SÉMINAIRE CLAUDE CHEVALLEY

C. CHEVALLEY

Existence d'isogénies, I

Séminaire Claude Chevalley, tome 2 (1956-1958), exp. nº 23, p. 1-12

http://www.numdam.org/item?id=SCC_1956-1958__2__A10_0

© Séminaire Claude Chevalley

(Secrétariat mathématique, Paris), 1956-1958, tous droits réservés.

L'accès aux archives de la collection « Séminaire Claude Chevalley » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

-:-:-:-

EXISTENCE D'ISOGÉNIES, I

(Exposé de C. CHEVALLEY, le 20.1.1958)

1. Existence de groupes simplement connexes.

PROPOSITION 1. - Soit G un groupe algébrique semi-simple. Il existe alors une isogénie h d'un groupe algébrique semi-simple simplement connexe G' sur G. De plus, T étant un tore maximal de G et T' le tore maximal de G' tol que h(T') = T, on peut supposer que les exposants radiciels de l'isomorphisme η de Q X(T) sur $Q \times X(T')$ attaché à h sont tous égaux à 1.

Soit $(\alpha_1, \ldots, \alpha_n)$ un système fondamental de racines de G par rapport à T ; soit $w_{\mathbf{i}}$ le poids dominant fondamental relatif à $\alpha_{\mathbf{i}}$ et soit $\beta_{\mathbf{i}}$ une représentation projective simple de poids dominant 💆 de G . Nous désignerons par G, le groupe linéaire associé à la représentation , et par f, l'application naturelle de G_i sur $ho_i(G)$. Soit G' la composante algébrique de l'élément neutre dans le groupe des $(s_1, \ldots, s_n, s) \in G_1 \approx \ldots \times G_n \times G$ tels que l'on ait $\beta_i(s) = f_i(s_i)$ $(1 \le i \le n)$; les projections de $G_1 \times \ldots \times G_n \times G$ sur ses différents facteurs définissent des homomorphismes h_1 , ... , h_n , h de G' dans G_1 , ..., G_n , G; on a $f_i \circ h_i = \rho_i \circ h$. Les noyaux des f_i étant finis, il en est de même de celui de h . Pour tout s e G , il existe des $s_i \in G_i$ tels que $f_i(s_i) = \rho_i(s)$, d'où on déduit que dim $G' \geqslant dim G$; h est par suite une isogénie. Soit T' le tore maximal de G' telque h(T') = T, et soit η l'isomorphisme de \mathbb{Q} * X(T) sur \mathbb{Q} * X(T') attaché à h . Posons $\eta(\alpha_i) = q_i \alpha_i'$, q_i étant une puissance de l'exposent caractéristique de K et et α_i' une racine de G'. Soit γ_i' un isomorphisme de K sur un sous-groupe de G^{\dagger} associé à la racine α_i' ; si $\eta(\alpha_i) = q_i \alpha_i'$, on a $h(\tau_i'(\xi)) = \tau_i'(\xi^{q_i})$, où \mathcal{C}_i est un isomorphisme de K sur un sous-groupe de G associé à la racine α_i ; nous voulons montrer que $q_i = 1$. Or β_i est un homomorphisme de K sur un sous-groupe de fi(G) formé d'éléments unipotents. Il en résulte (exp. 18, proposition 3) qu'il existe un homomorphisme $\widetilde{\mathcal{L}}_{\mathbf{i}}$ de K dans $\mathbf{G}_{\mathbf{i}}$ tel que $\mathbf{f_i} \circ \widetilde{\mathbf{f_i}} = \mathbf{f_i} \circ \mathbf{f_i}$. On a donc

$$(\mathbf{f_i} \circ \, \widehat{\boldsymbol{\tau}_i})(\boldsymbol{\xi}^{\mathbf{q}}\mathbf{i}) = \, \boldsymbol{\rho_i}(\boldsymbol{\tau_i}(\boldsymbol{\xi}^{\mathbf{q}}\mathbf{i})) = (\boldsymbol{\rho_i} \circ \mathbf{h})(\boldsymbol{t_i}(\boldsymbol{\xi})) = \mathbf{f_i}((\mathbf{h_i} \circ \boldsymbol{\tau_i})(\boldsymbol{\xi})) \quad ; \quad$$

il en résulte immédiatement (le noyau de f_i étant composé d'éléments semisimples) que $h_i(r_i'(\xi)) = \tilde{r}_i(\xi^q i)$. Or on a

$$\mathcal{T}_{\mathbf{i}}'(\xi) = (h_{\mathbf{i}}(\mathcal{T}_{\mathbf{i}}'(\xi) , \dots , h_{\mathbf{n}}(\mathcal{T}_{\mathbf{i}}'(\xi)) , h(\mathcal{T}_{\mathbf{i}}'(\xi))) ;$$

il en résulte immédiatement que $q_i=1$. Nous avons donc montré que les exposants radiciels de γ sont tous égaux à 1 (ce qui montre incidemment que G' est du même type que G). Il en résulte que les $\widetilde{w}_i'=\gamma(\overline{w}_i)$ sont les poids dominants fondamentaux de G' relatifs au système fondamental $(\alpha_1',\ldots,\alpha_n')$. Pour chaque i, β_i o h est une représentation projective simple de poids dominant \widetilde{w}_i' de G'. Comme cette représentation s'écrit f_i o h_i , on voit que h_i est une représentation linéaire simple de poids dominant \widetilde{w}_i' de G', d'où $\widetilde{w}_i' \in X(T')$. Ceci étant vrai pour tout i, G' est simplement connexe.

PROPOSITION 2. - Soient G un groupe algébrique semi-simple simplement connexe et T un tore maximal de G. Pour toute racine α de G par rapport à T, soit Z_{α} le sous-groupe presque simple de dimension 3 de G associé à la racine α . Les groupes Z_{α} sont alors tous isomorphes à $SL(K^2)$.

2. Isogénies attachées à un même isomorphisme spécial.

PROPOSITION 3. - Soient G et G' des groupes algébriques semi-simples, T et T' des tores maximaux de G et G', f et f' des isogénies de G sur G' telles que f(T) = f'(T) = T'. Si les isomorphismes spéciaux de Q \otimes X(T') sur Q \otimes X(T) associés à f et f' sont identiques, on a f' = f o g , où g est

un automorphisme intérieur de G produit par un élément de T.

Faisant usage de la proposition 6, exp. 18, on voit qu'il y a une isogénie g de G sur lui-même qui applique T sur lui-même, et qui possède les propriétés suivantes : on a f' = f o g, et l'isomorphisme spécial de Q X(T) sur lui-même attaché à h est l'automorphisme identique ; de plus, g est un automorphisme de G. Il est clair que g coîncide avec l'identité sur T. Il en résulte que h est un automorphisme intérieur produit par un élément de T (cf. la démonstration de la proposition 1, exp. 17).

PROPOSITION 4. — Les notations étant celles de la proposition 3 , soit de plus (x_1, \ldots, x_n) un système fondamental de racines de G par rapport à T ; pour chaque i , soient Z_i le sous-groupe presque simple de G associé à x_i , T_i le tore maximal de Z_i contenu dans T et s un élément du normalisateur de T_i dans Z_i n'appartenant pas à T_i . Supposons que G et G' soient simplement connexes, que les isomorphismes spéciaux associés à f et f' soient identiques et que $f'(s_i) = f(s_i)$ pour tout i . On a alors f' = f .

Comme Z_1 , ..., Z_n engendrent G, il suffit de montrer que, pour tout i, les restrictions f_i et f'_i de f et f' à Z_i sont égales. Comme $f' = f \circ h$, où h est un automorphisme intérieur de G produit par un élément de T, d'où $h(Z_i) = Z_i$ pour tout i, on a $f_i(Z_i) = f_i(Z_i)$. Soit $T_i' = f_i(T_i) = f_i'(f_i)$; comme f_i et $f_i^!$ coincident sur T_i , les isomorphismes spéciaux de Q_i \otimes $X(T_i^!)$ sur Q X(Ti) associés à fi et fi sont identiques ; il en résulte que $f_i' = f_i \circ h_i$, où h_i est un automorphisme intérieur de Z_i produit par un élément t, de T, . Par ailleurs, f, est bijective. En effet, s'il n'en était pas ainsi, le centre de Z serait d'ordre 2, de sorte que la caractéristique de K serait $\neq 2$, et $Z_{i}^{!} = f_{i}(Z_{i})$ scrait isomorphe à $PL(K^{2})$; mais $Z_{i}^{!}$ est le sous-groupe de dimension 3 de G'associé à une racine de G'par rapport à T' et est par suite isomorphe à SL(K²) puisque G' est simplement connexe. L'égalité $f_i(s_i) = f_i(s_i)$ entraîne donc $h_i(s_i) = s_i$. Il nous suffira de montrer que ceci entraîne que h_i est l'identité. Or on a s_i^{-1} t_i $s_i = t_i^{-1}$, d'où $s_i = t_i$ s_i $t_i^{-1} = s_i$ t_i^{-2} et par suite $t_i^{-2} = e$ (l'élément neutre). Or, T_i est isomorphe au groupe multiplicatif K^* des éléments $\neq 0$ de K. Si Kest de caractéristique 2, la relation $t_i^2 = e$ entraîne $t_i = e$. Sinon, T_i n'a qu'un seul élément d'ordre 2 , et cet élément appartient au centre de $\rm Z_i$, car Z_i , étant isomorphe à $SL(K^2)$, a un centre d'ordre 2. Donc, dans tous les cas, t, appartient au centre de Z, , ce qui montre que h, est l'identité.

PROPOSITION 5. - Soient G un groupe algébrique semi-simple, T un tore maximal de G, $(\alpha_1, \ldots, \alpha_n)$ un système fondamental de racines de G par rapport à T. Pour chaque i, soit Z_i le sous-groupe presque simple de dimension 3 de G associé à α_i , T_i le tore maximal de Z_i contenu dans T et s_i , s_i^i des éléments du normalisateur de T_i dans Z_i n'appartenant pas à T_i . Il existe alors un élément t de T tel que ts_i $t^{-1} = s_i^i$ $(1 \le i \le n)$.

On a $s_i^!=t_i s_i^!$, où $t_i^!=st$ un élément de $T_i^!$. Observons maintenant que, pour tout $t\in T$, on a $tZ_i^!=t^{-1}=Z_i^!$, $tT_i^!=T_i^!$; il en résulte que $ts_i^!=t^{-1}s_i^{-1}\in T_i^!$. Soit f l'application

$$t \to (ts_1 t^{-1} s_1^{-1}, \dots, ts_n t^{-1} s_n^{-1})$$

de T dans $T_1 \times \cdots \times T_n$. Comme T est commutatif, f est un homomorphisme. Montrons qu'il est de noyau fini. Soit t un élément de ce noyau. L'opération du groupe de Weyl qui correspond à s_i est la symétrie par rapport à a_i ; on a donc $a_i(s_i t^i s_i^{-1}) = (a_i(t^i))^{-1}$ pour tout $t^i \in T$, d'où $a_i(t) = \pm 1$ $(1 \le i \le n)$ d'où notre assertion résulte immédiatement. On en conclut que

$$\dim f(T) = \dim T = n = \dim T_1 \times \dots \times T_n$$
,

d'où $f(T) = T_1 \times \dots \times T_n$, ce qui démontre la proposition 5 .

3. Énoncé du théorème. Notations.

Nous nous proposons de démontrer le théorème suivant :

THÉORÈME 1. - Soient G et G' des groupes algébriques semi-simples, T et T' des tores maximaux de G et G' et ϕ un isomorphisme spécial de Q • X(T') sur Q • X(T) . Il existe alors une isogénie f de G sur G' telle que ϕ soit l'isomorphisme spécial attaché à f .

Nous utiliserons les notations suivantes. Pour chaque racine α de G par rapport à T, nous désignerons par τ_{α} un isomorphisme de K sur un sous-groupe de G associé à α et par Z_{α} le sous-groupe presque simple de dimension 3 de G associé à α ; si α est la racine de G' telle que $\varphi(\alpha) = q(\alpha)\alpha$, $q(\alpha)$ étant une puissance de l'exposant caractéristique de K, nous désignerons par τ_{α} un isomorphisme de K sur un sous-groupe de G' associé à α et par Z_{α} le sous-groupe presque simple de dimension 3 de G' associé à α . Si α et β sont des racines de G, nous désignerons par $Z_{\alpha\beta}$ le sous-groupe radiciel de G

Il est clair qu'il existe un homomorphisme f_T de T sur T' tel que $\chi'(f_T(t)) = (\varphi(\chi))(t)$ pour tout $t \in T$ et tout caractère rationnel χ' de T'; si φ est attaché à une isogénie f de G sur G', f prolonge f_T . Si α , β sont des racines, f_T applique $f_{\alpha,\beta}$ sur $f_{\alpha,\beta}$.

PROPOSITION 6. — Si ϕ est attaché à une isogénie f de G sur G', ϕ est aussi attaché à une isogénie f' de G sur G' telle que l'on ait f'(s_i) = s_i (1 \leq i \leq n).

On a évidemment $f(Z_{\alpha\beta}) = Z_{\alpha\beta}^{!}$, $f(f(T)) \in \mathcal{M}(T')$; $f(s_{\alpha})$ est donc un élément de $Z_{\alpha}^{!} \cap \mathcal{M}(T')$, Comme on a s_{α} $ts_{\alpha}^{-1} = t^{-1}$ pour tout $t \in T_{\alpha}$, on a $f(s_{\alpha})$ t' $f(s_{\alpha}^{-1}) = t'^{-1}$ pour tout $t' \in T_{\alpha}^{!}$. Il résulte de là qu'on a

$$f(s_i) = t_i' s_i' \quad (1 \le i \le n)$$

avec des $t_1^! \in T_1^!$. Il y a un automorphisme intérieur $h^!$ de $G^!$, produit par un élément de $T^!$, qui transforme $f(s_1)$ en $s_1^!$ $(1 \le i \le n)$ (proposition 5); posons $f^! = h^!$ of . L'application $f^!$ est encore une isogénie de G sur $G^!$; comme $h^!$ laisse fixes les éléments de $T^!$, on a $f^!(T) = T^!$ et l'isomorphisme spécial de $Q \otimes X(T^!)$ sur $Q \otimes X(T)$ attaché à $f^!$ est encore V, ce qui démontre la proposition $f^!$

PROPOSITION 7. - La restriction de f_T à $T_{\alpha\beta}$ peut se prolonger en une isogénie de $Z_{\alpha\beta}$ sur $Z_{\alpha\beta}^{\dagger}$.

Démontrons maintenant la

PROPOSITION 8. - L'application f_T peut se prolonger en un épimorphisme de $\mathfrak{H}(T)$ sur $\mathfrak{H}(T')$ qui applique s_i sur s_i' $(1 \le i \le n)$.

Désignons par W le groupe de Weyl de G et par w_i la symétrie par rapport à $^{\infty}$. Introduisons un groupe libre W* à n générateurs w_i^* $(1 \le i \le n)$; il y a un homomorphisme a* de W* dans le groupe des automorphismes de T qui associe à tout w_i^* l'automorphisme $t \to s_i$ ts_i^{-1} de T; formons le produit semi-direct $\mathcal{H}^*(T)$ de T et W* relativement aux onérateurs a*(w*); nous considererons T comme un sous-groupe distingué de ce groupe. Il est clair qu'il y a un homomorphisme u* de $\mathcal{H}^*(T)$ dans $\mathcal{H}^*(T)$ qui coincide avec l'identité sur T et qui applique w_i^* sur s_i $(1 \le i \le n)$. Déterminons le noyau U* de u*. Si i et j sont des indices entre 1 et n , soit m(i , j) l'ordre de l'élément w_i w_j de W ; posons $(s_i s_j)^{m(i,j)} = t_{ij} \in T$. Il est clair que U* contient le plus petit sous-groupe distingué U_0^* de $\mathcal{H}^*(T)$ qui contienne les éléments

$$z_{ij}^* = t_{ij}^{-1} (w_i^* w_j^*)^{m(i,j)}$$
.

Nous allons montrer que l'on a $U_0^* = U^*$. L'homomorphisme u^* définit par passage

aux quotients un homomorphisme u_o^* de $\Re^*(T)/U_o^*$ dans $\Re(T)$ dont il suffira de montrer que c'est un monomorphisme. Il est clair que u_o^* induit un isomorphisme de TU_o^*/U_o^* sur T; il suffira donc de montrer que l'homomorphisme u_1^* de $\Re^*(T)/TU_o^*$ dans $\Re(T)/T$ déduit de u_o^* par passage aux quotients est un monomorphisme. Or $\Re^*(T)/T$ est canoniquement isomorphe à W^* et le groupe qui correspond à TU_o^*/T dans cet isomorphisme est le plus petit sous-groupe distingué de W^* contenant les $(w_1^* w_j^*)^{m(1,j)}$. On sait que ce groupe n'est autre que le noyau de l'homomorphisme de W^* sur W qui applique w_1^* sur w_1 $(1 \le i \le n)$ (exposé 14, théorème 1). On en conclut que l'ordre de $\Re^*(T)/TU_o^*$ est égal à celui de W, donc à celui de $\Re(T)/T$. Par ailleurs, $u_1^*(\Re^*(T)/TU_o^*)$ contient les classes des s_1 modulo T et est par suite $\Re(T)/T$ tout entier, ce qui montre bien que u_1^* est un monomorphisme, et même que u_0^* est un isomorphisme de $\Re^*(T)/U_o^*$ sur $\Re(T)/T$.

Ceci étant, montrons que f_T se prolonge en un homomorphisme f^* de $\chi_i^*(T)$ dans $\chi_i^*(T)$ qui applique w_i^* sur $s_i^!$ $(1 \le i \le n)$. Il suffit pour cela de montrer que l'on a $s_i^!$ $f_T(t)s_i^{!-1} = f_T(s_i^{}$ $ts_i^{-1})$ si $t \in T$. Or, désignons par χ_i^* un caractère rationnel quelconque de T^* et par $w_i^!$ la symétrie par rapport à $\alpha_i^!$; on a

$$\chi'(s_{i}^{!} f_{T}(t)s_{i}^{!-1}) = (w_{i}^{!}(\chi'))(f_{T}(t)) = (\phi(w_{i}^{!}(\chi')))(t) ;$$

mais on sait que l'on a $\phi \circ w_1' = w_1 \circ \phi$ (exposé 18 , proposition 4) ; la formule à démontrer résulte immédiatement de là.

Montrons maintenant que U* est contenu dans le noyau de f* . Il suffit de montrer que, si i et j sont des indices entre 1 et n , z_{ij}^* appartient au noyau de f* . Or la restriction de f_T à T_{ij} peut se prolonger en une isogénie f_{ij} de Z_{ij} sur $Z_{ij}^!$ (proposition 7), et on peut même supposer en vertu de la proposition 6 que $f_{ij}(s_i) = s_i^!$, $f_{ij}(s_j) = s_j^!$. Il en résulte que l'on a

$$f_T(t_{ij}) = (s_i \, s_j)^{m(i,j)}$$
,

d'où il résulte immédiatement que l'on a $f^*(z_{ij}^*) = 1$. Il résulte de là que f^* définit par passage aux quotients un homomorphisme $f_{(T)}$ de $\mathcal{N}(T)$ dans $\mathcal{N}(T')$ qui prolonge f_T et applique s_i sur s_i^* $(1 \le i \le n)$. Cet homomorphisme est un épimorphisme car $\mathfrak{N}(T')$ est engendré par T' et par les s_i^* .

Nous désignerons dans ce qui suit par $f_{\Pi(T)}$ l'homomorphisme (évidemment unique) de M(T) sur M(T') qui prolonge f_T et applique s_i sur s_i^* $(1 \le i \le n)$ Soient s un élément quelconque de M(T) et w l'opération correspondante du groupe de Weyl ; posons $f_{M(T)}$ (s) = s' et soit w' l'opération du groupe de Weyl de G' définie par s'; w et w' sont alors liés par la relation $\psi \circ w' = w \circ \psi$. Soit en effet χ' un caractère rationnel de T'. On a, pour $t \in T$, $\chi'(f_{M(T)}(s^{-1} ts)) = (\psi(\chi'))(s^{-1} ts) = ((w \circ \psi)(\chi'))(t)$; mais le premier membre est aussi égal à $\chi'(s^{-1} f_T(t)s')$, donc à

$$(w'(\chi'))(f_T(t)) = ((\varphi \circ w')(\chi'))(t)$$
,

ce qui démontre notre assertion.

Montrons que l'on a $f(s_{\alpha}) \in Z_{\alpha}^{!}$ pour toute racine α . Il y a une racine fondamental α_{i} et une opération α_{i} du groupe de Weyl telles que $\alpha_{i} = \alpha_{i}$; soit s' un élément de $\mathcal{M}(T)$ qui produise l'opération α_{i} . Il est clair que l'on a alors $\alpha_{i} = \alpha_{i}$, de sorte que l'on peut écrire $\alpha_{i} = \alpha_{i}$, où $\alpha_{i} = \alpha_{i}$ qui ne diffère de $\alpha_{i} = \alpha_{i}$ que par un élément de $\alpha_{i} = \alpha_{i}$. Il en résulte que l'on a $\alpha_{i} = \alpha_{i} = \alpha_{i}$ ($\alpha_{i} = \alpha_{i} = \alpha_{i}$) ($\alpha_{i} =$

$$\Psi(\beta) = \psi(\varphi(\alpha_i)) = q(\alpha_i) \psi(\alpha_i) = q(\alpha_i) \varphi$$

ce qui montre bien que β' n'est autre que la racine α' de G' qui correspond à α . Nous pouvons donc supposer les s'_{α} choisis de telle manière que l'on ait

$$f_{\alpha(T)}(s_{\alpha}) = s_{\alpha}$$

pour tout & ; c'est ce que nous ferons désormais.

PROPOSITION 9. - Soient G* un groupe abstrait et h un homomorphisme de G* dans G; supposons les conditions suivantes satisfaites:

1° G* contient un sous-groupe $\mathfrak{A}^*(T)$ tel que h induise une bijection de ce groupe sur $\mathfrak{A}(T)$; si α est une racine de G, on désigne par s_{α}^* l'élément de $\mathfrak{A}^*(T)$ tel que $h(s_{\alpha}^*) = s_{\alpha}$; on désigne par T_{α}^* le sous-groupe de $\mathfrak{A}^*(T)$ tel que $h(T_{\alpha}^*) = T_{\alpha}$; si α , β sont des racines, on désigne par $T_{\alpha}^*\beta$ le sous-groupe de $\mathfrak{A}^*(T)$ tel que $h(T_{\alpha}^*\beta) = T_{\alpha}\beta$;

pour toute combinaison linéaire rationnelle γ de \propto et β qui est une racine; 4° G* est engendré par les Z_{∞}^{*} pour toutes les racines \propto . L'homomorphisme h est alors un isomorphisme.

Nous choisirons un groupe de Borel B de G contenant T. Rappelons que, si $\Gamma(T)$ est le groupe des groupes à un paramètre de T , l'espace vectoriel $\Omega \circ \Gamma(T)$ est en dualité avec $\Omega \circ X(T)$. Nous choisirons un élément X de la chambre de Weyl C qui correspond à B tel que les valeurs prises en X par doux racines distinctes soient toujours distinctes. Nous désignerons par S_1 , ..., S_N les racines qui sont négatives sur C arrangées dans un ordre tel que l'on ait $S_1(X) < S_2(X) < \ldots < S_N(X)$; les $S_1(X)$ étant $S_1(X) < S_1(X)$ est combinaison linéaire à coefficients entiers $S_1(X) < S_1(X)$ et $S_1(X) < S_1(X)$ est $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotents de B ; si $S_1(X) < S_1(X)$ est unipotent

$$uB_{k}^{u} u^{-1} = B_{k}^{u}$$
;

or il résulte encore du corollaire au lemme 1 , exposé 17 que B_k^u P_i est un sous-groupe de B^u , puis du lemme 1 , b., exposé 13 , que B_k^u est un sous-groupe distingué de B_k^u P_i . Montrons maintenant que B_k^{*u} est un sous-groupe distingué du groupe B^{*u} engendré par les P_i^* . Nous procédons par récurrence sur k ; désignant par B_0^{*u} le groupe réduit à son élément neutre, supposons que k>0 et que notre assertion soit vraie pour k-1 . Il résulte immédiatement de l'hypothèse inductive que B_k^{*u} est un groupe ; pour montrer qu'il est distingué, il suffira de montrer que, si i>k, $u^*\in P_i^*$, on a

$$u^* P_k^* u^{*-1} \subset B_k^{*u}$$
.

Nous utiliserons pour cela le groupe $Z_{i\delta_k}^*$. Posons $u=h(u^*)$; soit v^* un élément de P_k^* et soit $v=h(v^*)$. L'élément uvu^{-1} est dans le groupe engendré par les P_j pour les $j\geqslant k$ tels que δ_j soit combinaison linéaire à coefficients entier $\geqslant 0$ de δ_i et δ_k , le coefficient de δ_k étant $\neq 0$. Les groupes P_j^* correspondants sont dans $Z_{i\delta_k}^*$; comme h induit un isomorphisme de $Z_{i\delta_k}^*$ sur $Z_{i\delta_k}$, $u^*v^*u^{*-1}$ est dans le groupe engendré par les P_j^* pour les p_i^* possédant les propriétés indiquées, donc est dans p_i^* , ce qui montre que p_i^* est danstingué. On conclut de là que p_i^* est dans p_i^* comme un élément de p_i^* ne se met que d'une seule manière sous la forme p_i^* comme un élément de p_i^* ne se met que d'une seule manière sous la forme p_i^* on voit que h induit un isomorphisme de p_i^* sur p_i^* soit p_i^* est dans p_i^* soit combinaison p_i^* est dans p_i^* e

Nous désignerons par T* le sous-groupe de $\text{NL}^*(T)$ tel que $h(T^*) = T$. Ce groupe est engendré par les T_{∞}^* pour toutes les racines $\alpha = \delta_1$. Si $\alpha = \delta_1$ et si β est une racine quelconque, l'existence de l'isomorphisme induit par $\alpha = \delta_1$ sur $Z_{\alpha\beta}$ montre que le normalisateur de $\alpha = \delta_1$ contient $\alpha = \delta_1$ ceci étant vrai pour toute racine $\alpha = \delta_1$ on voit que le normalisateur de $\alpha = \delta_1$ contient $\alpha = \delta_1$

Pour chaque opération w du groupe de Weyl W de G, nous choisirons un élément s(w) de $\mathbb{M}(T)$ dont la classe modulo T soit w (en identifiant W à $\mathbb{M}(T)/T$); nous désignerons par s*(w) l'élément de $\mathbb{M}(T)$ tel que $h(s^*(w)) = s(w)$; on peut supposer que $s(w) = s_{\infty}$, s*(w) = s* si w est la symétrie w, par rapport à une racine α . Nous supposerons de plus que B est le groupe de Borel qui correspond au système fondamental $(\alpha_1, \ldots, \alpha_n)$. Pour toute racine α , nous désignerons par P_{∞} le sous-groupe unipotent de G associé à la racine α ; on a donc $P_{\infty} = P_{1}$ si $\alpha = \frac{1}{2}$, $P_{\infty} \subset Z_{\infty} = Z_{-\infty}$; nous désignerons par P_{∞}^* le sous-groupe de Z_{∞}^* tel que $h(P_{\infty}^*) = P_{\infty}$. Montrons que l'on a s*(w) P_{∞}^* (s*(w)) $^{-1} = P_{\mathrm{w}(\infty)}^*$. Il suffit évidemment de le montrer quand w est la symétrie par rapport à une racine β (car, pour toute racine α , le normalisateur de P_{∞}^* contient T^*). Or, dans ce cas, s*(w) et P_{∞}^* sont dans $Z_{\infty}^*\beta$ et l'assertion résulte de ce que h induit un isomorphisme de $Z_{\alpha\beta}^*\beta$ sur $Z_{\alpha\beta}$.

Si $w \in W$, nous désignerons par B_w^u (resp. B_w^{u}) le groupe engendré par les P_i pour lesquels $w^{-1}(\delta_i)$ est la forme - δ_j (resp. δ_j); on sait que

 $B^{u} = B^{u}_{w} B^{*u}_{w}$ (exposé 13). Nous désignerons par B^{*u}_{w} et B^{*u}_{w} les sous-groupes de B^{*u} qui sont appliqués sur B^{u}_{w} et B^{*u}_{w} par h ; on a donc $B^{*u} = B^{*u}_{w} B^{*u}_{w}$. Si $w^{-1}(\delta_{i}) = \delta_{i}$, on a P^{*}_{i} s*(w) = s*(w) P^{*}_{i} ; il en résulte que l'on a

$$B^* s^*(w) B^* = B_w^{*u} s^*(w) B^*$$
.

Si \propto est une racino fondamentale, le groupe $B_{\mathbf{w}}^{\bullet}$ est engendré par les $P_{\mathbf{i}}^{*}$ pour tous les i tels que $\delta_i \neq \alpha$; nous le désignerons par D_{α}^* . Si $w(\alpha)$ est la symétrie par rapport à lpha , w(lpha) permute entre elles les racines $\delta_{f i}$ qui sont $\neq \alpha$; il en résulte que s_{α}^* appartient au normalisateur de p_{α}^* . Soit i(α) l'indice tel que $\alpha = \delta_{i(\alpha)}$; le groupe $h(D_{\alpha}^{*})$ est un sous-groupe distingué de B, d'où il résulte que Dx est un sous-groupe distingué de B. Le normalisateur de D_{α}^* contient donc $P_{i(\alpha)}^*$ et T_{α}^* ; contenant aussi S_{α}^* , il contient les groupes $P_{i(x)}^*$, T^* et le transformé de $P_{i(x)}^*$ par s_x^* , groupes qui engendrent le groupe Z_{α}^{*} (en vertu du fait que h induit un isomorphisme de Z_{α}^{*} sur Z_{∞}). Désignons par G_{0}^{*} la réunion des ensembles B^{*} s * (w) B^{*} = B_{w}^{*u} s * (w) B^{*} pour tous les $w \in W$. Nous allons montrer que l'on a $Z_{C^*}^*G_{C^*}^* \subset G_{C^*}^*$ pour toute racine fondamentale \propto . Il suffit de montrer que l'on a Z_{\sim}^* B* s*(w) B* \subset G* . Comme $B^* = D^* P_{i(x)}^*$, et comme Z_{x}^* est contenu dans le normalisateur de D_{∞}^* et contient $P_{i(\alpha)}^*$, il suffit de montrer que l'on a Z_{∞}^* T^* $s^*(w)$ $B^* \subseteq G_{\alpha}^*$, ou encore que $Z_{\alpha}^* s^*(w) \subset G_{\alpha}^*$ puisque le normalisateur de Z_{α}^* contient T^* . On a $Z_{\propto}^* = Z_{\propto}^* s_{\propto}^*$ et $s_{\propto}^* s^*(w) = \theta^* s^*(w(x)w)$, où θ^* est un élément de T_{\propto}^* ; on en conclut que l'on peut se ramener au cas où $w^{-1}(x)$ est l'une des δ_i , c'està-dire où $P_{i(x)}^{*}$ $s^{*}(w) < s^{*}(w)$ B^{*} ; supposons denc qu'il en soit ainsi. Le groupe Z_{α} est la réunion des ensembles $P_{i(\alpha)}$ T_{α} et $P_{i(\alpha)}$ s T_{α} $P_{i(\alpha)}$ (corollaire 1 au théorème 3, exposé 13); Z_{α}^{*} est donc la réunion de $P_{i(\alpha)}^{*}$ T_{α}^{*} et de $P_{i(x)}^{*} s_{x}^{*} T_{x}^{*} P_{i(x)}^{*}$, Comme $P_{i(x)}^{*} s_{x}^{*}(w) c s_{x}^{*}(w) B_{x}^{*}$, $T_{x}^{*} s_{x}^{*}(w) = s_{x}^{*}(w) T_{x}^{*}$, il en résulte hien que $Z_{\infty}^* s^*(w) \leq G_{\infty}^*$.

L'ensemble G_0^* contient donc les Z_{∞}^* pour toutes les racines fondamentales α ; de plus, si w est une opération quelconque du groupe de Weyl, on a

$$(s^*(w) Z^*_{\infty}(s^*(w))^{-1}) G^*_{0} \subset G^*_{0}$$
.

Mais on a

$$s^*(w) Z^*_{\infty}(s^*(w))^{-1} = Z^*_{w(x)}$$

Comme toute racine peut être transformée en une racine fondamentale par opération du groupe de Weyl, on voit que $Z_{\infty}^*G_0^*\subset G_0^*$ pour toute racine ∞ . Comme G^* est engendré par les Z_{∞}^* , on a $G_0^*=G^*$.

Par aillours, on sait que les ensembles $h(B_{W}^{*u} s^{*}(w)B^{*}) = B_{W}^{u} s(w)B$ sont mutuellement disjoints et qu'un élément de $B_{W}^{u} s(w)B$ ne se met que d'une seule manière sous la forme $bs(w)b^{!}$, avec $b \in B_{W}^{u}$, $b^{!} \in B$. Il en résulte immédiatement que h est une bijection de $G^{*} = G_{O}^{*}$ sur G, ce qui démontre la proposition 9.

COROLLAIRE. - Soit f une application de G dans un groupe H . Supposons les conditions suivantes satisfaites : f induit un homomorphisme de $\mathfrak{A}(T)$ dans H ; pour tout couple (x,β) de racines de G , f induit un homomorphisme de Z $\alpha\beta$ dans H . Alors f est un homomorphisme de G dans H .

Pour tout $s \in G$, soit $f^*(s)$ l'élément (s, f(s)) de $G \times H$; soit G^* le sous-groupe de $G \times H$ engendré par les ensembles $f^*(Z_{\alpha}) = Z_{\alpha}^*$ pour toutes les racines α ; la projection de $G \times H$ sur G induit un homomorphisme G^* dans G. Pour montrer que G^* est un homomorphisme, il suffit évidemment de montrer que G^* sur G. Or cela résulte immédiatement de la proposition G.