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1. INTRODUCTION

Let p be a prime number, and G a compact p-adic Lie group. We recall that the
Iwasawa algebra of G is defined by

where U runs over the open normal subgroups of G. Any compact Zp-module on which
G acts continuously on the left has a unique structure as a left A(G)-module, extending
the G-action. Thanks to this remark, modules over A(G), where G is usually the image
of Galois in a finite dimensional p-adic Galois representation, abound in arithmetic

geometry. K. Iwasawa [Iw] was the first to study the structure theory of finitely
generated A(G)-modules in the special case when G = Zp, and deduced from it his
celebrated asymptotic formula for the growth of the order of the p-primary subgroup
of the ideal class group in a Zp-extension of a number field. Almost immediately,
J-P. Serre [Sel], [Se2] pointed out that, when G = Zp for any integer d > 1, A(G)
is isomorphic to the local ring ..., Td~~ of formal power series in d variables
with coefficients in Zp, and that Iwasawa’s structure theorem for A(G)-modules could
be re-proven for d = 1, and generalized to all d > 1, by using classical arguments in
commutative algebra about the structure theory of modules up to pseudo-isomorphism
([B-CA], Chap. VII, § 4.4, Theorems 4 and 5).

Intuitively, one might expect that the structure theory for A(G)-modules would be
very different in the commutative and non-commutative cases, but the aim of this

seminar is to report on joint work of the author, P. Schneider and R. Sujatha [CSS]
proving that, surprisingly, the two cases appear to be parallel in many ways. The first
step towards elucidating the non-commutative theory was made by 0. Venjakob [Vel],
[Ve2], who exploited ideas of J. Bjork [Bj] to define in general the notion of a pseudo-
null A(G)-module. If G is pro-p and has no element of order p, Venjakob defines
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a finitely generated left A(G)-module M to be pseudo-null if it is A(G)-torsion (i.e.
each element of M is annihilated by some non-zero element of A(G)), and, in addition,

(M, A(G) ) = 0. To establish our structure theory up to pseudo-isomorphism,
we need to impose further conditions on G, and we are grateful to B. Totaro for
pointing out to us that probably the most natural hypothesis is that G should possess
a p-valuation in the sense of M. Lazard [La]. We recall that a p-valuation on G is a
function LV : G -~ (0, oo] satisfying the following axioms for all x and y in G:

We say that G is p-valued if it possesses a p-valuation. If G is p-valued, we remark that
the compactness of G guarantees that G is complete with respect to the p-valuation
cv in the following sense. For each u > 0, let Gu denote the subgroup of G consisting
of all g such that u. As J-P. Serre observed to us, Gu is open in G because,
choosing N > u, Gu contains the subgroup of G generated by the p~-th powers, and
it is well known that this latter subgroup is a neighbourhood of the identity in a
p-adic Lie group. Hence the family {Gu : u > 0} form an open basis for the topology
of G since their intersection is trivial, and the natural map from G to lim G/Gu is
an isomorphism because of the compactness of G. Moreover, Lazard [La] established
the following basic facts. Any closed subgroup of a p-valued group is also p-valued.
If G is p-valued, then it is pro-p, and has no element of order p. The classic example
of a p-valued group is the group of matrices in GLn(Zp) which are congruent to the
identity modulo p (resp. mod 4) if p is odd (resp. if p = 2). If p > n + 1, any pro-p
closed subgroup of GLn (Zp ) is p-valued.

THEOREM 1.1 ([CSS]). - Let G be a p-valued compact p-adic Lie group, and let M
be a finitely generated torsion A(G)-rrzodule. Let Mo be the maximal pseudo-null sub-
module of M. Then there exist non-zero left ideals Ll, ..., Lm, and a A(G)-injection

with Coker(§) pseudo-null.

The special case of Theorem 1.1 in which M/Mo is killed by some power of p was
proven earlier by 0. Venjakob [Vel], [Ve2], and S. Howson [Ho]. In §2, we shall give
a sketch of a proof of Theorem 1.1 taken from [CSS], which is remarkably parallel to
the classical commutative proof in [B-CA], and which exploits the fact that A(G) is a
filtered ring to which one can apply the techniques of the algebraic theory of micro-
localization (see, for example, [LO]). After finding this proof, we also realized that
Theorem 1.1 can be derived from the work of M. Chamarie [Chl], [Ch2], on modules
over maximal orders (see [CSS] for the details).



We assume for the rest of this expose that G is a p-valued compact p-adic Lie
group. In particular, it follows that A(G) is Noetherian, and has no zero divisors.
Let Mod(G) denote the category of all finitely generated left A((G)-modules, and
C1 (G) the subcategory whose objects are the pseudo-null modules (C1 (G) is closed
under taking subobjects, quotients, and extensions). To discuss questions about the
uniqueness of the decomposition in Theorem 1.1, we have to pass to the quotient
category

We write Q : 1IIod( G) - 00l( G) for the canonical functor. If M is an object of
Mod(G), we define its annihilator, which we denote by annA~G) (M), to be the two
sided ideal consisting of all r in A(G) such that r.M = 0. We then define the an-
nihilator of the object Q(M) of the quotient category 00l( G), which we denote by
ann(Q(M)), to be the sum of all the ideals where N runs over all ob-

jects of Mod(G) such that Q(N) is isomorphic to Q(M) in In fact, a lemma
of Robson [Ro] shows that

where, as above, Mo denotes the maximal pseudo-null submodule of M. Yet another
description of ann(Q(M)) can be given in terms of the left ideals Ll, ..., Lm appearing
in Theorem 1.1. Let Ji be the maximal two-sided ideal of A(G) which is contained in
Li, and let J = Then J2 = annA(G)(A(G)/L2), and we have

in particular, we see that J ~ 0 if and only if Ji =1= 0 for i =1, ... , m.
It is in questions of annihilators that we find a basic difference between the commu-

tative and non-commutative case. R. Greenberg (unpublished) has given an example
of a p-valued open subgroup of GL2 (Zp ) , and a finitely generated torsion A(G)-module
M such that ann(Q(M)) = 0. Following Chamarie [Ch2], we therefore define Q(M)
to be bounded (resp. completely faithful) if 0 (resp. if ann(Q(N)) = 0
for every torsion A(G)-module N such that Q(N) is a non-zero subquotient of Q(M)).
It is proven in [Ch2] that, for every finitely generated torsion A(G)-module M, we
have a canonical decomposition

where Q(U) is completely faithful and Q(V) is bounded. Very little is known about
completely faithful objects in 9J1( G) beyond the fact that Greenberg’s example shows
that they exist, and also it is shown in [Ch2] that they are cyclic, i.e. isomorphic in

to Q(A(G)/L) where L is a non-zero left ideal. However, Y. Hachimori and
0. Venjakob [HV] have recently given examples of completely faithful A(G)-modules
which arise naturally in arithmetic geometry, and one suspects that their occurrence
in number theory may be rather common.



We write for the full subcategory of9J1( G) consisting of the bounded objects,
and we define Db (G) to be the Grothendieck group of In fact, is also
an abelian category in which every object has finite length, and the Jordan-Holder
theorem shows that Db (G) is the free abelian group on the set of isomorphism classes of
simple objects in 9J1b (G). It is natural to ask whether we can relate Db (G) to a natural
group of divisors of the ring A(G), parallel to the classical theory for commutative,
integrally closed, integral domains ([B-CA], Chap. VII, §4.5, Proposition 11). As
we shall now explain, this is indeed the case. Let K(G) denote the skew field of
fractions of A(G), which is well known to exist because A(G) is Noetherian and has
no divisors of zero. Then A(G) is a maximal order (this is the non-commutative

analogue of being integrally closed) in the sense that, if B is any intermediate ring
with A(G) C B C K(G) such that there exist non-zero elements u, v in K(G) with
uBv C A(G), then necessarily B = A(G) (see [CSS], Lemma 2.6). For any left

(resp. right) A(G)- module M, we put M* = A(G)) for the dual right
(resp. left) A(G)-module, and we say AI is reflexive if the natural map from M to
M** is an isomorphism. A non-zero left (resp. right) A(G)-submodule L of K(G) is
called a fractional left (resp. right) ideal if there is a non-zero v in K(G) such that
L C A(G)v (resp. L C vA(G)). A fractional ideal of A(G) is a subset I of K(G) which
is both a fractional left and a fractional right ideal. Finally, we define a fractional
c-ideal of A(G) to be a reflexive fractional ideal of A(G), and we write C(G) for the
set of fractional c-ideals. As a special case of general results about maximal orders,
Asano ([As]) has shown that C(G) is an abelian group with respect to the product
I. J = (I J) ** . We recall that a two-sided ideal p of A(G) is said to be prime if,
whenever x and y are elements of A(G) such that xA(G)y C p, we always have x is
in p or y is in p. It is then also proven in [As] that C(G) is the free abelian group
on the set F of all non-zero prime c-ideals, and that every prime c-ideal has height 1
(i.e. is a minimal non-zero prime ideal). There would be great interest in giving an
explicit description of this set 7~ (for example, when G is a p-valued open subgroup
of 

Our aim is to construct a canonical homomorphism

and for this we need to localize A(G) at the prime ideals in P. We recall that a
multiplicatively closed subset S of non-zero elements of A(G) is said to be a right
and left Ore set if, for each s in S and a in A(G) both aS n sA(G) and Sa n A(G)s
are non-empty. For each p in P, let S(p) denote the set of all elements of A(G)
whose residue class in A(G)/p is not a zero divisor. Chamarie [Chl] has proven that
S(p) is a left and right Ore set, and that the localization of A(G) by S(p), which
we denote by A(G)p, is a bounded maximal order, with Jacobson radical pA(G)p.
Moreover, every left and right ideal in A(G)p is principal. Now, up to isomorphism,
the objects of finite length in are of the form Q(M), where M is a finitely



generated torsion A(G)-module. Hence the localization Mp = A(G)p M is a

finitely generated torsion A(G)p-module, which has finite length because A(G)p is a

principal ideal domain. Denoting the length of Mp by we then define

and we call x(Q(M)) the characteristic ideal of Q(M). This is well defined, as it is
proven in [Ch2], Lemma 4.2.1 that, for any finitely generated torsion A(G)-module
M, we have that Mp = 0 for all p in P if and only if Q(M) is completely faithful.
Moreover, it is shown in [CSS] that ann(Q(M)) is a c-ideal such that x(Q(M)) C
ann(Q(M)), and such that x(Q(M)) and ann(Q(M)) have the same prime factors
in P. In addition, the exactness of localization and the additivity of the length
function show that x induces a homomorphism from Db (G) to C(G).

THEOREM 1.2 ([CSS]). - The homomorphism

is an isomorphism. In particular, x induces a bijection between the set of isomorphism
classes of simple objects in Mb (G) and the set P of all non-zero prime c-ideals of A(G) .

As far as all finitely generated A(G)-modules are concerned, only the following
partial result is proven in [CSS]. If M is an arbitrary finitely generated A(G)-module,
we write Mt for its A(G)-torsion submodule. It is shown in [Ve2] that the natural
map from M/Mt ~ (M/Mt)** is injective and has pseudo-null cokernel.

THEOREM 1.3 ([CSS]). - Let M be a finitely generated A( G)-module such that

Q(Mt) is bounded. Then we have an isomorphism

where Q(M/Mt ) is reflexive in the sense that it is isomorphic to Q ( (M/Mt ) ** ) in the
quotient category 

The fundamental question left open by [CSS] is whether every prime ideal p in P is
principal. This is true when G = Z~, for any integer d > 1, thanks to the Weierstrass
Preparation Theorem, and we strongly suspect that it remains true for all compact,
p-valued p-adic Lie groups G.

2. SKETCH OF THE PROOF OF THEOREM 1.1

One of the nicest parts of Bourbaki’s treatise on commutative algebra is his ele-
gant proof of the analogue of Theorem 1.1 for all finitely generated torsion modules
over any Noetherian, integrally closed, integral domain (see [B-CA], Chap. VII, §4.4,
Theorem 5). We now briefly explain how simple ideas from the algebraic theory of



micro-localization allow one to extend these arguments to modules over a wide class
of non-commutative filtered rings. Following the spirit of Bourbaki, we proceed ax-
iomatically, and leave to the end of this section the verification that our concrete ring
A(G) satisfies the axioms we impose.

Let A be an associative ring with unit elements, which will not, in general, be
commutative. We assume that A is endowed with a filtration F.A = {FnA : n E Z},
but we shall be unfaithful to Bourbaki and always assume our filtrations are increasing,
i.e. FnA C Fn+lA for all n in Z. This filtration will always be assumed to be
exhaustive (i.e. UnEZ FnA == A) and separated (i.e. FnA = 0). We write

for the associated graded ring, and the completion of A with respect to the filtration,
respectively. We follow the non-commutative literature ([LO], Chap. II, Theorem 2.2),
and define A to be a Zariski ring if gr, A is left and right Noetherian, and A is a
faithfully flat left and right A-module.

For the rest of this section, we shall assume that the ring A satisfies the following
axioms:

(Cl) A is complete with respect to F.A, i.e. the natural injection from A to ~4 is
an isomorphism;

(C2) gr..4 is isomorphic as a graded ring to ..., Tr~, the ring of polynomials
in a finite number of variables with coefficients in a field k, graded by assigning to
each of the variables a strictly negative integer as its degree.

Axioms (Cl) and (C2) imply that A is left and right Noetherian and has no zero
divisors, and that A is a Zariski ring.

For the remainder of the proof, M will denote an arbitrary finitely generated torsion
A-module. We endow M with a good filtration F.M = {FnM : n E ~}. This means
that we have

where is some fixed set of A-generators of M, and 1~1, ... , kr are fixed

integers. Since F.M is a good filtration, basic properties of Zariski rings show that
not only is F.M separated, but also any submodule N of M is closed in the filtration
topology [LO]). Also, defining the gr.A module gr,M as usual by

we have that gr.M is a finitely generated gr.A-module, which is plainly gr.A-torsion.
The starting point of our proof is to apply the classical commutative theory to

the finitely generated torsion gr.A-module gr,M. We write Ass (gr, M) for the set of
prime ideals p in gr, A which are the exact annihilator of some non-zero element of



gr.M. Note that the zero ideal is not in Ass (gr.M), because gr.M is gr.A-torsion.
As gr.M is a graded gr.A-module, every ideal in Ass (gr.M) is graded. We define

to be the set of prime ideals of height 1 in Ass (gr,M). It is not difficult to see that

W (M) is independent of the very non-canonical choice of the good filtration F. M. We
define S = S(M) to be the set of all non-zero homogeneous elements of gr.A which
do not belong to pi U ~ ~ ~ We can localize gr.A with respect to the multiplicative
set of S of non-zero homogeneous elements, and obtain in this way the graded ring
S-lgr.A ([B-CA], Chap. II, § 2.9), which we denote by The following lemma

(see [CSS], Proposition 3.4) is easily established.

LEMMA 2.1. - The non-zero graded prime ideals of (gr,A)s are precisely the

(1 ~ i ~ m), and these all have height 1. Every proper graded ideal of (gr,A)s
is contained in one of the (1  i  m).

COROLLARY 2.2. - Every graded ideal in (gr,A~s is principal.

To deduce the corollary, we first note that, as A is factorial by axiom (C2), so is its
localization (gr, A) s . Now, if b is any non-zero graded ideal of (gr,A) s, every element
of Ass must be graded prime ideal of (gr, A) s, and therefore of height 1
by Lemma 2.1. But then (see [B-CA], Chap. VII, §1.6, Proposition 10) the ideal b is
divisorial, and so principal because (gr, A) s is factorial.

The heart of our proof is the following observation on Ore sets, which we understand
goes back to Kashiwara [Ka]. As usual, if x E we define its principal
symbol by )j(.r) = ~ + Fn-lA. Let us define

here S is the multiplicative set of non-zero elements of A defined above.

PROPOSITION 2.3. - T is a left and right Ore set in A.

We omit the proof (see [Li] or the last part of [WK]), which uses the fact that A is
a Zariski ring. In view of Proposition 2.3, it makes sense to take either the left or the
right localization of A with respect to T. As they are isomorphic, we write AT for
either localization. Moreover, as is explained in [Li], AT is endowed with a natural
separated and exhaustive filtration F.AT , with the property that (gr.A)s.
Even though we have imposed the axiom that A is complete, it will not in general
be true that AT is complete with respect to the filtration F.AT. Nevertheless, the
filtration F.AT makes AT into a Zariski ring (see [Li]), and this weaker result suffices
for our purposes. Finally, if N is any finitely generated A-module endowed with a
good filtration F. N, then its localization NT = AT ®A N is a finitely generated AT-
module, which (see [Li]) is also endowed with a natural filtration F.NT such that

gr.(N~’) _ (gr.N)s.



PROPOSITION 2.4. - Every left and right ideal in AT is principal.

To prove this, we can, by symmetry, restrict our attention to left ideals L of AT.
Taking any such left ideal, we endow it with the induced filtration F.L given by
FnL = L n FnAT . By a basic property of Zariski rings, F.L is again a good filtration.
Plainly gr.L is a graded ideal in (gr.A)s, and so is principal by Corollary
2.2. Thus we can find a homogeneous z in gr.L such that gr.L = (gr.A)s.z. Now pick
w to be any element of L such that (w) = z. But, thanks to a remarkable property
of Zariski rings ([LO], Chap. I, ~ 5, Corollary 5.5), we conclude that L = ATw (note
that we are able to carry out this last step without passing to the completion of AT).

Once we have established that AT is a principal ideal domain, we can rapidly com-
plete the proof of Theorem 1.1, following closely the classical commutative argument.
As the localized module MT = AT@AM is a finitely generated torsion AT-module, an
old result of Jacobson (see [Ja], Chap. 3, Theorem 10) shows that there exist elements
wi , ... , wm in MT such that

Let’ljJ : M -~ MT be the canonical A-homomorphism given by ’ljJ(m) = 1 g) m, and
let M’ = N = Since N is precisely the set of T-torsion elements of
M, we have NT = 0, and so N is pseudo-null by Proposition 2.5 below. Now M’
is an A-submodule of MT with Mp = MT. We are clearly free to multiply any of
the elements wi , ... , wm above by any element of T, and thus we can assume that
wi , ... , wm all belong to M’. We then define the A-submodule M" of M’ by

where the sum is clearly direct because wl , ... , wm are even linearly independent over
Ar. But N’ = M’/M" is a quotient of M with NT = 0, and so N’ is also pseudo-null
by Proposition 2.5. Now the map a - aw2 induces an isomorphism of A-modules
from to where Li is the annihilator of Wi in A. The composed map

is an injective A-homorphism with pseudo-null cokernel. Let Li be the unique left
ideal such that is the maximal pseudo-null submodule of We deduce

easily that p induces an injection of A-modules

where Mo is the maximal pseudo-null submodule of M, and Coker(cp) is pseudo-null.
Thus we have established Theorem 1.1 with A(G) replaced by our ring A satisfying
axioms (Cl) and (C2).



PROPOSITION 2.5. - Let U be any A-subquotient of the A-torsion module M. Then

UT = 0 implies that U is pseudo-null. The converse statement holds if A is assumed
to be Auslander regular.

In fact, the notion of a module over an arbitrary ring A with identity element

being pseudo-null is defined in [CSS]. We refer the reader to [CSS] for the somewhat
delicate proof of Proposition 2.5, as well as a discussion of the notion of Auslander

regularity.
The fact that A(G) satisfies axioms (Cl) and (C2) when G is a compact p-valued

p-adic Lie group is a consequence of the following result, which is essentially contained
in the important but difficult paper of M. Lazard [La]. The explanation given in [CSS]
of how to derive this result from Lazard’s work was given to us by B. Totaro. The
last assertion of Proposition 2.6 is due to 0. Venjakob [Vel], [Ve2].

PROPOSITION 2.6. - Assume that G is a compact p-adic Lie group, which is p-

valued. Then A(G) possesses a complete, separated and exhaustive filtration F.A(G)
such that gr,A(G) is isomorphic as a graded ring to the polynomial ring Xd~
in d + 1 variables, where d is the dimension of G; here the grading on Xd~
is given by assigning to each of the variables Xi a strictly negative integer degree.
In particular, A(G) satisfies axioms (C1) and (C2). In addition, A(G) is Auslander

regular.

3. ARITHMETIC EXAMPLES

Concrete examples of finitely generated torsion A(G)-modules, which are of great
arithmetic interest, abound in arithmetic geometry. Because of lack of space, we only
discuss two classes of examples. In both cases, G is non-commutative, and is the

image of Galois in a 2-dimensional p-adic Galois representation; thus, by Lazard [La],
G is automatically p-valued provided G is pro-p and p > 5.

Example 1. - Let p > 5, and let ppn (1  n  oo) denote the group of all pn-th roots
of unity. We write F for any finite extension of Q containing pp, and define

Now fix a non-zero element a of F, which is not a root of unity, and define

If we define H to be then both Hand r are isomorphic to Zp, so
that G is a p-adic Lie group of dimension 2, which is p-valued. Moreover, G is not
commutative. Let 03C8 : 0393 ~ Z; bethe character giving the action of r on Then,
as ex belongs to F, Kummer theory shows that the natural action of r on H via inner
automorphism is given by the character One can study many left A(G)-modules



which are of arithmetic interest, but the simplest is probably the following. Let Loo
denote the maximal unramified abelian p-extension of and put X = 

As usual, there is a continuous left action of G on X via inner automorphism (if cr is
in G and x in X, we define cr’ x = axa-l, where a denotes any lifting of cr to the
Galois group of Loo over F). Y. Ochi [Oc] has proven that X is a finitely generated
torsion A(G)-module. At present, very little else is known about the module A(G) ; in
particular, it seems that at present no example is known in which we can prove that
X is not pseudo-null as a A(G)-module. In the special case F = and a = p,

one can easily show that X ~ 0 if and only if p is an irregular prime. Moreover, in
this case, 0. Venjakob [Ve3] has shown that if X is pseudo-null, then the p-primary
subgroup of the ideal class group of is zero.

Example 2. - Let F be a finite extension of Q, and E an elliptic curve defined over

F, with Z. Let p > 5, and let Epn (1 ~ oo) denote the group of
pn-division points on E. We define

The action of G on Epoo defines an injection of G into GL2(Zp), and,
by a theorem of Serre [Se3], the image of G is open in GL2 (Zp) . By the Weil pairing,
FCYc == is contained in and we put

We shall assume from now on that G is pro-p (this can always be achieved, if necessary,
by replacing F by a finite extension, e.g. by F(Ep)). Hence r is pro-p, and so is

isomorphic to Zp.
For each intermediate field L with F C L C we recall that the Selmer group

of E over L is defined by

where v runs over all finite places of L, and Lv denotes the union of the completions
at v of all finite extensions of F contained in L. As usual, we have the exact sequence

where denotes the p-primary subgroup of the Tate-Shafarevich group of

E over L. We write

for the compact Pontrjagin dual of the discrete p-primary module If L is

Galois over F, then the Galois group G(L /F) of Lover F has a natural action on both

S(E/L) and X(E/L), and it is easily seen that X(E/L) is always a finitely generated
A(G(E/L))-module. We shall be primarily interested in the A(G)-module 
If E has good ordinary reduction at all places v of F dividing p, old conjectures due



to B. Mazur [Ma] and M. Harris [Ha] affirm, respectively, that is A(h)-
torsion and is A(G)-torsion. It is easy to see that the validity of Mazur’s

conjecture for all finite extensions L of F contained in F (X) implies the validity of

Harris’ conjecture for Foo, but this is of little use in practice since the number of cases

in which we can prove Mazur’s conjecture remains very limited (the best result to
date is K. Kato’s [Kat] theorem that is A(r)-torsion when E is an elliptic
curve defined over Q with good ordinary reduction at p, and F is an abelian extension
of Q). In [CH], an alternative approach is given which does enable one to give the
first proven examples of Harris’ conjecture, and to deduce new examples of Mazur’s

conjecture. ,

THEOREM 3.1. - Assume that (i) p > 5, (ii) G is pro-p, (iii) E has good ordi-
nary reduction at all places v of F dividing p, and (iv) is a finitely
generated Zp-module. Then is a finitely generated A(H)-module, where
H = particular, is a torsion 11(G)-module.

Remark 1. - Every A(G)-module, which is finitely generated over A(H), is automat-
ically A(G)-torsion. This is because A(G) is not finitely generated over A(H), since
G/H is infinite.

Remark 2. - In the general framework and notation of Theorem l.l, we say that the

A(G)-module M has p-invariant zero if none of the left ideals Li,..., Lm appearing in
Theorem 1.1 is of the form for some integer 1~ > 1. If f is a group isomorphic
to Zp, it follows from Theorem 1.1 and the Weierstrass preparation theorem that
a A(r)-module Y is a finitely generated Zp-module if and only if Y is A(r)-torsion
and has p-invariant zero. Note also that if M is a finitely generated A(H)-module,
then it must have p-invariant zero, because is not a finitely generated
A(H)-module when k ) 1.

A second important result about is due to Y. Ochi and O. Venjakob
[OV].

THEOREM 3.2. - Assume that hypotheses (i), (ii), (ii), and (iv) of Theorem 3.1 are
valid. Then X contains no non-zero pseudo-null submodule, the A(H)-torsion
submodule of is zero, and has strictly positive A(H)-rank.

To prove the last assertion of Theorem 3.2, we must use the fact that always
0 (this was first remarked by R. Greenberg, and a proof is given in the

Appendix of [CH]). Assume now that E over F satisfies hypotheses (i), (ii), (ii), and
(iv) of Theorem 3.1. We conclude from the above results and Theorem 1.1 that there
exist non-zero left ideals Li,..., Lm of A(G) such that we have an exact sequence of
A(G)-modules



where D is pseudo-null. We stress that there is great arithmetic interest in studying
the left ideals Ll, ... , Lm, even in particular numerical examples. Of course, one

imagines that these left ideals must be related to the values at s = 1 of the twists
of the complex L-function of E over F by Artin characters of G (i.e. those which

factor through finite quotients of G). On a much more elementary level, one can
ask whether or not 0. This still has not been settled in a

single numerical example when Foo = Surprisingly, when K~ and G are as
defined in Example 1 above, Hachimori and Venjakob [HV] have recently given many
examples of elliptic curves E over Koo such that the dual of the Selmer group of E
over Koo is a finitely generated torsion A(G)-module, which is not pseudo-null, but
which is completely faithful. For example, they prove that this is the case for the

elliptic curve E = X 1 (11) given below, when p = 5, and Koo is the field obtained by
adjoining to Q all 5-power roots of unity and all 5-power roots of 11.

We end by discussing two specific numerical examples of elliptic curves over their
field of p-power division points.

Numerical example 1. - I am grateful to T. Fisher for first pointing out this example
to me. Let E be the elliptic curve over Q

This is the curve Bl of conductor 294 in [Crl]. Take F = Q(/17) and p = 7. Although
E has bad reduction at 7 over Q, it is easily seen that E has good ordinary reduction
at the unique prime of F above 7. Moreover, ,u7 is a Galois submodule of E7,
whence we see easily that F(X) == is a pro-7 extension of F. Fisher [Fil]
has shown that S(E/F) = 0. One can then use arguments from Iwasawa theory

([CS], p.83) to deduce that we also have 0. Hence hypotheses (i),
(ii), (iii), and (iv) of Theorem 3.1 are valid for E over F and p = 7. We conclude
that is a torsion A(G)-module, with /1-invariant equal to zero, and with
no non-zero pseudo-null submodule. Moreover, X(E/Foo) is finitely generated over

A(H), its A(H)-torsion submodule is zero, and it has positive A(H)-rank. Here

G = )I ~(~7)) and H = I ~(~7~ )))~

Numerical example 2. - Let E be the elliptic curve Xl (11) over Q, namely

Then E has good ordinary reduction at 5. Take F = Q(M5) and p = 5. As (0,0) is a
rational point of order 5 on E, F~ = is a pro-5 extension of F. Indeed, it is

well known and easy to see that the image of G in can be identified with

the subgroup of all matrices ( a d ) in GL2 (7~5 ) with 1 mod 5, and c ~ 0

mod 52, and this group in turn is isomorphic to the group of all matrices in GL2 (~5 ),
which are congruent to the identity modulo 5. Finally, it is well known that, in this



case, = 0 (see [CS], Chap. 5). Hence hypotheses (i), (ii), (iii), and (iv) of
Theorem 3.1 hold for E over F, and we conclude that is a torsion A(G)-
module, with p-invariant equal to zero, and with no non-zero pseudo-null submodule.
In fact, the following stronger result is true.

PROPOSITION 3.3. - and H = 

Then finitely generated A(H)-module of rank 4, its A(H) -torsion sub-
module is zero, but it is not a free 11(H)-module.

For each finite Galois extension L of F which is contained in F 00, we write

so that GL ranges over the open normal subgroups of G, and HL ranges over the open
normal subgroups of H. The proof of Proposition 3.3 hinges on the remarkable fact
that one can use ideas of Y. Hachimori and K. Matsuno [HM] to determine the exact
Zs-rank of the HL-coinvariants of for every finite Galois extension L of F

contained in F (x)’ In particular, the following result is proven in §7 of [CH].

PROPOSITION 3.4. - For each finite Galois extension L of F contained in 
is a free ~5-module of rank 4. TL, where TL denotes

the number of prime of above 11. In particular, Mazur’s conjecture is true

for E over and E(LcyC) is a finitely generated abelian group of rank at most

One deduces easily from this proposition that has 25-rank equal to
4 . FCYC] for all L. At the same time, one shows that the Zs-torsion subgroup
of is never zero, which shows that is not a free A(H)-module.

By contrast, it is a deep arithmetic problem to determine the exact 25-rank of
the GL-coinvariants of for all L. In particular, the following lemma is not
difficult to prove using the methods of [CH].

LEMMA 3.5. - Let L be any finite Galois extension of F contained in Then

finite if and only if both E(L) and the 5-primary subgroup of the
Tate-Shafarevich group of E over L are finite.

We have already used the classical fact that is finite. By some remark-
able explicit descent calculations, T. Fisher [Fi2] has recently shown that X 
is finite for L ranging over the following three cyclic extensions of F of degree 5 which
are contained in 



here X2 ( 11 ) denotes the unique elliptic curve of conductor 11 over Q which has no
non-zero rational point, and denotes the maximal real subfield of 
The field Li is the splitting field of the polynomial

Then T. Fisher’s descent calculations [Fi2] show that E(Li) is finite, and

However, it does not seem possible to extend his explicit calculations even to the field
K2 = Ll (~5z ), which has degree 100 over Q. Nevertheless, if

T. Fisher, R. Greenberg and myself have shown that simple theoretical arguments
from the Iwasawa theory of elliptic curves do enable one to prove that, for all integers
n = 0, 1 , ... , E(Kn) is finite and is finite of order 516n+2.
When this expose was given in November 2001, I naively imagined that perhaps

Xi ( 11 ) had no points of infinite order in the whole tower F~ of 5-division points. I am

very grateful to K. Matsuno (unpublished) for producing overwhelming numerical
evidence that this is not true. Take the field L3 above, and let H2 = L3 (~c52 ), so that
H2 is an abelian extension of Q of degree 100. K. Matsuno calculated the complex
L-function of X1 ( 11 ) over H2, and proved that it has a zero at s = 1 of order 4.

Thus, unless the conjecture of Birch and Swinnerton-Dyer is false (which I do not
for one moment believe), Xl (11) should have rank 4 over H2. So far, no point of
infinite order has been found, nor has Fisher been able to extend his explicit descent
calculations to X1 ( 11 ) over H2. Thus, in conclusion, two important questions remain
unanswered about the arithmetic of X1 ( 11 ) over its field Foo of 5-power division
points. Is the dual of the Selmer group of Xl (11) over Foe a completely faithful
A(G)-module? What is the Z-rank of the group of F~-rational points
modulo its torsion subgroup?
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