q_2 -ièmes applique G sur un groupe \overline{G} et T sur un tore \overline{T} ; il lui correspond un isomorphisme spécial $\overline{\psi}$ de $Q \otimes X(\overline{T})$ sur $Q \otimes X(T)$ dont les exposants radiciels sont égaux à q_2 . Comme $\overline{\psi}$ applique $X(\overline{T})$ sur q_2 X(T), il est clair que \overline{G} est encore simplement connexe. L'isomorphisme ψ se met sous la forme $\overline{\psi} \circ \psi_1$, où ψ_1 est un isomorphisme de $Q \otimes X(T')$ sur $Q \otimes X(\overline{T})$, qui applique le groupe des racines de G' dans celui de \overline{G} . Comme \overline{G} est simplement connexe, ψ_1 est spécial. Si ψ_1 est attaché à une isogénie de \overline{G} sur G', ψ est attaché à une isogénie de G sur G'. Nous pouvons donc nous ramener au cas où G est simplement connexe et $q_2=1$. Supposons désormais qu'il en soit ainsi.

Considérons d'abord le cas où on a aussi $q_1=1$. Soit T'' un tore maximal de PSp 2 et soit (α_1'',α_2'') un système fondamental de racines de PSp 2 par rapport à T'' tel que le diagramme de Dynkin correspondant soit

1 ___ 2

Nous savons qu'il existe des isogénies g et g' de G et G' sur PSp 2 telles que g(T) = g'(T') = T'' et que les isomorphismes spéciaux χ' , χ' attachés à g et g' appliquent α''_i sur α'_i et α'_i respectivement, α'_i étant

la racine de G' telle que $\varphi(\alpha_i) = \alpha_i$. On a $\chi = \varphi \circ \chi'$; il en résulte que Ψ est attaché à une isogénie de G sur G' (exp. 18, proposition 6).

Considérons maintenant le cas où $q_1=2$; K est alors de caractéristique 2. Posons $G^*=SO(5)$, $G^{**}=Sp\ 2$; nous avons vu plus haut qu'il existe une isogénie $^{(3)}$ de G^* sur G^{**} , des tores maximaux T^* et T^{**} de G^* sur G^{**} tels que $\omega(T^*)=T^{**}$ et des systèmes fondamentaux de racines (α_1^*,α_2^*) et $(\alpha_1^{**},\alpha_2^{**})$ de G^* et G^{**} qui possèdent les propriétés suivantes : les diagrames de Dynkin associés à ces systèmes fondamentaux sont tous deux le diagrameme

1 ___ 2

et les exposants radiciels de l'isomorphisme spécial θ de Q \bullet $X(T^{**})$ sur Q \bullet $X(T^{*})$ attaché à ω sont 2 et 1 respectivement. Par ailleurs, SO(5) est de type $B_2 = C_2$ et Sp 2 est simplement connexe de type C_2 ; il existe donc des isogénies g de G sur SO(5) et g' de Sp 2 sur G' telles que $g(T) = T^*$, $g'(T^{**}) = T'$ et que les exposants radiciels des isomorphismes spéciaux \emptyset et \emptyset attachés à g et g' soient égaux à 1 . On a alors $\emptyset = \emptyset \circ \theta \circ \emptyset$; il en résulte que φ est attaché à l'isogénie g' \bullet ω \circ g de G sur G', ce qui achève la démonstration du théorème.

5. Isogénies d'un groupe de type A1 + A1 .

THEOREME 3. - Soient G un groupe algébrique semi-simple de type $A_1 + A_1$ et T un tore maximal de G. Soient G' un groupe algébrique semi-simple et T' un tore maximal de G'. Supposons qu'il existe un isomorphisme spécial ψ de Q \times X(T') sur Q \times X(T); G' est alors de type $A_1 + A_1$ et ψ est attaché à une isogénie de G sur G'.

Il résulte immédiatement de la proposition 4 , exp. 18 que G' est de type $A_1 + A_1$. Soit \overline{G} le groupe $SL(K^2) \times SL(K^2)$, et soit \overline{T} un tore maximal de \overline{G} . Le groupe \overline{G} est manifestement simplement connexe. On voit facilement qu'il existe des isomorphismes spéciaux \forall et \forall de $Q \times X(T)$ et $Q \times X(T')$ sur $Q \times X(\overline{T})$ tels que \forall et \forall o φ . Tenent compte de la proposition 5 , exp. 18 , on voit qu'il suffit de démontrer le théorème 3 dans le cas où $G = SL(K^2) \times SL(K^2)$. Soit (x_1, x_2) un système fondamental de racines de G par rapport à T ; soient x_1' et x_2' les racines de G' par rapport à T' telles que $\varphi(x_1') = q_1 x_1'$ (i = 1,2), les q_1 étant des puissances de l'exposant caractéristique de K.

Si i = 1 ou 2 , les racines α_{i} , $-\alpha_{i}$ (resp. α'_{i} , $-\alpha'_{i}$) forment un système fermé de racines de G (resp. G') ; il lui correspond un sous-groupe G_{i} (resp. G'_{i}) de G (resp. G'_{i}); G_{i} est isomorphe à $SL(K^{2})$; on a $G = G_{1}$ G_{2} , $G'_{i} = G'_{1}$ G'_{2} et tout élément de G_{1} (resp. G'_{1}) commute à tout élément de G_{2} (resp. G'_{2}). Le groupe G_{i} (resp. G'_{i}) a un tore maximal T_{i} (resp. T'_{i}) contenu dans T (resp. T'_{i}) et on a $T = T_{1}$ T_{2} , $T'_{i} = T'_{1}$ T'_{2} . La restriction X_{i} (resp. X'_{i}) de X_{i} (resp. X'_{i}) à X_{i} (resp. X'_{i}) est une racine de G_{i} (resp. G'_{i}). Comme G_{i} est isomorphe à $SL(K^{2})$, il y a une isogénie f_{i} de G_{i} sur G'_{i} qui applique T_{i} sur T'_{i} telle que l'isomorphisme spécial Y_{i} de Y_{i} Y_{i} de Y_{i} $Y_{$