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KAM TECHNIQUES IN PDE

by Ricardo PÉREZ-MARCO

Seminaire BOURBAKI

54e annee, 2001-2002, n° 908, p. 307 à 317
Juin 2002

We present a partial account of recent application of KAM techniques in the context
of PDEs. We don’t address several other topics in Hamiltonian PDE as for instance
those related to invariant Gibbs measures or Nekhoroshev bounds of diffusion for

solutions of non-linear PDEs. We adopt a Dynamical Systems point of view (this just
reflects the background and motivation of the author).

I am grateful to J. Bourgain, W. Craig, J.-C. Guillot, H. Eliasson and S. Kuksin
for helpful discussions.

1. INTRODUCTION

1.1. Ancient historical motivation

The quasi-periodic motions of the planets in our Solar System was observed long,
very long time ago, back when Astronomy, Physics and Mathematics were a single
science. There is ample evidence from cuneiform clay tablets of Babylonian obser-
vations that go as far as 2000 before the Christian era (see the compilations by 0.
Neugebauer [NEU1] and also [NEU2]). One can also find traces of some accurate

Babylonian observations in Ptolomy’s Almagest [PTO]. The Babylonians were using
the quasi-periodic evolution to forecast future positions of the planets. From a rich
data of observations, it is fairly simple to notice the periodic character of the posi-
tions, plus an error which is itself periodic, which in turn has a much smaller periodic
error, and so on...

It is revealing that this simple observation remains still unproved! This is certainly
the oldest open problem in Mathematics.
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1.2. Old and new K.A.M. theory

First came Newton’s theory of gravitation. The next progress in the above histor-
ical problem was only achieved in the xxth century with the emergence of K.A.M.
theory. A.N. Kolmogorov [KOL] discovered the persistence of invariant tori in Hamil-
tonian systems near completely integrable ones. This was one of the major achieve-
ments of Dynamical Systems in the xxth Century. K.A.M. theory, named after its
founders Kolmogorov, Arnold and Moser, was developed during the late fifties and
sixties. We refer to the comprehensive Bourbaki seminar by J.-B. Bost [BOS] for a sur-
vey and bibliography of this classical topic. Later, V.K. Melnikov [MEL] announced
the persistence not only of mid-dimensional tori, but also of low dimensional tori.
The first proofs appeared only in the late eighties by H. Eliasson [ELI1], J. Poschel
[POS1] and S.B. Kuksin [KUK1]. These results opened the door to the application
of KAM techniques to infinite dimensional Hamiltonian systems (the approach of
Kuksin is indeed infinite dimensional). These occur naturally in Hamiltonian PDE,
some of which appear as perturbations of completely integrable ones. The introduc-
tion of KAM techniques in this field showed the existence of quasi-periodic solutions
for non-linear and non-integrable PDE.

Unfortunately (or fortunately) there hasn’t been any Bourbaki seminar in this
topic, so there are indeed several good surveys available. The first book of S. Kuksin
[KUK1] and, more recently, the one of W. Craig [CRA] and the second book of Kuksin
[KUK3] cover largely the developments of the theory. Other surveys where one can
find useful material are [BOU2], [KUK2], [POS2]. For this reason, after a prelimi-
nary introduction in the first sections, we concentrate on the more recent results and

techniques developed by J. Bourgain, some of which are not yet published [BOU5].
Starting from a technique devised by W. Craig and E. Wayne to find periodic so-
lutions, Bourgain pushed it to get quasi-periodic solutions and indeed a whole new
approach to K.A.M. theory. It presents a certain number of advantages, for example,
it handles the Schrodinger equation in higher dimension where the difficulties related
to arithmetic approximation has stopped any progress for a long time. Recent sim-
plifications using local uniformizations for semi-algebraic sets, and central multiscale
arguments (inspired from the theory of the discrete Schrodinger equation) to control
the inverse of high dimensional matrices with critical sites, solve these problems and
yield a unified approach to classical results, for example those on low dimensional
tori. We will illustrate this new approach in this simpler, finite dimensional setting.
Applications to PDEs do not differ substantially.

We start with a brief survey on persistence of low dimensional tori in finite di-

mension, followed by some examples of classical PDE where the techniques have been
applied. Next we describe Bourgain’s new techniques, following [BOU5], and how
they are used to prove the existence of low dimensional tori.



2. LOW DIMENSIONAL TORI

2.1. Introduction to Hamiltonian systems and K.A.M. theory
We consider a Hamiltonian system

defined in Tn x U C Tn x Rn C R2n where U C Rn is a bounded domain. In what
follows all Hamiltonian systems are supposed to be real analytic (but most of the
results persist with lower regularity).
When the Hamiltonian H = Ho is independent of the angular variables q, the

system is completely integrable. In that case, the solutions of the system are periodic
or quasi-periodic solutions

fill densely tori contained in the fibers {p = p(o)~. When the frequency vector À is
purely irrational, that is

then the invariant tori have maximal dimension n.

Many natural systems appear in nature as a small perturbation of completely in-
tegrable ones. A fundamental example of completely integrable system in Celestial
Mechanics is the two-body problem. The three-body planar with a third small mass,
and its different versions (planar, restricted) appear as a perturbation of the com-
pletely integrable system. Kolmogorov [KOL] announced in 1954 the persistence of
many of these maximal tori for a perturbed system H = Ho + cHi where c is small
(Hi may also depend on ~). More precisely, under the "twist" condition

any torus with a frequency À with good arithmetic will persist under a sufficiently
small (depending on A) perturbation. The condition on the arithmetic of the frequency
ensures that (k, A) is not two small (modulo 1) depending on the size of k E Z~ and is
necessary in this type of Small Divisors problem. The small divisors appear when one
attempts to write down and solve the equation of the invariant tori (Moser’s approach,
see for example [S-M], section 32) for the simpler situation of invariant curves of the
annulus) or write down approximate first integrals (Arnold’s approach [ARN]).
We point out for later reference that the above Hamiltonian system can be written

in a convenient form using complexified variables

considering the real analytic Hamiltonian H = H(u, u) the above equations read



2.2. Low dimensional tori

When the frequency À is not purely irrational, the solution of the completely inte-
grable system fills a low dimensional torus. These in general are unstable due to its
normal degenerate character (nevertheless see [CHE] and [ELI2]). But one may con-
sider the general problem of persistence of low dimensional tori with non-degenerate
normal part. In general, mixed hyperbolic and elliptic character may be present in
the normal direction (according to when the spectrum of the Hamiltonian vector field
in the normal direction has non purely imaginary (~ iR) or purely imaginary (E iR)
eigenvalues respectively). For a complete account in this situation, and state of the
art theorems with minimal twist condition, we refer to the extensive article of H.
Rusmann [RUS]. The main new feature in the persistence of lower dimensional tori
is that, in absence of external parameters, the frequencies of the dynamics on the
persistent tori cannot be prescribed. At the opposite, these frequencies are employed
as parameters to locate the persistent tori.

When the normal behavior is normally hyperbolic, the problem is simpler. The
first result of this type is A.M. Liapounov’s center theorem [LIA] of preservation of
periodic solutions (or tori of dimension 1). For the higher dimensional results see
[GRA], [MOS] and [ZEH].
We consider in what follows the purely elliptic situation with tangential frequencies

(Ai,..., Àn ) (that are used as parameters) and normal frequencies (~,1, ... for
the linearization of the unperturbed system. Melnikov announced [MEL] during the
sixties, and at the end of the eighties Eliasson [ELI1], Kuksin [KUK1], and Poschel
proved the persistence of these tori under the non-resonance conditions,

for all k E Z~ and m, and

for all k E Z~ and 1 ~ m, j2. The second condition plays a role in
the reduction to the preliminary normal form. J. Bourgain got rid of it using the
Lyapunov-Schmidt approach we describe below that does not require this prelimi-
nary normal form (at the expense of having to control the inverses of non-diagonal
linear operators). Since then J. You [YOU] has obtained an improvement of the orig-
inal KAM approach by using a different normal form that also yields non-diagonal
linearized operators.

Once understood the conditions that are required for the persistence of lower dimen-
sional tori, the techniques were ready to be used for infinite dimensional Hamiltonian
systems. In that way Kuksin established the first results for hamiltonian PDE’s. His
method is exposed in his book [KUK1].



3. SOME HAMILTONIAN PDEs

The methods presented below apply to a wide array of Hamiltonian PDEs. Some-
times part of the difficulty consists in finding a suitable Birkhoff normal form, in
which the equation appears as a perturbation of a completely integrable PDE.

- A remarkable and extensively studied completely integrable PDE is Korteweg-de
Vries (KDV) equation,

We refer to the upcoming book of T. Kappeler and J. Poschel [K-P] for K.A.M. on
KDV.

- The non-linear Schrodinger equation (NLS)

which can be considered in the context of periodic or Dirichlet boundary conditions.
- The non-linear wave equation

which can also be considered with periodic or Dirichlet boundary conditions.

We refer to chapter 2 of [CRA] for more examples and precisions, and more infor-
mation on the Hamiltonian character and Birkhoff normal forms of these equations
near an equilibrium position.

4. PERSISTENCE OF LOW DIMENSIONAL TORI

We use this problem to illustrate the techniques in [BOU5]. We follow section
XVII of [BOU5]. This approach to Melnikov’s theorem, without the simplifications
of [BOU5], appeared first in [BOU1]. The application to the construction of quasi-
periodic solutions of the non-linear Schrodinger equation and non-linear wave equation
in arbitrary dimension can be found in sections XVIII and XIX of and are
based on the same ideas.

4.1. Setup of the problem

The problem of persistence of low dimensional tori can be reduced to the perturba-
tion of a linear Hamiltonian system (see [BOU2] chapter 6) by a standard procedure
of writing the system in the appropriate Birkhoff normal form.

Complexifying coordinates we are led to find invariant tori for the perturbed sys-
tem, N (real dimension 2N),



We assume for simplicity that Hl is independent of c, but this is irrelevant. It is
also assumed that the non-linear perturbation is polynomial. This plays a role on the
argument with semi-algebraic sets, but the proof should go through in the general
analytic case.

We consider À = (Ai,..., Àn ) with  N and the solution of the unperturbed
system,

with aj = 0 for n  ~’ ~ N. When À is purely irrational, this solution fills densely an
n-dimensional torus. Note also that in this case we can assume the amplitudes (aj )
to be real and positive (shift t). For a substantial (when ~ ~ 0) set of values of À, this
torus survives the perturbation, but we may have to change slightly the frequency of
the dynamics on it. We express this using the Fourier expansion of the solution. The
theorem to prove is the following:

THEOREM. - Let S2 C R/B Given ~0 > 0 sufficiently small, for each ~, 0  |~|  ~0,
there is a compact set S~~ C S~ with (S~ - - 0 when c - 0, and a smooth map
A~ : S~ ~ Rn, ~ -~ A~ (~) _ À’, such that for each À E S~~ there is a quasi-periodic
solution

such that (we denote (el, ..., en) the canonical base of Zn, and c > 0 )

where R = ~ ( j, ej ) ; j = 1,..., n} is the resonant set.

4.2. Lyapunov-Schmidt decomposition

The idea of the proof is not to try to localize the invariant torus, following Moser,
nor to try to seek the domains where approximate first integrals exist, following
Arnold. The new idea is to catch the solution directly using its Fourier expansion.
The invariant torus is then obtained as the closure of this quasi-periodic solution. In
some sense, this torus is constructed from the inside.

This is a very natural idea and it is not surprising that it yields a powerful approach.



How to find the perturbed solution? Again, the natural idea is to expand in Fourier
series the equation

then identify the Fourier coefficients of both sides. This gives for k E Zn and

1 ~ .7 ~ ~V,

We use the first n frequencies as a parameter À’ E Rn.
If we request = aj as specified by the theorem for n, we get the

Q-equations

The other equations, for the non-resonant indexes, are called the P-equations. The
division of the equations into P and Q equations constitutes the Lyapounov-Schmidt
decomposition. W. Craig and E. Wayne [C-W] used this method to find periodic
solutions ( 1-dimensional tori) for PDE’s. This already involves dealing with Small
Divisors. The method is as follows. One first solves the P-equations, which consists
in inverting a non-singular infinite dimensional linear operator to get an approximate
solution z(À, À’) . Then, one plugs this solution into the Q-equations to determine À’
in function of À using the implicit function theorem.

4.3. Main ideas in the proof

As expected, things are not as simple as described. First, solving the P-equations
with proper estimates is not an easy task. The P-equations correspond to non-
resonant indexes and do have a formal solution, but small divisors appear in the
inversion of the linear operator, so one must control the arithmetic of À’ to get the
desired bounds. These restrictions on the arithmetic of ~’ make that after hard work
the good bounds are only obtained on a closed set Of; with empty interior. To use
the implicit function theorem in such a set demands careful justification. The proce-
dure, well known in K.A.M., consists in finding successive approximations z~l), regular
everywhere, of the P-equations. We can then solve the Q-equation at each step to get
and approximate values of ~1’ .

In order to find the successive approximations one uses a rapidly convergent
Newton scheme. At each step the P-equations are truncated by considering only those
k’s such that Ni , where the sequence of scales (Nz) increases geometrically.
Thus, at each step we are faced with the inversion of a finite dimensional (of growing
dimension) linear operator. More precisely, in order to get good estimates for 
one needs to control the inverse of the operator



where Dl is a diagonal operator with eigenvalues ~~1~,.1’) -a~ (some, the critical sites,
are small and give small divisors), and Sl is a self-adjoint operator with exponentially
decaying off-diagonal entries. More precisely, is defined by

where F(z(l)) is the data on the P-equation when is plugged in.
Two main technical simplifications are present in [BOU5] with respect to the origi-

nal approach [BOU1]. First, a multiscale analysis is performed on the complexification
of the matrix Tl in order to obtain good bounds for its inverse. More precisely, the

diagonal part is modified by shifting the eigenvalues of Di into ~((~, À’) + a) - Àj
with a complex parameter (7. Using the analyticity on a, plus some harmonic analysis
estimates, and a multiscale argument incorporated in the induction, it is proved that
the inverse has the proper bounds except for a small set of parameters a. This consti-

tutes the core of the estimate, and the common theme of [BOU5] which focus on the
estimation of Lyapounov exponents. This type of multiscale analysis is well known
in the theory of the discrete Schrodinger equation. The formal analogy between the
two theories is brought a step closer with these common techniques.

The second step consists in showing that in the (À, À’ ) plane not much is discarded
in order to avoid these bad eigenvalues. One can write (using the Q-equation)

We want to avoid to have (l~, ~cpl (.1)~ in the bad set of a’s, SL . One can say that in this
step we adjust the arithmetic of À’ to avoid the small divisors. In previous works the
arithmetic related to the resonant set was a major obstacle. For example, in [BOU4] it
prevented the extension of the results to higher dimension, and it required arithmetic
lemmas on the grouping and well separation of the critical sites. In [BOU5] these
problems are treated with a more conceptual argument. With the previous approach,
the main point is to notice that the set to be avoided by (À, .1’) is a semi-algebraic
set for which we have an explicit control on the degree. This implies (in numerous

senses) that the geometry is controlled. Since the condition becomes

with k large, the removed measure is small.

These ideas are very general and applicable to all sorts of PDEs, in particular to

the non-linear Schrodinger equation and the wave equation in arbitrary dimension as

treated in [BOU5].

4.4. Inversion of analytic matrices

We give the following illustrative example Proposition 13.1; see also

[B-G-S]), on how lower scale bad sites cannot affect the inverse for too many complex
parameters, or, alternatively, how to use the space of holomorphy around to improve



the bound on the bad set of parameters. We denote for S C N, Rs the "restriction
to indexes in S" linear operator.

THEOREM. - Let A(a) G Md (C) be a real analytic matrix function for a E [-03B4, 03B4],
holomorphic in

and such that

For each a E ~-~, bJ, there is a subset A C ~l, d] such that

We assume also that

Combining this result with the exponential decrease of the off-diagonal terms, one
can prove the following type of result that fits into the induction described in the
previous section.

THEOREM 4.1 ([BOU5], 13.31). - Let A be an N x N with exponential off-diagonal
decay,

We consider the sub-scale N = NT, 0  T  1.

We assume that for all intervals J C ~1, N~, ~ N,

An N-interval J is said to be good if moreover

for n, n’ E J with n - n’) à N/ 10 ( with 0  c  co / 10) .
Assume that there are at most Nb disjoint bad N-intervals.
Then for n’~ > N/10,
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