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ON THE LONG TIME BEHAVIOR OF KDV TYPE EQUATIONS

[after Martel-Merle]

by Nikolay TZVETKOV

1. INTRODUCTION

A central problem in the theory of dispersive PDE’s is to understand the interplay

between nonlinearity and dispersion. In the context of the water waves problem (see

e.g. [1]) the Korteweg-de Vries (KdV) equation

(1) ut + uxxx + ∂x(u
2) = 0, x ∈ R

appears to be the simplest (asymptotic) model where both dispersive and nonlinear

effects are taken into account. If we neglect the nonlinear interaction ∂x(u
2) we deal

with the Airy equation

(2) ut + uxxx = 0.

The solutions of (2) are known to “disperse” in the sense that every solution u of (2)

issued from L1(R) ∩ L2(R) initial data u(0, ·), has its L2 mass conserved but

lim
t→∞

‖u(t, ·)‖L∞(R) = 0.

If we neglect the dispersive term uxxx, we deal with the Burgers equation which

is known to develop singularities in finite time, even for smooth initial data. The

KdV equation (1) displays a balance between dispersion and nonlinearity since the

dynamics of (1) is well defined, globally in time, for a very large class of initial data

and moreover the solutions of (1) enjoy a rich dynamics as t → ∞. A very special

role among the solutions of (1) is played by the so-called solitary wave solution

(3) uc(t, x) = Qc(x− ct) =
3c

2
ch−2

(√
c

2
(x− ct)

)
, c > 0.

The solution (3) does not disperse and represents the displacement of the profile Qc
with speed c from left to right as the time t increases. Using the inverse scattering

method (see [16, 29, 58]), it turns out that for sufficiently large t, any solution of

(1) issued from well localized smooth initial data decomposes as a sum of solitary

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



220 N. TZVETKOV

waves of type (3) plus a radiation term moving in the opposite direction. A natural

generalization of (1), with stronger nonlinear effects, is the equation

(4) ut + uxxx + ∂x(u
p) = 0,

where p is a positive integer. The case p = 3 (modified KdV) is a very special case

since, as in the case of (1), it can be treated with the inverse scattering method.

Unfortunately, the integrability machinery does not seem to apply anymore for the

equation (4) when p 6= 2, 3. Therefore the qualitative study of (4) in these cases is

much less understood.

The equation (4) is a Hamiltonian PDE and its solutions enjoy, at least formally,

the conservation laws

(5) ‖u(t, ·)‖L2 = ‖u(0, ·)‖L2

and

(6)
1

2
‖ux(t, ·)‖2

L2 − 1

p+ 1

∫ ∞

−∞

up+1(t, x)dx =
1

2
‖ux(0, ·)‖2

L2 − 1

p+ 1

∫ ∞

−∞

up+1(0, x)dx.

Using the Gagliardo-Nirenberg inequalities

‖u(t, ·)‖p+1
Lp+1(R) 6 C‖u(t, ·)‖(p+3)/2

L2(R) ‖ux(t, ·)‖(p−1)/2
L2(R) ,

we deduce from (5) and (6) that, for p < 5, the H1 norm of u(t, ·) is bounded

independently of t as u(0, ·) ∈ H1(R). Consequently, the H1 local well-posedness

result of Kenig-Ponce-Vega [27] implies the existence of well-defined global dynamics

of (4), for p < 5, in the energy space H1(R).

If p > 5, the H1 local well-posedness result of Kenig-Ponce-Vega still applies (see

Theorem 2.1 below) but the conservation laws (5), (6) provide no longer anH1 control

and hence solutions developing singularities in finite time may appear. The existence

of such solutions has been a long standing open problem. In the case p = 5, this

problem has been solved by Martel-Merle in a series of recent papers. The goal of

this exposé is to discuss the main ideas developed by Martel-Merle, together with a

presentation of previously known closely related results. One can extract from the

results of Martel-Merle the following statement.

Theorem 1.1 (Martel-Merle [35, 44, 36, 37]). — Let p = 5. There exists u0 ∈
H1(R) such that the local solution of (4) with initial data u0 blows up in finite time.

More precisely there exists T > 0 such that limt→T ‖u(t, ·)‖H1(R) = ∞.

We refer to section 8 below for a more precise statement. Let us make a comment

on the choice of the initial data u0. Equation (4) still has solutions of type (3).

Namely, the solitary waves of (4) have the form uc(t, x) = Qc(x − ct), c > 0 with

Qc(x) = c1/(p−1)Q(
√
cx) and

Q(x) =
[ p+ 1

2 ch2
(
p−1
2 x

)
]1/(p−1)

.
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The crux of the Martel-Merle analysis is the deep understanding of the flow of (4)

close to a solitary wave. It turns out that the solutions developing singularities in

finite time constructed by Martel-Merle are issued from initial data close to Q(x) and

are essentially of the form Qc(t)(x+ x(t)) with c(t) → ∞ as t→ ∞.

The study of solutions of PDE’s developing singularities in finite time is an active

research field. Let us briefly recall a few of the existing results and compare them

with the analysis in the context of (4). In the case of semi-linear wave equations,

due to the “finite propagation speed”, the blow-up dynamics can be approximated by

an ODE developing singularities in finite time (see [2] and the references therein).

In the case of quasi-linear wave equations, a Burgers type behavior is behind the

blow up dynamics (see [15] and the references therein). The equation (4) does not

enjoy similar finite propagation speed properties and the qualitative study of (4)

offers new features. Probably the closest models to (4) are the nonlinear Schrödinger

equations (NLS). In the case of NLS, we have a functional (viriel functional) giving

a simple obstruction for the existence of global dynamics (see [59] and the references

therein). A similar functional is not known to exist in the context of (4). Due to a

conformal invariance(1) of some Nonlinear Schrödinger equations, one can construct

explicit blow-up solutions (see [41, 43, 60]). Similar invariance is not known in the

context of (4).

The rest of this text is organized as follows. In the next section we recall some

basic facts on the Cauchy problem for (4). Next, we recall results on the stability of

the solitary waves for (4). Starting from section 4, we concentrate on the case p = 5.

In section 4, we present a characterization of the solitary waves among the solutions

with data close to the profile Q. Then, in sections 5 and 6, we present two applications

of that characterization result. Section 5 is devoted to an asymptotic stability result

while in section 6 we present a result showing the existence of solutions blowing up in

finite or infinite time. The last two sections are devoted to the existence of solutions

blowing up in finite time. In section 7, we present a result on the blow-up profile

which is essential to prove the blow-up in finite time. Section 8 is devoted to the

argument providing finite-time blow-up solutions. Finally, in section 9 we present

some remarks and open problems.

Acknowledgments. — It is a pleasure to thank Anne de Bouard, Khaled El Dika and

Jean-Claude Saut for many valuable discussions on the subject. I am also indebted

to Anne de Bouard, Laurent Clozel, Yvan Martel and Frank Merle for their remarks

on previous versions of this text.

(1)The viriel functional is a consequence of that invariance too.
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2. THE CAUCHY PROBLEM

In this section, we collect some preliminary results on the Cauchy problem
{
ut + uxxx + ∂x(u

p) = 0,

u(0, x) = u0(x),
(7)

where p > 1 is an integer. The following theorem(2), which can be extracted from the

work of Kenig-Ponce-Vega [27], is the starting point for the study of (7) in H1.

Theorem 2.1 ([27]). — For every u0 ∈ H1(R), there exist T ∈ ]0,+∞], bounded

from below by a positive constant which only depends on ‖u0‖H1 , and a func-

tional space XT continuously embedded in C([0, T ] ; H1(R)) such that the Cauchy

problem (7) has a unique maximal solution u ∈ XT . Moreover, if T < +∞ then

limt→T ‖u(t, ·)‖H1 = ∞.

Of course, a similar statement holds for negative times t. One can also prove the

local well-posedness of (7) in Hs for suitable s < 1. This fact plays an important

role in the Martel-Merle work. For example, it is used to prove that the flow enjoys

a continuity property with respect to the weak H1 topology.

Let us give some indications on the proof of Theorem 2.1 in the case p = 5. The

proof of the other cases follows similar lines. In the case p = 5, one can prove that (7)

is well-posed for data in Hs, s > 0. The proof is based on applying the contraction

mapping principle to the integral formulation (Duhamel principle) of (7)

(8) u(t) = S(t)u0 −
∫ t

0

S(t− τ)∂x(u
p(τ))dτ.

In (8), S(t) = exp(−t∂3
x) is the generator of the free evolution. This is the operator

of convolution with respect to x with (3t)−1/3 Ai(x(3t)−1/3), where Ai is the Airy

function. Let us recall that the Airy function is exponentially decaying on the right

and it decays as |x|−1/4 on the left (see e.g. [24]). Using the smoothing properties of

S(t) one can prove (see [27, Corollary 2.11]) that for u0 ∈ H1, the right-hand side of

(8) is a contraction in a suitable ball of the space XT of functions defined on [0, T ]×R,

equipped with the norm

‖u‖XT
= ‖u‖L∞

T
Hs

x
+‖Ds

x u‖L5
x L

10
T

+‖Ds/3
t u‖L5

x L
10
T

+‖Ds
x ux‖L∞

x L2
T

+‖Ds/3
t ux‖L∞

x L2
T
.

The argument relies on some methods from harmonic analysis (restriction phenomena,

maximal function estimates, etc.). In the case s = 0 the argument breaks down.

However, in that case we are able to insure the contraction property, if ‖u0‖L2 is

small enough. Therefore, if p = 5, the equation (4) is L2-critical.

(2)We refer to [56, 7, 25, 21] for earlier results on the well-posedness theory of (7).
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Another very important aspect in the study of (7) is the Kato smoothing effect (see

[25]). Let ϕ ∈ C3(R) be bounded with all its derivatives. If u is a solution of (4) then,

multiplying (4) with ϕu and integrating by parts, we obtain the formal(3) identity

(9)
d

dt

∫ ∞

−∞

u2(t)ϕ = −3

∫ ∞

−∞

u2
x(t)ϕ

′ +

∫ ∞

−∞

u2(t)ϕ(3) +
2p

p+ 1

∫ ∞

−∞

up+1(t)ϕ′.

Note that, if ϕ is increasing then the first term in the right-hand side of (9) is negative.

This fact was used by Kato [25] to show a remarkable local smoothing effect for

(7), if p < 5. Namely the solution turns out to be one derivative smoother than

the data, locally in space. In [25] well-posedness results in weighted Sobolev spaces

are also obtained. The article of Kato was a great source of inspiration for many

further works on the subject. It is also the case in the papers by Martel-Merle. For

example, the crucial monotonicity properties (see section 5 below) are strongly related

to identity (9).

3. STABILITY AND INSTABILITY OF THE SOLITARY WAVES

The initial data giving rise to blow-up solutions in the work of Martel-Merle belong

to a small neighborhood of the function Q(x) which is the initial data for a solitary

wave. Thus the question of long time stability (or instability) of the solution Q(x− t)
of (4) is closely related to Martel-Merle analysis. This question has a long history

starting from the pioneering work of Benjamin [4]. The aim of this section is to briefly

summarize the state of the art on the stability of Q(x− t). Similar discussion is valid

for the solitary wave Qc(x− ct) (recall that Q = Q1).

Let us first notice that there exist data for (4) arbitrary close to Q(x) such that

the corresponding solution does not stay close to Q(x − t) for long times. This is

clearly the case of Qc(x) with c close but different from 1. Indeed, if c is close to 1

then Q(x) is close to Qc(x), but, because of the different propagation speed, Q(x− t)

and Qc(x− ct) separate from each other for t� 1.

Notice however that in the previous example the solution issued from Qc remains

close to spatial translates of Q. Hence this example does not exclude orbital stability

of Q (up to the action of the group of spatial translations). Indeed, it turns out that

for p < 5 the solution Q(x− t) is orbitally stable under small H1 perturbations. Here

is the precise statement.

Theorem 3.1. — Let p < 5. For every ε > 0 there exists δ > 0 such that if the

initial data of (7) satisfies ‖u0 −Q‖H1 < δ then there exists a C1 function x(t) such

(3)The rigorous justification for sufficiently “nice solutions” u can be obtained by approximation

arguments thanks to a propagation of regularity property of the local flow of (7).
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that, for every t ∈ R, the corresponding solution(4) of (7) satisfies

‖u(t, · + x(t)) −Q(· − t)‖H1 < ε.

The proof of Theorem 3.1 can be found in [8] as an application of the general theory

developed in [23]. See also [4, 6, 60, 61, 62] for earlier closely related results. Let us

also mention the work of Cazenave-Lions [14] for an apparently different approach

based on global variational arguments. In the case p = 2, we have L2 solutions of (4)

(see [12]) and it is a natural question whether the space H1 in Theorem 3.1 could be

replaced with L2. The answer to that question is positive, as shown in the work by

Merle-Vega [50].

Let us give the main idea of the proof of Theorem 3.1. Denote by E(u) and N(u)

the functionals

(10) E(u) :=
1

2
‖ux‖2

L2(R) −
1

p+ 1

∫ ∞

−∞

up+1(x)dx, N(u) :=
1

2
‖u‖2

L2(R).

Recall that if u is aH1 solution of (4) then the quantities E(u(t)) andN(u(t)) are time

independent. Hence the functional H(u) := E(u)+N(u) defines another conservation

law. Since Q solves (−∂2
x + 1)Q = Qp, we infer that Q is a critical point of H . Using

the implicit function theorem, we can find a C1 function x(t), defined a priori at least

for small t such that u(t, x + x(t)) = Q(x) + E(t, x) and 〈E(t), Q′〉 = 0. Here and in

the sequel 〈·, ·〉 stands for the L2(R) inner product. Then clearly,

H(u(0)) = H(u(t)) = H(u(t, · + x(t))) = H(Q+ E(t)),

and since Q is a critical point of H , by Taylor expansion, we deduce

(11) H(u(0)) −H(Q) = H(Q+ E(t)) −H(Q) =
1

2
〈LE(t), E(t)〉 + o

(
‖E(t)‖2

H1

)
,

where L = −∂2
x − pQp−1 + 1. The next lemma is crucial.

Lemma 3.2. — Let p < 5. Then there exists C > 0 such that for every v ∈ H1

satisfying 〈v,Q〉 = 〈v,Q′〉 = 0, one has 〈Lv, v〉 > C‖v‖2
H1 .

The proof of Lemma 3.2 uses the explicit form of Q. Actually we have a complete

understanding of the spectrum of L, namely one simple negative eigenvalue associated

to a positive eigenfunction, the simple eigenvalue zero associated to Qx and all the

rest of the spectrum is included in [γ,∞], for some γ > 0. The relevant fact related to

the assumption p < 5 is that d′′(1) > 0 where d(c) = E(Qc)+cN(Qc). Unfortunately,

the function E(t) involved in the decomposition of u(t, x+x(t)) is not orthogonal to Q

and Lemma 3.2 alone does not suffice to complete the proof. However, by writing

(4)The existence is ensured from Theorem 2.1 and the Gagliardo-Nirenberg inequality as shown in

the introduction.
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E(t) = αQ+E1(t) with E1 satisfying the assumptions of Lemma 3.2, we can apply the

lemma to E1, the L2 conservation law to evaluate α and to conclude that

〈LE(t), E(t)〉 > C‖E(t)‖2
H1 + o

(
‖E(t)‖2

H1

)
,

provided ‖u‖L2 = ‖Q‖L2. Hence Q is a local minimizer of the energy E on the sphere

of L2 centered at the origin and of radius ‖Q‖L2. Finally using the continuity of E

and N on H1 allows one to complete the stability proof.

It turns out that the restriction p < 5 in Theorem 3.1 is sharp.

Theorem 3.3. — Let p > 5. Then the solitary wave Q(x − t) is not stable in the

sense of Theorem 3.1.

The proof of Theorem 3.3 for p > 5 can be found in [8] while the more involved anal-

ysis in the critical case p = 5 is performed in [33]. The argument is based on the con-

struction of a suitable Lyapunov functional. If we set ψc(x) := c1/(p−1)Q(c2/(p−1)x)

then ‖ψc‖L2 = ‖Q‖L2, and for p > 5, ψ1 = Q is a local maximum of E(ψc) for c

near 1. Thus, in contrast with the case p < 5, if p > 5 then Q is a saddle point of

E(u) subject to the constraint ‖u‖L2 = ‖Q‖L2. Define a function y as

y(x) :=
1

p− 1
Q(x) +

2x

p− 1
Q′(x).

The relevant fact about y is that y = ∂ψc

∂c |c=1. As in the stability proof, we“modulate”

the solution of (4) with data close to Q as u(t, x + x(t)) = Q(x) + E(t, x) with

〈E(t), Q′〉 = 0. Such a decomposition of the solution is possible as far as it stays in

a small H1 neighborhood of the spatial translates of Q. For p > 5, the Lyapunov

functional is

J(t) =

∫ ∞

−∞

Y (x− x(t))u(t, x)dx,

where Y (x) =
∫ x
−∞

y(z)dz. We refer to [23] for the general construction of Lyapunov

functionals in the context of solitary waves for PDE’s in the presence of symmetry.

The discussion of [23] greatly clarifies the nature of the functional J(t).

For p > 5, we have that J ′(t) > κ > 0, if the initial data is ψc with c close but

different from one, due to the property of the curve {ψc, c ∼ 1} described above. On

the other hand, using some properties of the Airy function, by arguments in the spirit

of the Cauchy problem analysis, we can obtain that J(t) 6 C(t−2/3 + t2/3), t > 0,

which in view of the lower bound for J ′(t) shows that instability holds.

In the critical case p = 5, the Lyapunov functional used in [33] is a suitable com-

bination of J(t) and the viriel functional

I(t) =

∫ ∞

−∞

(x− x(t))u2(t, x)dx.

The quantities J(t) and I(t) play a central role in Martel-Merle work. They are both

measures for the loss of some mass during the time evolution. Notice that a priori
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these quantities do not make sense for H1 solutions. The rigorous justification of

the existence of J(t) and I(t) is one of the important analytic aspects in the analysis

of (7) in a small neighborhood of the solitary waves.

Actually, the critical nature of the exponent p = 5 can be “predicted” from the

spectral analysis of Pego-Weinstein [53]. Let us linearize (4) around the solution

Q(x− t). We set u(t, x) = Q(x− t) + v(t, x− t). If we take (t, x− t) as new variables

that we note again with (t, x), we obtain that v solves the equation

vt − ∂xLv +R(v) = 0,

where L = −∂2
x−pQp−1+1 and the remainder R(v) contains terms which are at least

quadratic in v. Note that L is the same operator as in the expansion of the functional

H(u) (see (11) above). As usual, the spectral properties(5) of ∂xL are an indicator

for the nonlinear stability of Q(x − t) as a solution of (4). In [53], it is shown that

∂xL, considered as an operator on L2 with domain H3, has the following spectrum :

– If p 6 5 then the spectrum coincides with the imaginary axis.

– If p > 5 then the spectrum consists in the imaginary axis together with two

simple, real eigenvalues, −λ(p) < 0 < λ(p).

Therefore, if p 6= 5, the spectral analysis of [53] agrees with (and further clarifies) the

stability theory presented above. The eigenvalue λ(p) seems to be responsible for the

instability in the case p > 5. This assertion could become rigorous by combining [53]

with the ideas of [20].

Let us now turn to the concept of asymptotic stability which is at the heart of the

work of Martel-Merle. The result of Theorem 3.1 says that the shape of the solitary

wave is stable under small H1 perturbations. But it is not clear whether u(t, x+x(t))

converges, in an appropriate sense, to a limit solitary wave. If it is indeed the case, we

say that the family of solitary waves is asymptotically stable. Of course, the choice of

the functional setting where one measures the convergence is crucial in that discussion.

There are many results on asymptotic stability in the context of dissipative PDE’s

since in that case one can directly split the dynamics into noninteracting parts due

to a spectrum of the linearized operator which does not quite meet the imaginary

axis. It seems that the first results on asymptotic stability for Hamiltonian PDE’s

are those of M. Weinstein and collaborators. In the context of (4), Pego-Weinstein

obtained asymptotic stability with convergence in the weighted Sobolev spaces H1
a ,

where a > 0 and H1
a is equipped with the norm ‖u‖H1

a
= ‖eaxu(x)‖H1 . One can

similarly define L2
a. The following result is due to Pego-Weinstein.

Theorem 3.4 ([54]). — Let p = 2, 3 and let a, b be two positive numbers such that

a3 < 1/3 and b < a− a3. Then there exist C > 0 and ε > 0 such that if u0 ∈ H2(R)

(5)This leads to the notion of spectral stability.
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satisfies

‖u0 −Q‖H1 + ‖u0 −Q‖H1
a

6 ε

then there exist x(t) and c∞ such that, for all t > 0, the solution of (7) satisfies

‖u(t, · + x(t)) −Qc∞‖H1 6 Cε

and

‖u(t, · + x(t)) −Qc∞‖H1
a

6 Cε e−bt.

The approach of Pego-Weinstein also works for some other p < 5 which are not

integers (see [54] for a precise statement). The proof of Theorem 3.4 uses heavily the

spectral analysis of ∂xL that we already discussed. In the case p < 5, the eigenvalue

λ(p) “becomes” a resonance (resolvent pole) and the corresponding mode plays an

important role in the dynamics. If we consider ∂xL as an operator on L2
a then the

spectrum shifts from the imaginary axis and the situation becomes very similar to the

case of a dissipative PDE. The number b involved in the statement of Theorem 3.4

is essentially the distance between the resonance and the imaginary axis. Let us also

mention that the modulation parameter x(t) in Theorem 3.4 is an affine function of t.

In [34], Martel-Merle prove an asymptotic stability result where the weighted norm

H1
a is replaced by a weak H1 convergence. Here is the precise statement.

Theorem 3.5 ([34]). — Consider (7) with p = 2, 3, 4. There exists ε > 0 such that

if ‖u0−Q‖H1 6 ε then there exist x(t) and c∞ such that u(t, ·+x(t))−Qc∞ converges

to zero, weakly in H1, as t→ ∞.

Note that in contrast with Theorem 3.4, the result of Theorem 3.5 does not give

an estimate for the rate of convergence. On the other hand the assumptions on the

data u0 in Theorem 3.5 are less restrictive than in Theorem 3.4. Notice also that in

Theorem 3.5 one can replace the weak H1 convergence with strong L2
loc convergence.

In the proof of Theorem 3.5, we modulate the solution u as

(12) λ2/(p−1)(t)u(t, λ(t)x + x(t)) = Q(x) + E(t, x),

where λ(t) and x(t) are chosen so that the remainder E satisfies the orthogonality

conditions

(13) 〈E(t), Q〉 = 〈E(t), Q′〉 = 0.

We note that, comparing to the stability analysis above, a new modulation parame-

ter(6) λ(t) appears in (12). That parameter is closely related to the scaling invariance

of (4) which means that if u(t, x) solves (4) then so does λ2/(p−1)u(λ3t, λx). In that

context, the modulation parameter x(t) is related to the translation invariance of (4)

which means that if u(t, x) solves (4) then, for every x0 ∈ R, the equation (4) is

also solved by u(t, x+ x0). The orthogonality conditions (13) are clearly linked with

(6)The introduction of this parameter is in fact the main new point in the instability proof for p = 5.
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Lemma 3.2 and can be achieved thanks to the implicit function theorem due to the

following non degeneracy properties of Q,

(14)
d

dλ
〈Qλ, Q〉

∣∣∣
λ=1

=
5 − p

4(p− 1)
‖Q‖2

L2,
d

dx0
〈Q(· + x0), Q

′(·)〉
∣∣∣
x0=0

= ‖Q′‖2
L2 .

Recall from the introduction that Qλ is the initial data of a solitary wave of (4)

propagating with speed λ. In view of (14), in the critical case p = 5, we are not

able to modulate u so that 〈E(t), Q〉 = 0 which makes the analysis in that case quite

different. To prove Theorem 3.5, one needs to show the convergence of λ(t) as t→ ∞
and the convergence of E(t) to zero in H1 weak. The proof of these two facts follows

lines similar to the analysis of the critical case p = 5 to which the next two sections

are devoted. In particular it heavily relies on a classification of L2 compact solutions

with data close to Q. It is important to mention that, in contrast with previous works

on the subject, in the proof of Theorem 3.5 the bounds on E rely much less on solving

the equation for E by an iteration scheme in a suitable functional setting.

In a very recent paper of Martel-Merle [39], a different proof of Theorem 3.5 is

presented. It is based on the use of a localized viriel type functional which provides a

control on E . Moreover, in [39] a strong H1 convergence on the right of the solitary

wave is obtained. In the proof of Theorem 3.5 it appears that the derivative of the

modulation parameter x(t) converges to c∞. A natural question is whether, similarly

to the result of Pego-Weinstein, in Theorem 3.5 one may take x(t) an affine function

of t. The answer to that question is negative, at least in the case p = 2, due to an

example constructed in [39].

The approach of Theorem 3.5 is further extended in [40, 32] where the asymptotic

stability in H1 of suitable sums of N solitary waves is obtained (see [31] for earlier

results). In the case p = 2, the result applies to the exact N -soliton solution of the

KdV equation (see e.g. [52]). The N -solitons of KdV can be used to show that, for

p = 2, in Theorem 3.5 strong L2 convergence is impossible. The existence of such

solutions also “explains” the use of weighted norms in the work of Pego-Weinstein.

4. CLASSIFICATION OF L2-COMPACT GLOBAL SOLUTIONS

WITH DATA CLOSE TO Q

From now on we only consider (4) in the case p = 5, i.e. we analyze the Cauchy

problem
{
ut + uxxx + ∂x(u

5) = 0,

u(0, x) = u0(x).
(15)

Let us notice that for p = 5, we have E(Qc) = 0 and ‖Qc‖L2 = ‖Q‖L2 for all c.

Hence in that case the conservation laws (5) and (6) do not present an obstruction

for the existence of blow-up solutions of the form Qc(t)(x+ x(t)) with c(t) → ∞.
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The following rigidity result, called by the authors “Liouville property”, is the main

tool in the proof of existence of simple asymptotic objects for the dynamics close to

Q(x− t).

Theorem 4.1 ([35]). — Suppose that :

(1) The function u(t, x) is a solution global in time of (15) such that

c1 6 ‖ux(t)‖L2 6 c2,

for some positive constants c1 and c2.

(2) The solution u(t, x) is L2 compact which means that there exists a function y(t)

such that for every ε > 0 there exists R > 0 such that for every t,

‖u(t, x)‖L2(|x−y(t)|>R) 6 ε.

Then there exists α > 0 such that if ‖u0 −Q‖H1 6 α then there exist λ and x0 such

that

u(t, x) = λ1/2Q(λ(x− x0) − λ3t).

Remark 4.2. — It seems that Theorem 4.1 is the first result of this type for a Hamil-

tonian PDE. On the other hand, results in the spirit of Theorem 4.1 were previously

known in the context of parabolic PDE’s (see [51, 19] and the references therein).

Let us give the main lines of the proof of Theorem 4.1. We modulate the solutions

u(t, x) of (15) with data close to Q in H1 as

(16) λ1/2(t)u(t, λ(t)x + x(t)) = Q(x) + E(t, x),

where the geometric parameters λ(t) > 0 and x(t) are defined so that E satisfies the

orthogonality conditions

(17) 〈E(t), Q3〉 = 〈E(t), Q′〉 = 0.

The reason to chose (17) as orthogonality conditions is that if E satisfies (17) then

〈LE(t), E(t)〉 > C‖E(t)‖2
H1 , where L = −∂2

x − 5Q4 + 1 is the operator arising in the

linearization of the energy functional around Q. It seems however that (17) is not

the only possible choice of orthogonality conditions on E which makes the proof of

Theorem 4.1 work. The assumption (1) and the conservation laws imply the smallness

of E(t) in H1, if u0 is close to Q in H1. If we change the time variable as

(18) s = s(t) :=

∫ t

0

λ−3(τ)dτ

then we obtain that E(s, x) solves the following equation

(19) Es − (LE)x −
λs
λ

(Q
2

+ xQ′
)
−

(xs
λ

− 1
)
Q′

=
λs
λ

(E
2

+ xEx
)

+
(xs
λ

− 1
)
Ex −

(
10Q3E2 + 10Q2E3 + 5QE4 + E5

)
x
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



230 N. TZVETKOV

The new time variable s is clearly related to the scaling of the equation. An advantage

of introducing it is that even if t ranges in a finite interval (blow-up regime) the

variable s ranges in the whole real line. Indeed, from the H1 well-posedness and a

scaling argument one easily obtains that if a solution u(t) of (15) blows up in finite

time T , then

‖ux(t, ·)‖L2 > C|T − t|−1/3,

for t ∼ T . In the context of the decomposition (16), λ(t) ∼ ‖ux(t, ·)‖−1
L2 and therefore,

in view of (18) the variable s takes all real values. Notice also that the blow-up of

u(t) can be simply expressed as λ(t) → 0, while the assumption (1) of Theorem 4.1

can be seen as c̃1 6 λ(t) 6 c̃2.

The parameter x(t) involved in the decomposition (16) is different from y(t) in the

assumption (2) of the theorem. But one easily obtains that |x(t)−y(t)| 6 C and that

E(s, x) is L2-compact, i.e. for every ε > 0 there exists R > 0 such that for every s

one has ‖E(s, x)‖L2(|x|>R) 6 ε. It turns out that the L2-compactness together with

the properties of the equation (19) give much stronger estimates on E(s, x).

Lemma 4.3. — Let a and b be defined as

(20) a := sup
s∈R

‖E(s, ·)‖H1(R), b := sup
s∈R

‖E(s, ·)‖L2(R).

Then there exist a0 > 0, C > 0 and θ > 0 such that if a < a0, then |E(s, x)| 6

C
√
ab e−θ|x|.

Remark 4.4. — The exponential decay displayed in Lemma 4.3 is related to a general

property of L2-compact solutions of (4) and is not restricted only to data close to Q

(see [30] for more details).

To prove Lemma 4.3 one needs to observe that equation (19) is essentially a critical

generalized KdV equation with exponentially decaying source term. Thus to prove

Lemma 4.3, in addition to the L2-compactness property one also has to use the L2

small data scattering theory for (15) developed by Kenig-Ponce-Vega in [27] and the

persistence of the decay by the linear KdV flow, a fact already observed in the work

of Kato [25].

The next step is to use Lemma 4.3 to get the equivalence between the H1 and L2

norms of E(s).

Lemma 4.5. — Let a and b be defined as in (20). Then there exist a1 > 0 and C > 0

such that if a < a1 then a 6 Cb.

The exponential decay obtained in Lemma 4.3 allows us to use viriel type identities.

Indeed, if we set

I(s) =
1

2

∫ ∞

−∞

xE2(s, x)dx
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we can obtain the estimate

d

ds

(
λ(s)I(s)

)
6 C1b

2 − C2‖E(s)‖2
H1

which easily provides the bound a 6 Cb.

With Lemma 4.3 and Lemma 4.5 in hand we can turn to the proof of Theorem 4.1.

Let us first notice that if E = 0 in (16) and u is a solution of (15) then, in view of

the equation solved by E , we deduce that there exist two constants α and β such that

λ(t) = α and x(t) = α−2t + β which in turn implies that u(t, x) can be represented

as claimed in the statement of Theorem 4.1.

The proof of Theorem 4.1 is indirect. Consider a sequence (un) of solutions of (15)

with limn→∞ ‖un(0) − Q‖H1 = 0 such that un satisfies assumptions (1) and (2) of

Theorem 4.1. We can thus represent un, for n � 1 as in (16) with corresponding

modulation parameters λn(t), xn(t) and remainder En. We suppose that for every n

the function En is not identically zero and we look for a contradiction.

It turns out that a suitably renormalized subsequence of En converges to a solution

of a linear problem.

Lemma 4.6. — Let bn := sups ‖En(s)‖L2 . Then there exist a sequence (sn) of real

numbers and a subsequence (En′) such that b−1
n′ En′(sn′+s) converges in L∞

loc(R ; L2(R))

to w(s) which is not identically zero and satisfies w ∈ C(R ; H1(R))∩L∞(R ; H1(R)).

Moreover w solves the equation

(21) ws − (Lw)x = α(s)
(Q

2
+ xQ′

)
+ β(s)Q′

for some continuous functions α and β. In addition w satisfies the orthogonality

conditions

(22) 〈w(s), Q3〉 = 〈w(s), Q′〉 = 0

and the exponential decay

(23) |w(s, x)| 6 C e−θ|x|

with a suitable choice of the positive constants C and θ.

At a formal level one easily verifies that the linear equation (21) appears as a limit

model for the nonlinear equation (19). We have the estimate

(24)

∣∣∣∣
λs
λ

∣∣∣∣ +
∣∣∣xs
λ

− 1
∣∣∣ 6 C sup

s
‖E(s, ·)‖L2

as a very basic property of the decomposition (16). Indeed, it suffices to multiply (19)

with Q3 and Q′ and to integrate on x. Since En solves (19), in view of the bound

(24), we obtain that at the limit bn → 0 the limit equation for b−1
n En is (21). Indeed,

all terms in the right-hand side of (19) disappear either because of (24) or because E
appears in higher powers.
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In order to make the previous formal reasoning rigorous one heavily relies on the

L2 small data global existence theory of Kenig-Ponce-Vega [27]. The fact that ‖En‖L2

controls ‖En‖H1 is of great importance in the limit process.

The last step in the proof of Theorem 4.1 is the analysis of the linear equation (21).

Theorem 4.1 follows from the following rigidity property of (21).

Lemma 4.7. — Let w ∈ C(R ; H1(R)) ∩ L∞(R ; H1(R)) be a solution of (21) sat-

isfying the orthogonality conditions (22) and the decay estimate (23). Then w is

identically zero.

Lemma 4.7 could be seen as a result of unique continuation at infinity for the

equation (21) (the decay of w is essential for the proof). Let us give an outline of

the proof of Lemma 4.7. It turns out that w(s) satisfies an additional orthogonality

condition. One can directly show that 〈w(s), Q〉 is a quantity independent of s. In

order to show that it is zero, one appeals to the functional(7)

J(s) =

∫ ∞

−∞

w(s, x)
( ∫ x

0

(Q(y)

2
+ yQ′(y)

)
dy

)
dx.

A direct computation shows that J ′(s) = 2〈w(0), Q〉. Due to the exponential decay of

w(s), |J(s)| is uniformly bounded and therefore 〈w(s), Q〉 = 0. Thus, for all s, w(s)

is orthogonal to Q.

We next consider the viriel functional

I(s) =
1

2

∫ ∞

−∞

xw2(s, x)dx.

A direct computation shows that

(25) I ′(s) = H(w(s), w(s)) + α(s)
〈
x
(Q

2
+ xQ′

)
, w(s)

〉
+ β(s)〈xQ′, w(s)〉,

where H(w,w) = 〈(Lw)x, xw〉. In view of (25), we slightly modify w(s) by setting

(26) w̃(s) = w(s) + γ(s)
(Q

2
+ xQ′

)
+ δ(s)Q′.

It turns out that with a suitable choice of γ(s) and δ(s), w̃ solves an equation of type

w̃s − (Lw̃)x = α̃(s)
(Q

2
+ xQ′

)
+ β̃(s)Q′,

satisfies the orthogonality conditions

(27)
〈
w̃(s),

(xQ
2

+ x2Q′
)〉

= 〈w̃(s), xQ′〉 = 〈w̃(s), Q〉 = 0,

and, if we set I1(s) =
∫ ∞

−∞
xw̃2(s, x)dx, then I ′1(s) = H(w̃(s), w̃(s)).

(7)Recall that a similar functional is involved in the instability analysis of the previous section.
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The next step is to use that due to the orthogonality conditions satisfied by w̃, one

has

(28) −H(w̃(s), w̃(s)) >
1

10
〈Lw̃(s), w̃(s)〉.

Once again, in order to prove (28), one needs to make explicit calculations based on the

very particular form of Q. Using the equation solved by w̃(s), one can easily check

that 〈Lw̃(s), w̃(s)〉 = 〈Lw̃(0), w̃(0)〉 and therefore I ′1(s) 6 − 1
10 〈Lw̃(0), w̃(0)〉 6 0.

Since w̃(s) is exponentially decaying we obtain that 〈Lw̃(s), w̃(s)〉 = 0.

But as a matter of fact, if u ∈ H1(R) is orthogonal to Q and satisfies 〈Lu, u〉 = 0,

then u is necessarily a linear combination of Q′ and Q
2 + xQ′. In view of (27), we

directly conclude that w̃ is identically zero. Finally, we obtain that w is identically

zero thanks to (26) and the orthogonality conditions (22).

5. ASYMPTOTIC STABILITY IN THE REGULAR REGIME

A first consequence of Theorem 4.1 is an asymptotic stability result under the

assumption that the solution with data close to Q is globally defined and uniformly

bounded in H1(R).

Theorem 5.1 ([35]). — Suppose that u(t) is a solution global in time of (15) such

that c1 6 ‖ux(t)‖L2 6 c2, for some positive constants c1 and c2. Then there ex-

ists α > 0 such that if ‖u0 − Q‖H1 6 α then there exist λ(t) and x(t) such that

λ1/2(t)u(t, λ(t)x + x(t)) converges to Q(x), weakly in H1(R), as t → ∞.

Notice that the result of Theorem 5.1 displays a weaker form of asymptotic stability

compared with the case p < 5. Indeed, in contrast with the situation for p < 5, it

is not clear whether the modulation parameter λ(t), involved in the statement of

Theorem 5.1, converges to some limit as t→ ∞.

Let us give the main ideas of the proof of Theorem 5.1. The two main ingredients

are :

– Continuity of the flow of (15) with respect to the weak H1 topology.

– An almost monotonicity property of the L2 mass for solutions of (15) with data

close to Q in H1.

The continuity property of the flow with respect to the weak H1 topology is a conse-

quence of the well-posedness of the Cauchy problem below H1 and of a viriel identity

argument. This type of results seems to appear first in a paper by Glangetas-Merle

[22]. The monotonicity property of the mass is closely related to the Kato identity

discussed in section 2. This monotonicity property separates the dynamics into two

noninteracting parts and it is related to the dispersion relation (the symbol) of the

linear part of the equation. It is worth noticing that similar monotonicity properties

hold for a fairly large class of equations such as the Benjamin-Bona-Mahony equation
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(see [17]), the Kadomtsev-Petviashvili II equation (see [57, 10]) but, it does not seem

to hold for other models as the Kadomtsev-Petviashvili I equation or the nonlinear

Schrödinger equation. We refer to [54, page 308] for a very clear explanation whether

an equation in hand may enjoy the crucial separation of the dynamics property.

The proof of Theorem 5.1 is again indirect. We modulate u(t, x) as in (16)

(29) λ1/2(t)u(t, λ(t)x + x(t)) = Q(x) + E(t, x).

Let us take a sequence tn → ∞ such that λ1/2(tn)u(tn, λ(tn)x + x(tn)) converges,

weakly in H1, to ũ0 and λ(tn) converges to λ̃0. We suppose ũ0 6= Q and we seek

for a contradiction by means of Theorem 4.1. Let ũ be the local solution of the

critical generalized KdV equation with data ũ0. Since ũ0 is close to Q in H1, we

can modulate ũ, at least for small times, with modulation parameters λ̃(t), x̃(t) and

remainder Ẽ(t, x) satisfying the same orthogonality conditions as E . The continuity

property of the flow with respect to the weak H1 topology implies the following

statement.

Lemma 5.2. — The solution ũ(t) is defined for all t ∈ R, and the sequence E(tn + t)

converges, weakly in H1(R), to Ẽ(t). Moreover, for every T > 0, λ(tn + t)− λ̃(t) and

x(tn + t) − x̃(t) converge to zero in C([−T, T ] ; R).

Notice that one first proves the lemma for small times which implies a H1 bound

on ũ(t) thanks to the H1 boundedness assumption on u. Then we extend ũ(t) for all

times due to the H1 local well-posedness of (15).

The asymptotic solution ũ being constructed, the aim is to show that it satisfies

the assumptions of Theorem 4.1, i.e. we need to check that ũ is L2-compact. Let us

notice that the leading idea at this point is that the solution ũ enjoys more properties

than the original solution u itself.

5.1. L2-compactness of ũ on the right of the solitary wave

There are different ways to prove the L2-compactness of ũ on the right. In this

subsection, we discuss an argument which is based on a direct analysis of the limit

solution ũ. In the next subsection, we present a more involved method, using Lemma

5.2, providing compactness on both sides.

To get the L2-compactness of ũ on the right, it is sufficient to show that small

solutions of (15) can not travel too fast to the right. Such a result would imply

the needed compactness since the main part of the solution is moving to the right

with speed uniformly bounded from below. Let us state precisely a lemma giving the

L2-compactness on the right. We introduce a function ψ ∈ C∞(R) by setting

ψ(x) = c0

∫ x

−∞

Q
( x
K

)
dy,
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where c0 is chosen so that limx→∞ ψ(x) = 1. Consider the functional

Iσ(t) :=

∫ ∞

−∞

ψ(x− σt)u2(t, x) dx

which measures the distribution of the L2-mass on the right with respect to a frame

moving with speed σ. Since the quantity on the right of the solitary wave is essentially

a “small solution” of (15), the next statement is the crucial point in the proof of the

L2-compactness of ũ on the right.

Lemma 5.3. — Let σ > 0 and K >
√

2/σ. There exists a positive constant Cσ such

that, if ‖u0‖L2 6 Cσ, then Iσ(t) is a non-increasing function on the trajectories of

(15).

The proof of Lemma 5.3 is an application of the Kato identity (9).

5.2. L2-compactness of ũ on the left of the solitary wave

The analysis in that case is more delicate. The main point is to show that the loss

of mass at the left is “irreversible”. Notice that Lemma 5.3 does not hold for large

solutions since there are solitary waves moving with arbitrary large speed. It turns

out however that a weaker form of Lemma 5.3 survives for large data. Let u(t) be

a solution of (15) which is decomposed as in (16). For (t0, x0) ∈ R
2 and t0 > t, we

introduce the functional

Ix0,t0(t) :=

∫ ∞

−∞

ψ(x− x(t) − x0 −
3

4
(x(t0) − x(t)))u2(t, x) dx,

where the function ψ is defined in the previous subsection. The following statement

is now the substitute of Lemma 5.3.

Lemma 5.4. — Suppose that there exist two positive numbers c1 and c2 such that c1 6

λ(t) 6 c2. Then there exist δ > 0, K > 0 and C > 0 such that, if supt ‖E(t)‖H1 < δ,

then for every x0 > 0, and 0 6 t 6 t0,

Ix0,t0(t0) − Ix0,t0(t) 6 Ce−x0/K .

Remark 5.5. — The very particular structure of the functional Ix0,t0(t) is important

for the proof. The term 3
4 (x(t) − x(t0)) is strongly needed. The number 3

4 can be

replaced by any number between 1
2 and 1.

We now explain how the L2-compactness of ũ can be obtained by combining

Lemma 5.4 and Lemma 5.2. Define the functional

mr(u(t)) :=

∫ ∞

−∞

ψ(x− x(t) − x0)u
2(t, x) dx

which measures the L2-mass on the right of the solitary wave. It is easy to see that

Lemma 5.4 implies that mr(t) is an “almost decreasing quantity”. More precisely,

(30) mr(u(t)) −mr(u(t
′)) 6 Ce−x0/K , t > t′.
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Indeed, we have that mr(u(t)) = Ix0,t(t) and due to the monotonicity of ψ and x(t),

mr(u(t
′)) > Ix0,t(t

′). Similarly, since if u(t, x) solves (15) then so does u(−t,−x), we

deduce that the quantity

ml(u(t)) :=

∫ ∞

−∞

(1 − ψ(x− (x(t) − x0)))u
2(t, x) dx,

measuring the L2-mass on the left of the solitary wave is “almost increasing”. More

precisely,

(31) ml(u(t)) −ml(u(t
′)) > −Ce−x0/K , t > t′.

Assume that ũ is not L2-compact. It means that there exists δ > 0 such that for

every bounded interval I ⊂ R, there exists t0 such that
∫

I

ũ2(t0, x)dx 6 ‖ũ(0)‖2
L2 − δ.

For a solution u(t) of (15), we define the quantity mloc(u(t)), measuring the L2-mass

in a moving frame, via the identity

(32) ‖u(t)‖2
L2 = ml(u(t)) +mloc(u(t)) +mr(u(t)).

Taking x0 � 1, we can assume

(33) mloc(ũ(0)) > ‖ũ(0)‖2
L2 − δ

4
.

The assumption of lack of L2-compactness of ũ implies the existence of t0 ∈ R such

that

(34) mloc(ũ(t0)) < ‖ũ(0)‖2
L2 − δ

2
,

if x0 � 1. We suppose that t0 > 0, the case t0 < 0 being similar. From (33) and (34),

we get the estimate

mloc(ũ(0)) −mloc(ũ(t0)) >
δ

4
.

Since the weak H1-convergence implies the strong L2
loc-convergence, using Lemma

5.2, we deduce that, if x0 � 1 (independently of t0) then there exists N such that for

n > N ,

(35) mloc(u(tn)) −mloc(u(tn + t0)) >
δ

8
.

The L2-conservation law for u can now be written as

ml(u(tn+t0))−ml(u(tn)) = mr(u(tn))−mr(u(tn+t0))+mloc(u(tn))−mloc(u(tn+t0))

which, using (30) and (35), yields

(36) ml(u(tn + t0)) −ml(u(tn)) >
δ

8
− Ce−x0/K .
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We can clearly suppose that tn+1 > tn + t0. Therefore using (31) and (36), we get

ml(u(tn+1)) −ml(u(tn)) = ml(u(tn+1)) −ml(u(tn + t0)) +ml(u(tn + t0)) −ml(u(tn))

>
δ

8
− 2Ce−x0/K .

Hence, if x0 � 1, it follows that ml(u(tn)) → ∞ which is clearly impossible in view

of the L2-conservation law. We obtain a contradiction coming from the assumption

of lack of L2-compactness of ũ. Therefore ũ is L2-compact.

Remark 5.6. — Notice that Theorem 5.1 gives an important information about nega-

tive energy solutions with data close toQ. Namely, such solutions cannot be uniformly

bounded in H1(R). Indeed, let u be a negative energy solution of (15) with data close

to Q which is uniformly bounded in H1(R). Then similarly to above, we can con-

struct an asymptotic solution ũ which satisfies the assumptions of Theorem 4.1. Thus

ũ is necessarily a rescaled and translated version of Q. In particular, E(ũ) = 0 since

in the critical case p = 5, E(Qc) = 0 for all c. On the other hand ũ is obtained

as a weak H1 limit from solutions close to Q(x − t) with negative energies which

implies that E(ũ) < 0. We thus get a contradiction with the assumption of uniform

H1-boundedness of u.

Let us finally remark that since E(Q) = 0 and ∇E(Q) = −Q, we obtain that there

exists a large set of negative energy initial data for (15) which is close to Q. An

example of such data is clearly u0(x) = ±(1 + ε)Q, where 0 < ε� 1.

6. BLOW-UP IN FINITE OR INFINITE TIME

In this section, we present a second consequence of Theorem 4.1 which is the

existence of solutions of (15) blowing up in finite or infinite time.

Theorem 6.1 ([44]). — There exists α > 0 such that if u0 ∈ H1(R) satisfies

(37) ‖u0‖L2 6 ‖Q‖L2 + α

and E(u0) < 0 (negative energy) then the solution of (15) blows up in finite or infinite

time which means that there exists T ∈ ]0,∞] such that limt→T ‖u(t, ·)‖H1 = ∞.

Remark 6.2. — Under the assumptions of Theorem 6.1, the initial data u0(x) is close

in H1(R) to ±λ1/2Q(λ(x+ x0)) for some constants λ0 and x0 (see [41, 42, 60]).

Notice that if u0 satisfies the assumptions of Theorem 6.1, then so does −u0. We

also remark that the new point in Theorem 6.1 with respect to Theorem 5.1 is that we

have the existence of the limit as t goes to T of ‖u(t, ·)‖H1 and not only the existence

of a sequence (tn) such that ‖u(tn, ·)‖H1 goes to infinity.

The approach of Theorem 6.1 is similar to that of Theorem 5.1. The new ingredients

are :

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



238 N. TZVETKOV

– Extension of the L2-compactness of the limit solution to the case when there is

no lower bound on the scaling modulation parameter λ(t).

– The use of a third conservation law of (15) which provides a control on the size

of λ(t).

The starting point in Theorem 6.1 is to modulate a negative energy solution of (15),

with data satisfying (37) for α small, as

(38) λ1/2(t)u(t, λ(t)x + x(t)) = ±Q(x) + E(t, x)

with E(t, x) satisfying the orthogonality conditions (17). Without loss of generality,

we may assume that the sign in front Q is plus. The decomposition (38) is the same

as in (16) but the proof of the control on the modulation parameters λ(t), x(t) and

the remainder E(t, x) is different under the assumptions of Theorem 6.1. Using the

variational nature ofQ one can show that the decomposition (38) holds with smallness

estimates(8) on E(t, x) and bounds on λ(t) and x(t), as far as the solution u exists.

Here, “the variational nature of Q” means that if u ∈ H1(R) is such that E(u) = 0,

‖u‖L2 = ‖Q‖L2 and ‖u′‖L2 = ‖Q′‖L2 then u(x) = ±Q(x + x0) for some constant

x0 ∈ R (see [41, 42, 60]).

The proof is by contradiction. Take a sequence (un) of negative energy global

solutions of (15) such that ‖un(0)‖L2 tends to ‖Q‖L2 as n→ ∞. We suppose that for

each n there exist a sequence (tn,m) and a constant cn so that ‖∂xun(tn,m)‖L2 6 cn,

uniformly in m. We seek for a contradiction under this assumption. Similarly to

the previous section, we define a limit object ũn(0) from the sequence (tn,m) and

the decomposition (38) applied to un. We denote by ũn(t) the local solution of (15)

with initial data ũn(0), defined on a time interval (−T1(n), T2(n)). The closeness to

Q(x− t) and the weak H1-convergence yield

(39) E(ũn) < 0.

Similarly to the considerations on the L2-compactness of ũ in the previous section,

one can show that ũn is L2-compact and satisfies a crucial exponential decay property.

This allows one to use a third conservation law of (15) applied to ũn. Namely,

(40)

∫ ∞

−∞

ũn(t, x)dx =

∫ ∞

−∞

ũn(0, x)dx,

if t ∈ (−T1(n), T2(n)). The conservation law (40) shows that the scaling modulation

parameter λ̃n(t), involved in the decomposition of ũn(t), is uniformly bounded from

below. Using that λ̃n(t) ∼ ‖∂xũn(t, ·)‖−1
L2 , we obtain a uniform bound on ‖ũn(t, ·)‖H1

which, thanks to the H1 well-posedness of (15) implies that ũn(t) is globally defined.

Since ũn is L2-compact, using Theorem 4.1, we conclude that ũn is a rescaled and

translated Q. In particular, E(ũn) = 0 which is in contradiction with (39).

(8)Depending on the smallness of (‖u0‖L2 − ‖Q‖
L2 ).
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7. BLOW-UP PROFILE

In this section, we present an extension of the asymptotic stability result of Theo-

rem 5.1 to the singular regime of Theorem 6.1. It turns out that the blow-up solutions

with data close to Q converge in H1 weak, after a suitable singular renormalization

to the profile Q. Thus the concept of asymptotic stability naturally extends to the

singular regime as shows the next statement.

Theorem 7.1 ([36]). — There exists α > 0 such that if ‖u0‖L2 6 ‖Q‖L2 + α and if

the solution u(t) of (15) blows up in finite or infinite time T ∈ ]0,∞] then there exist

λ(t) > 0 and x(t) such that λ1/2(t)u(t, λ(t)x + x(t)) converges as t → T , weakly in

H1(R), either to Q(x) or to −Q(x).

Notice that, if E(u0) < 0 then the result of Theorem 7.1 applies to the blow-

up solutions considered in the previous section. It is also worth noticing that the

energy conservation and the weak H1 convergence imply the strong convergence in

the homogeneous Sobolev space Ḣ1(R).

The proof of Theorem 7.1 follows a similar strategy to that of Theorem 5.1. How-

ever, the classification result of Theorem 4.1 alone is not sufficient to conclude because

the asymptotic solution may be singular (λ(t) → 0). For that purpose a new rigidity

result adapted to the singular regime has to be established. Again, the viriel func-

tional I(t) and the functional J(t), appeared already several times in our discussion,

are the key for the argument.

In the proof of Theorem 7.1, we write once again

(41) λ1/2(t)u(t, λ(t)x + x(t)) = ±Q(x) + E(t, x),

for t near the blow-up time T and α small enough. The difference is that now the

modulation parameters λ(t) and x(t) are chosen so that E satisfies the orthogonality

conditions

(42)
〈
E(t),

(xQ
2

+ x2Q′
)〉

= 〈E(t), xQ′〉 = 0.

Notice that we already considered orthogonality conditions of type (42) in the linear

analysis of section 4 (see (27)). The orthogonality conditions (42) are used to cancel

some second order terms in variation of the viriel functional I(t) = 1
2

∫ ∞

−∞
x E2(t, x)dx.

More precisely, at least formally,

λ3(t)İ(t) = λ2(t)λ̇(t)
〈
E(t),

(xQ
2

+ x2Q′
)〉

+ (λ2(t)ẋ(t) − 1) 〈E(t), xQ′〉

+H(E(t), E(t)) +R(E(t)),

where R(E(t)) contains only higher order terms in E(t) and H(E , E) = 〈(LE)x, xE〉 is

the bilinear form which already appeared in the proof of Lemma 4.7. The choice of

(42) as orthogonality conditions is possible thanks to the implicit function theorem,
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in view of another non degeneracy property of Q. Despite the “loss of sign” of 〈LE , E〉
with the new orthogonality conditions, one is still able to get smallness bounds on E
and a control on the modulation parameters λ and x of type (24). The variational

nature of Q is again used in the smallness estimates on E .

In order to prove Theorem 7.1, one has to show that E(t) converges to zero in H1

weak, as t→ T . One first proves that E(tn) converges to zero in H1 weak, as n→ ∞,

for a specific choice of the sequence (tn). Namely, tn is so that λ(tn) = (1.1)−n and

λ(t) 6 λ(tn) for t ∈ [tn, T [. The case of an arbitrary sequence (tn) then can be treated

by using the monotonicity of the L2-mass.

Let us describe the argument for the specific sequence (tn). The proof is by con-

tradiction. We suppose that there exists a subsequence of (tn) still denoted by (tn)

such that E(tn) converges weakly in H1 to Ẽ(0) which is not zero and we look for a

contradiction. Let ũ(0) := ±Q+ Ẽ(0). We denote by ũ(t) the local solution of (15)

subject to initial data ũ(0). Let λ̃(t), x̃(t) and Ẽ(t) be the modulation parameters

and the remainder in a decomposition of type (41) applied to ũ(t). The solution ũ(t)

may develop singularities in finite time and this is the new feature in the analysis.

Notice that λ̃(0) = 1. Thanks to the special choice of (tn) one has λ̃(t) 6 1 and

we can define a maximal τ ∈ ]0,∞] such that (1.1)−1 < λ̃(t) 6 1 for every t ∈ [0, τ).

Two possibilities appear, either τ = ∞ or τ < ∞. In the case τ = ∞, the solution ũ

is global, uniformly bounded in H1, and one can show similarly to before that ũ is

L2-compact. Thus Theorem 4.1 applies and gives a contradiction as in Theorem 5.1.

In the case τ <∞ a fairly new argument is needed. Introduce the new time variable s

as in (18) with λ̃(t) instead of λ(t). Set τ1 := s(τ). The contradiction arises from a

lower and upper bound on the quantity Λ, defined as

Λ :=

∫ τ1

0

∫ ∞

−∞

Ẽ2(s, x) e−|x|/2dxds.

One can prove an exponential decay of Ẽ to the left by the monotonicity properties

considered in section 5. This allows to consider the functional

(43) J(s) =

∫ ∞

−∞

Ẽ(s, x)
( ∫ ∞

x

(Q(y)

2
+ yQ′(y)

)
dy

)
dx− 1

4
‖Q‖2

L2.

The second term in (43) is of course not essential. Using direct computations and the

basic properties of the decomposition (41), one can show the bound

(44)
∣∣∣J ′(s) +

λs
2λ
J(s) + 2〈Ẽ(s), Q〉

∣∣∣ 6 C

∫ ∞

−∞

Ẽ2(s, x) e−|x|/2dx.

Estimate (44) is now the key for the proof of the lower bound

(45) Λ > CΛ1,

where C > 0 is independent of α,

Λ1 := 1 +

∫ τ1

0

∫ ∞

−∞

Ẽ2
x(s, x)dxds + |E|

∫ τ1

0

(λ̃(s))2ds

and E is the energy of ũ.
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For the upper bound on Λ, a localized(9) viriel type functional is used. For A > 0,

we consider the function ψA(x) = Aψ(A−1x), where ψ(x) is a smooth odd function

such that ψ(x) = x for |x| < 1, ψ′(x) = e−x for x > 2, and for x ∈ [1, 2], ψ is

increasing and concave. We consider the following localized viriel functional

IA(s) :=

∫ ∞

−∞

ψA(x)Ẽ2(s, x)dx.

Thanks to the new orthogonality conditions one obtains that there exist A > 2, γ > 0

such that

(46) I ′A(s) 6 −γ
∫ ∞

−∞

e−|x|/A
(
Ẽ2(s, x) + Ẽ2

x(s, x)
)
dx+

1

γ
〈Ẽ(s), Q〉2,

provided u0 is close enough to Q. The bilinear form H is naturally involved in the

proof of (46). More precisely, it turns out that

−H(E(s), E(s)) > C‖E(s)‖2
H1 ,

if 〈E(s), Q〉 =
〈
E(s),

(
xQ
2 + x2Q′

)〉
= 0. We have the second term in the right-hand

side in (46) because the orthogonality with respect to Q is “forbidden”for Ẽ (see (14)).

Using (46) one can get the upper bound

(47) Λ 6 Cu0
Λ1

where the constant Cu0
is tending to zero, if ‖u0‖L2 is tending to ‖Q‖L2. In view of

(45) and (47), we get a contradiction for ‖u0‖L2 close enough to ‖Q‖L2.

Remark 7.2. — A corollary of Theorem 7.1 is a lower bound on the blow-up rate which

excludes the existence of self-similar blow-up solutions for data in H1. However, in [9],

Bona-Weissler construct solutions of (7) with self-similar blow-up which are missing

the space H1.

8. BLOW-UP IN FINITE TIME

In this section, we present a result showing that under an additional assumption

on the initial data, the blow-up solutions of Theorem 6.1 develop their singularities

in finite time.

Theorem 8.1 ([37]). — There exists α > 0 such that, if u0 ∈ H1(R) satisfies

‖u0‖L2 6 ‖Q‖L2 + α, E(u0) < 0, ∀x0 > 0, ‖u0(x)‖L2(x>x0) 6 C |x0|−3,

then the solution of (15) blows up in finite time, i.e. there exists T ∈ ]0,∞[ such that

limt→T ‖u(t, ·)‖H1 = ∞.

(9)This localization is needed because we do not have available a decay of eE(s, x) for x → +∞.
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A detailed presentation of all steps in the proof of Theorem 8.1, as written is [37],

would be quite technical. For that reason, we will only give an informal presentation

of the main idea.

Consider the usual decomposition

(48) λ1/2(t)u(t, λ(t)x + x(t)) = ±Q(x) + E(t, x),

for a blow-up solution u with t near the blow-up time T . We suppose that the sign

in front of Q in the right hand side of (48) is plus. In order to prove that T is finite,

the ideal situation would be to have the bound

(49) λ̇(t) 6 −C < 0.

Estimate (49) is not known to hold in the context of (15) but one is able to prove a

weaker version of (49) as we explain below.

Substituting (48) in (15), we obtain that the equation solved by E(t, x) is

(50) λ3(t)Et − (LE)x − λ2(t)λ̇(t)
(Q

2
+ xQ′

)
− (λ2(t)ẋ(t) − 1)Q′

= λ2(t)λ̇(t)
(E

2
+ xEx

)
+ (λ2(t)ẋ(t) − 1)Ex −

(
10Q3E2 + 10Q2E3 + 5QE4 + E5

)
x
.

Let us impose that E satisfies the orthogonality conditions

(51)

∫ ∞

−∞

E(t, x)w(x)dx =

∫ ∞

−∞

E(t, x)xw′(x)dx = 0,

where

w(x) :=

∫ x

−∞

(Q(y)

2
+ yQ′(y)

)
dy.

The choice (51) is formally possible, again due to the implicit function theorem via

an explicit calculation on Q. Let us notice that w(x) does not tend to zero as x→ ∞.

Hence one needs to ensure that E(t, x) decays sufficiently fast to the right and this is

one of the major analytical problems in the proof of Theorem 8.1.

Imposing (51) as orthogonality conditions is natural, in view of the equation (50)

and the identities satisfied by w

(52) Lw′ = −2Q, 〈w′, Q〉 = 0.

The verification of (52) is straightforward. Under the orthogonality conditions (51),

using (52) and integration by parts, we easily get the following (at least formal)

identities

〈λ3(t)Et, w〉 = 0, 〈(LE)x, w〉 = 2〈E , Q〉,
〈Q

2
+ xQ′, w

〉
= c0, 〈Q′, w〉 = 〈xEx, w〉 = 0,

where c0 is a positive constant which can be easily written explicitly in terms of Q.

Therefore, multiplying (50) with w, gives the identity

(53) λ2(t)λ̇(t) = −c1〈E(t), Q〉 +R1(E(t)),
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where c1 := 2/c0 and R1(E(t)) is an explicit expression containing terms of quadratic

and higher order with respect to E(t).

On the other hand, if we denote by E < 0 the energy of u, then we get easily from

(48), the identity

(54) E = E(u(t)) = λ−2(t)E(Q+ E(t)).

Substituting Q+ E(t) in the energy functional yields

(55) E(Q+ E(t)) = −〈E(t), Q〉 +
1

2
‖Ex(t)‖2

L2 +R2(E(t)),

where R2(E(t)) is another explicit expression of E(t) containing only quadratic and

higher order terms.

Using (53), (54) and (55), we directly obtain

(56) λ2(t)E = −〈E(t), Q〉 +
1

2
‖Ex(t)‖2

L2 +R2(E(t)),

and

(57) λ̇(t) = −c2 −
c1λ

−2(t)

2
‖Ex(t)‖2

L2 + λ−2(t)R(E(t)),

where c2 := −c1E > 0 and R(E(t)) = R1(E(t)) − c1R2(E(t)).

Notice that if we neglect the third term in the right-hand side of (57), we get an

estimate of type (49). Thus one needs to bound the third term in the right-hand

side of (57). This can be achieved, with a viriel inequality of type (46). Recall that

ds = λ−3(t)dt. Thus an estimate of type (46) for E(t) together with (56) provides

a bound for λ3(t)R(E(t)) in terms of I ′A(t), i.e. it is realistic to expect that the

singularity of λ−2(t) can be compensated by the smallness of R(E(t)) (quadratic in

E(t)). Since the bound is in terms of I ′A(t), the relevant estimates one can get are

only for averages of R(E(t)) on time intervals where λ(t) does not vary much.

In [37], Martel-Merle are able to make the previous formal discussion rigorous.

More precisely, let us define a sequence (tn) such that tn → T and such that

‖ux(tn, ·)‖L2 = 2n‖Q′‖L2

and, for t ∈ ]tn, T [, one has ‖ux(t, ·)‖L2 > 2n‖Q′‖L2 . Notice that the existence of (tn)

follows from Theorem 6.1. It turns out that for n� 1,

(58) tn+1 − tn 6 C(λ(tn) − λ(tn+1))

which is an integrated form of an estimate of type (49). We can deduce directly from

(58) that T <∞.

The main point in the proof of (58) is of course the estimate of
∫ tn+1

tn
|R(E(t))|dt.

For that purpose, two modulations of the solutions with different orthogonality con-

ditions are used. The first one is very similar to the one considered in the previous
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section and enjoys the viriel type estimates of Theorem 7.1. One uses the assumption
∫ ∞

x0

u2
0(x)dx 6 C |x0|−6, x0 > 0

to get a decay to the right of the solution. This decay allows one to use a second

decomposition with the orthogonality conditions (51). One then needs to compare

the remainders of the two decompositions. It turns out that one gets cancelations

up to second order which is the crucial point in the comparison between the two key

quantities λ2(t)λ̇(t) and 〈E(t), Q〉 which in turn provides the key estimate (58).

Remark 8.2. — In Theorem 8.1 the L2-mass accumulated in the blow-up time is

‖Q‖2
L2 (see also [28]). A natural question is whether one may construct blow-up solu-

tions that do not disperse any mass(10) at the blow-up time, i.e. such that ‖u0‖L2 =

‖Q‖L2. It turns out that, due to the result in [38], the answer of that question is

negative. Therefore the blow-up solutions of Theorem 8.1 necessarily lose some mass

on the left of the “main core” during the time evolution.

9. FINAL REMARKS

The work of Martel-Merle has already been quite influential. In a remarkable series

of recent papers, using many of Martel-Merle ideas, Merle-Raphaël [48, 45, 46, 47, 49,

55] obtained a number of new results on the understanding of the blow-up phenomena

for the L2-critical nonlinear Schrödinger equations (NLS). The literature on blow-up

for NLS is enormous and we refer to the recent books [11, 13, 59] for an introduction to

that domain. In [17, 18], the ideas of [34] are successfully used to get the asymptotic

stability for the family of solitary waves for the BBM equation which is an alternative

to the KdV model in the theory of water waves (see [5]).

Let us point out that the existence of blow-up solutions in the case p > 5 remains

an open problem. It seems that the approach of Martel-Merle meets serious difficulties

in this case. Notice that for p = 5, the solution Q(x− t) is spectrally stable, i.e. there

is no eigenvalue of ∂xL with positive real part. Therefore the dynamics for solutions

with data close to Q can be successfully parameterized by the modulation parameters

λ(t) and x(t). It seems that in the case p > 5, the eigenfunction of ∂xL with positive

real part is also involved in the long time dynamics, even for data close to Q.

Let us finally notice that it would be interesting to extend the asymptotic stability

analysis for (4) to the generalized Benjamin-Ono equation

(59) ut + ∂x(−Hux + up) = 0

(10)Notice that such solutions exist in the case of the L2-critical NLS (see [59]). Moreover they are

completely classified (see [41]).
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which is another important model in the water waves theory (see [3]). In (59), H

is the Hilbert transform and p > 2 is an integer. The equation (59) has a lower

order dispersion compared with the KdV equation and p = 3 is the smallest value

of p such that one may expect blow-up. In the context of (59), the natural energy

space is H1/2(R) and therefore a first difficulty is that at the present moment the

space H1/2(R) is not covered by the well-posedness theory for (59) (see [26] and the

references therein). However, at least at a formal level, equation (59) shares many of

the properties of (4) used in the work of Martel-Merle.
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