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1. INTRODUCTION

1.1. Physical origin of the problem

One of the first explanatory models for superconductivity (which refers to the ex-
istence of permanent currents in certain substances, with no energy dissipation) has
been proposed during the fifties by V. Ginzburg and L. Landau, from the Landau

theory of phase transitions. Following this model, the degree of superconductivity of
a body occupying a domain 0 of JR3, is characterized by a "wave function" S~ -~ ~
referred to as the order parameter. In the quantum theory of J. Bardeen, L.N. Cooper
and J. Schrieffer (BCS theory), which came in 1957 to justify the Ginzburg-Landau
phenomenological model, the square of the modulus of this order parameter rep-

resents the local electron pair (Cooper pairs) density, responsible for the supercon-
ductivity. For u = 1 this density is maximum and minimum for lul =0.

The energy functional for a superconductor proposed by Ginzburg and Landau is

where A is the 1-form vector potential associated to the induced field dA in the

superconductor (du - iAu is thus a 1-form taking its values in C). he is the 2-

form representing the external field applied to the superconductor. This is one of

the parameters of the problem together with the constant K, known as the coupling
constant, which depends on the sample considered, and which plays an essential part
in the theory, as we shall see in the following. As a ratio of two lengths, K _ ~ , where
A is the penetration depth of the external field he in the sample (see the following) and
~ is the characteristic size of a vortex (see section 2), is a dimensional constant. Note
that this functional is also the Yang-Mills-Higgs action in the abelian gauge theory
modeling the interaction between a classical magnetic field and a Higgs particle.



Schematically, the observed phenomena are as follows. When the applied field is
zero, the superconductor is said to be in the pure state:

The density of Cooper pairs is maximum and the induced field is zero. When the ap-
plied field is sufficiently strong (sample dependent) the superconductivity disappears:

The density of Cooper pairs is then minimal and the induced field coincides with the
applied field. The superconductor is in the normal state.

The nature of the transition from the pure state to the normal state depends on
the composite one and in particular on the value of k. One observes that for 03BA 

1 I V2 (type I superconductor), this transition is sharp and happens for a certain
strength of the applied field which is independent of K. Instead, for /’1; > (type
II superconductor), as the external field increases, to go from the pure state to the
normal state, we pass through a different phase known as a mixed state, where more
and more regions of normal state contained in tubes (vorticity filaments) around
which the phase of u makes one or several circular turns, appears. When the sample
is homogeneous and the external field uniform, these tubes line up in the direction
of the field, to form periodic Abrikosov lattices, named after the physician who first
showed their existence. It is observed that this lattice is triangular in the fundamental
state. We pass from the pure state to the mixed state, for an applied field known as

the "first critical field" 0 (log 03BA 03BA), and we leave the mixed state to go into the
normal state for an applied field known as the "second critical field" Hc2 ~ O(03BA). The
phase diagram (figure 1) summarizes the observations mentioned above. For a more
complete account of the physics of superconductors the reader can refer to: [dG], .,
[SST], [Ti]...

1.2. The mathematical questions underlying superconductivity

There are numerous difficulties that arise when one wants to give a mathematically
rigorous sense to the previous observations, starting from the Ginzburg-Landau model.
A first reduction is to consider a 1 or 2-dimensional version of the model (SL C I~~3

and he then have the symmetries corresponding to those reductions: space comprised
between two parallel planes or infinite cylinder, in uniform magnetic fields...). In this
talk, we shall not consider the studies in 1-dimension which are however extensive and

which enable very often a more refined analysis of the phase diagram ([BH1], [BH2],
[Af~ ... for a complete presentation of these results, see [AT]). We shall consider here
only the 2-dimensional case, which is the minimal dimension to observe vortices (di-
mension 3 and higher dimensions are treated in [Ri2], [LR], [LR2] and also in [BBM]).



FIGURE 1. Phases diagram

S~ is thus an infinite cylinder and he is a uniform field parallel to the direction of the

axis of the cylinder. 0 then denotes the 2-dimensional section of this cylinder and he

being a 2-form which is constant on this section is often confused with the number

giving its intensity. The aim is thus to understand the nature of fundamental states

of the functional V, and also of the critical points in general, as a function of the
different values of (K, he) in the phase diagram represented in figure 1. By "under-

standing the nature of the fundamental states of :1", we mean essentially identifying
the zero set of the order parameter u of a solution minimizing V, which corresponds
to the 2-dimensional section of the vortex lattice expected in the mixed phase.

To simplify the analysis we consider the change of variables A -~ ~A in the

original model, which then leads us to the functional

This new functional verifies the gauge invariance for any

function § on O. It is then possible to extend the model to any domain Q which is any
2-dimensional manifold. (u, A) are then respectively the sections and connections of
a complex line bundle E on 0 on which we fix a hermitian product whose real part is

( , ) or p for the quadratic form. du - iAu is replaced by the covariant derivative dAu
of u with respect to A and dA is the curvature of the connection A. In the following,
we note h = *dA.

Section 2 is devoted to the study of the Ginzburg-Landau free energy :F without
interaction with the external field (i.e he = 0). In 2.1, we present the work of Jaffe
and Taubes on the integrable or non-interacting case ~ = 1/B/2. We state their

conjectures for the cases 03BA  and 03BA > In 2.2, we describe the BBH



asymptotic analysis (F. Bethuel, H. Brezis and F. Hélein [BBH]) in the London limit:
r~ -~ +00 which corresponds to the strongly repulsive case. In this limit, to which we
shall restrict in the following, the vorticity phenomena appear more clearly; this case
is also close to many of the type II superconductors we have in practice, for which
the a-dimensional parameter K is very large. In section 2.3, we revisit the part played
by the renormalized energy W coming from the BBH asymptotic analysis used to
describe the critical points of F. Finally, we give answers to the conjectures of Jaffe
and Taubes in the London limit and we extend them to more general cases. The third
part is devoted to the complete study of the functional 9 comprising the interaction
term with the external field. The vorticity is then no longer a fixed parameter as
in the previous section but becomes a variable of the problem. The contents of this
section covers part of S. Serfaty’s PhD thesis, and the work she did in collaboration
with E. Sandier.

2. STUDY OF THE FREE ENERGY FUNCTIONAL F

2.1. The integrable or non-interacting case K = 
In [JT], A. Jaffe and C. Taubes study the critical points on ffi.2 of the free energy

functional

and which are solutions to the Euler equations

where dA is the operator acting on the 1-forms 7y such as dÀ 17 = Supposing
that the intrinsic quantities 11 -lull and dA are decreasing (polynomially), the
renormalized magnetic field is an integer N

which corresponds to the degree of on circles of sufficiently large radii. This is
known as the homotopy class of the couple (u, A). For a given N, say N > 0, it has
been observed by E.B. Bogomol’nyi [Bog] that, for the particular value K = 
the functional 0 can be rewritten under the following form



(R denotes the real part and s the imaginary part of a complex number). One of the

principal results of [JT] is then the following:

THEOREM 2.1 ([JT]). - Any critical point (u, A) of ,~l ~~ of finite energy has a

defined homotopy class N and verifies

In particular, it minimizes in its homotopy class.

The proof of this result can be understood as follows. Consider a critical point

(u, A) of 0k. From the Euler equations (1), we can deduce the following elliptic
equations verified by the intrinsic quantities 1- ~u 2 and h = *dA

( , , > is the scalar product on the 1-forms). Using (3) we get from the maximum
principle, on the one hand that lul  1 (unless lul == 1 on and on the other

hand that the intrinsic quantities |dAu| and decrease exponentially fast to

infinity, so that one has in particular a well defined homotopy class for (u, A). These
exponential decreases have an important physical interpretation linked to the mass of
the Higgs particle.

Another important ingredient to prove theorem 2.1 is the conservation law of the
energy-momentum tensor, which we shall use extensively throughout this talk. The
energy-momentum tensor is given by

where is the free energy density + 2 1- u ~ 2 2 + 
The conservation law of this tensor results from the fact that (u, A) is on the one

hand a critical point of 0k, and on the other hand Coo, which can be deduced from
the Euler equations (1); it is thus also a critical point for variations of the domain.

Using Noether theorem, the translational invariance of the domain then gives rise to
divergence free quantities, which constitute this conservation law

From this law, we can deduce the following Pohozaev identity, which is a consequence
of the fact that (u, A) is a critical point of the infinitesimal action of dilations r tr (i.e



we multiply (5) by sum on j and integrate over R~)

Let us restrict ourselves to the case ~ = One can easily see that for that
particular value of the parameter, by summing or subtracting the two equations of

(3), the maximum principle leads to

Moreover, for 03BA = 1/2, the Pohozaev identity becomes

Excluding the simple case where |u| ~ 1 (N = 0) and thus 0 from (6), we

have lul  1 and combining (7) and (8) gives either *dA = (for N > 0),
or *dA = -1-~u~2 (for N  0). Bootstrapping for example *dA = 1-2~"’~2 in the

equations, one easily obtains that = and that (dA2 u) = 
which together with the observation of Bogomol’nyi proves the theorem.

Theorem 1 tells us that solving the solutions of the second order equations, comes

up in the case = and for the class of configurations (u, A) of finite energy, to
the study of the solutions of the first order equations (for N > 0)

which justifies the fact that this case is called integrable. The qualitative study of the
solutions to these equations gives quite easily that the set of zeros of lul is constituted
of a finite number of points where the index of u is strictly positive. We can thus

represent it by exactly N points, not necessarily distinct from one another, 
each of multiplicity 1. We can then verify that v = log lul2 is a solution of

A convexity argument shows that the solution v to equation (12) is unique for any

configuration of points We easily bootstrap this uniqueness of ~u~ in equa-
tions (9), (10) and (11) to deduce the uniqueness (up to the gauge action) of the

configuration (u, A). We can then go the other way round, and taking N arbitrary
points in the plane, exhibit a solution to (9)...(11). We have then proven the theorem
enunciated below.



THEOREM 2.2 ([JT]). - The space of the solutions of finite energy of the abelian

Yang-Mills-Higgs (1~ in the plane, in the integrable case ~ =1/~, is nothing but (up
to the action of the gauge group) the space of configurations of points in the plane,

having integer multiplicities, all of the same sign.

One of the striking points of the integrable case ~ = 1/~2, is that not only can the
vortices (zeros of u) be anywhere in the plane, but that the energy of the solutions
is independent of the relative positions of the vortices, and is equal to 27r times

the number of vortices. This is why the integrable case is also known as the non-

interacting case. By handwaving arguments, A. Jaffe and C. Taubes conjecture that

~ = is the limiting case between two opposite behaviors of vortices amongst

themselves; for 03BA  11 V2, whatever be their signs, the vortices have a tendency to
attract one another, which justifies in some way the absence of a mixed phase, while

in the case 03BA > the vortices with same signs should repel one another, but since

their presence is imposed by the energy input due to the external field (see section 3),
this leads to the possibility of a mixed state (see figure 1). Precisely the conjecture
of Jaffe and Taubes for the repulsive case (~ > is as follows.

CONJECTURE 2.3 ([JT]). - For 03BA > there exist stable solutions of YMH (1)
on all ffi.2 if and only if INI = 1,0; moreover they have an axial symmetry (up to the

gauge action).

In both of the next sub-sections, we shall rigorously account for these expected
behaviors of the vortices amongst themselves in the strongly repulsive case (~ - +oo)
and give a partial answer to the conjecture 2.3 (see theorem 2.10).

2.2. The strongly repulsive case or "London limit" ~ -> +00: the BBH

asymptotic analysis

From now on, we shall study the behavior of the vortices in the strongly repulsive
case (~ --~ +oo) . To prevent the vortices from separating from one another to infinity,
we study :F on a compact 2-dimensional manifold M without boundary, in order not

to have to take artificial boundary conditions. For clarity, we shall restrict ourselves to

the case where M is a flat torus. In fact the metric on M, as well as its topology, does

not modify the qualitative aspects of the results. We also take a hermitian complex line
bundle on M whose Euler class e(E) verifies fM e(E) = N > 0, which implies that any
section u intersecting transversely the zero section, does it algebraically N times. We
thus fix the total vorticity of the problem, which becomes a parameter of the problem.
In section 3 of this talk, we shall take into account the influence of the external field,
so that the total vorticity will be once again a variable of the problem as in the original
model. The existence of a couple section-connection Ak) minimizing in the

Sobolev spaces W1>2 of sections and connections (the expression in a trivialization of
the bundle of (u, A) gives the functions and 1-forms W l2) is now a classical problem



which requires the use of Coulomb gauges in order to render the functional coercitive

(see [Uh]). We thus propose to study the behavior of such minimizing couples Ak )
when ~ tends to infinity. The difficulty of such an analysis comes from the fact that
we do not dispose of estimates a priori sufficient, independent of ~, in any functional

space, to prove any weak convergence towards something. In particular, we can verify
that .~,~(u~, A,~) --~ +00 and more precisely we have

F. Bethuel, H. Brezis and F. Hélein give a complete description of this asymptotic in

[BBH] for the case A = 0 on a domain of (this is completed in ~St~, adapted to
the gauge invariant model in and later in [Qin], and followed the study of the
symmetric case on in ~BC~). They then establish the following result:

THEOREM 2.4 ([BBH]). - Given a sequence of configurations (um, Am) minimizing
for a sequence of r~ tending towards infinity, there exist a sub-sequence (u;~, A;~)

and N distinct points of M such that

where l~~ = M ~ (u*, A*) is a couple unitary section-connection of E over

M, which is a critical point of the functional

Moreover the index of the singular A*-harmonic section u* at each p~ is +1, which

gives in particular that the limiting curvature h* _ *dA* verifies the "London equation"

Remark 1. - The positions of the limiting vortices pl...pN determine uniquely the

couple (u*, A*) (up to the gauge invariance).

We sketch the main points of the proof below-we omit the index ~.

Again, the maximum principle applied to the first equation of (3) gives ~u~  1.

Combining this L~° bounding of ~u~ and the bounding of the configuration energy
(u, A) given by (13), by means of classical elliptic estimates (in the spirit of inter-

polation inequalities of the Gagliardo-Nirenberg type [BBHO]), we get the following
control over the L~ norm of the covariant derivative of u (which is actually optimal)

The general strategy will consist in identifying and covering in the best possible way
the zero set of which coincides with the region of loss of compactness of the se-

quence of configurations (u, A) in Wl,2. This region is called "bad set"; more precisely.



it refers to the following set:

(the constant 1 /2 is in fact chosen arbitrarily between 0 and 1). We then have the
following "quantization" result.

There exists 6 > 0 independent of 03BA such that, for all xo in M,

This result is an immediate consequence of (17). It implies that a point of .M con-

tributes, on a ball of radius 03BA-1, to a "finite" part of the Higgs energy 03BA2 B03BA-1(x0) 1-
|u|2|2 (i.e larger than a value b > 0 independent of 03BA).

The joint use of the upper bounding of the energy and the conservation law of the
energy-momentum tensor (5), from which we deduce the Pohozaev identity on any
geodesic ball, gives in particular (cf [BR1])

where C~ is independent of ~. The use of the intermediate scales /~ ~ in [BR1]
between the natural scales of the problem (1 and ~-1 ) enables us to get rid of the
magnetic field in the Pohozaev identities and to obtain (20). These scales (which are
not really necessary in the case A = 0 in dimension 2 [BBH]) are extensively used in
the gauge invariant model ([BR1], [Ril], [Ri2]...). Combining (19) and (20), we get
the following covering of A4 on a whole ball of radius ~-a.

where is a family of points in et Na and No. is bounded inde-
pendently of r~.

Once again, the use of the stress-energy tensor (5) enables us to prove the quanti-
zation result below:

LEMMA 2.5 (eta-compactness). - There exists q > 0 independent of 03BA such that for
any radius 1 ~ p > ~-1 and any x in M, one has

where the f ree energy density f (u, A) _ + ~-~1 - u ~ 2 ~ 2 + dA~ 2 .
This lemma tells us that the contribution of the bad set to the total energy on

a ball of radius p is at least greater than ~ log(03C103BA). The proof in 2 dimensions is
quite straightforward (see [Ril]), while in larger dimensions, it becomes much more
technical (see ~Ri2~ [LR2]).



The combination of the bounding of the energy (13), (21) and the lemma of eta-
compactness enables us to conclude easily that the set A4 is contained in a uniform
number of bounded balls of radius /’1;-1:

We can then extract a sub-sequence of the original sequence K - +00 such that the
family (x~ converges in M.

Outside M, h = *dA verifies the following elliptic equation deduced from the
second Ginzburg-Landau equation (1)

What prevents this equation from being verified on all M is the index of u around
the zero set. Then if dj =deg( ~u~ ; (x~ )), one verifies that

From (24) and (25), we then have that h is a 03BA-1-approximation of the following
linear problem

From (17), we can deduce that the dj are uniformly bounded and thus that the
norms (p  2) of k are bounded independently of ~. These boundings can be

transmitted easily to h = *dA and by bootstrapping then in the Ginzburg-Landau
equations (1), we prove theorem 2.4 (moreover to show that n = N, we have used the
minimality of the solution).

As opposed to the non-interacting case ~ = the vortices ~ and their limits

(pi .. ,p N ) cannot be anywhere in the domain M, the configuration (pi .. ,p N ) minimizes
a certain energy W of in R, known as the renormalized energy (A denotes
the diagonal of MN).
THEOREM 2.6 ([BBH]). - The configuration of limiting vortices (pl...pN) given by
theorem 2.4 is a fundamental state of the following function defined on MN , 0

The fact that the vortices strongly repel one another can be clearly seen in W.

Indeed, we can verify that if two vortices Zi and zj come close to each other, the
others remaining fix, then we have W N 2~r log z2 - .



The proof of theorem 2.6 relies on the following decomposition. We take some

~ > 0 independent of /~. We divide M into two disjoint parts M = U Ma.

We decompose the total energy as a sum of the energies on each ball and

on M8. According to theorem 2.4, ~u~ converges uniformly towards 1 while *dA

converges uniformly towards h* which is solution of (16) on M5. Using then the

second Ginzburg-Landau equation, we get

Moreover, an explicit calculation enables us to verify that

where C is independent of the positions of the vortices. Using a covering of A4 by a

finite number of balls of radii ~-l, we can show by means of the convergence given
by theorem 2.4 that the principal part of the energy around a limiting vortex is

independent of its position and of the existence of the other vortices

where Co is a universal constant. By combining (28), (29) and (30) we can easily
verify that to optimize .~’,~, we have to optimize the configuration of vortices (pi .. ,p N)
with respect to W. This proves theorem 4.

Moreover, we have shown that ,~’,~ (u,~, A) has the following asymptotic expansion.

This asymptotic expansion can be interpreted as follows: each vortex interacts with
itself with an energy with principal part 27f log Ii, W is the interaction energy amongst
vortices, and finally Co is the renormalized energy of an isolated particle.

If we now follow a sequence of Ginzburg-Landau solutions (1) in the

"London limit" (Ii -~ +oo), which is now not necessarily a sequence of minima, we
prove results corresponding to theorems 2.4 and 2.6, the condition being to remain
in "reasonable" energy levels Am) = O(log The number of limiting vortices

pi...pQ is now not necessarily N. To each vortex is associated an integer multiplicity
dj which is the index of the limiting singular section u* around pj . The equation
verified by the limiting field h* becomes

while the positions of the p~ is a critical point of the function W given by (27) where
Gj is replaced by dj G j .



2.3. The space of solutions in the "London limit"

Study of the zero set in the London limit. - We saw that in the London limit (r~ -
+oo), the zero set of the minimizing section uk is forced to converge towards a very
precise locus of points of the domain: pl...pN which is a critical point of the function
W. We now want to have a more complete description of this zero set, and eventually,
to see in which limit the property obtained in the non-interactive case, saying that two
solutions having the same zeros are gauge equivalent, remains valid in the strongly
repulsive case. This would then bring the study of the space of solutions to that of the
eventual zero set and would justify the tendency in physics to call Ginzburg-Landau
vortices the solutions to the Ginzburg-Landau equations themselves.

Consider a sequence of minima AK,) of Fk converging as in theorem 2.2 towards
a couple section-singular connections (u*, A*). We first look for the zero set of luK, 1---
we shall omit the index 03BA except where necessary. The limiting section being of index
1 to pi, the sum of the indices of u on the bad balls B K, -1 converging towards pi
is also +1. We can always suppose that  1/2.

If ever the centers xl and xk of two bad balls separate faster that 0(~-1), we obtain
a contradiction for the following reason. Suppose that this actually occurs, then up
to the extraction of a sub-sequence, we can suppose that

Consider then the dilation of the section around the point xk given by (in a local
Coulomb gauge): = + The convergence of the field dA established

in the proof of theorem 2.4 as well as in the L°~ bound of the covariant derivative

(17) enable to conclude that, up to an extraction of a sub-sequence, tim converges in
towards a solution of

It is shown in [BMR] that the Higgs energy of the solutions of (34) is quantized:

Thus, if we go back to the original scale, for a sufficiently large radius R, independent
of ~, with /’1; sufficiently large, then at the limit the contribution of the ball 
to the Higgs energy is at least 27r. This also holds for xi and thus, since both points
separate faster than O(03BA), from (33) we can deduce that for all 03B4 > 0 independent of



Moreover, the Pohozaev identity on the ball deduced from the energy-

momentum conservation law, combined with the convergences of theorem 2.4, easily
gives

(36) and (37) are then in contradiction, and so (33) cannot occur even for a sub-
sequence. Thus, there exists A > 0 independent of ~ such that the part of the bad
set .M converging towards pi can be covered by exactly one ball of radius ~~-1.
So let xi be the center of this ball and more generally Xi be the center of the ball

converging towards pi and containing .M in the vicinity of We can always suppose
that = 0 since the limiting index of u* is non-zero at pi, but equal to 1, and that
u must become 0 somewhere in the part of which converges towards pi which is

contained in The dilation argument previously applied from xi then says
that, in a local Coulomb gauge, = + x1) converges in up to the

extraction of a sub-sequence towards a solution û of the following problem.

(It is shown in [BMR] that from the first three lines of (38), one can show that
converges uniformly towards 1 at infinity and thus that the index û, +oo)

is well-defined.) Equation (38) is known as the "profile" equation of the Ginzburg-
Landau vortices. The problem of the multiplicity of the solutions of (38) is not a

standard problem in non-linear elliptic equations; indeed u does take real but complex
values and the classical approaches using the maximum principle to show an eventual
symmetry of the solution cannot apply here.

P. Mironescu in [Mi] gave the following proof of the uniqueness (up to rotations)
of the "profile".

It is quite standard to verify that there exists a unique solution of (38) of the form
((r, B) being the polar co-ordinates on Let us divide ti, which is any

solution of (38), by this axially symmetric solution. The ratio w = is a



critical point on ~0~ of the functional

w is the critical point for the infinitesimal action of dilations on ~0~. This
then gives the Pohozaev identity

(the index 1 being used at infinity to get rid of the boundary terms). A simple study
of the modulus of the radial solution p enables to conclude that p’ > 0. The identity
(39) then tells us that Iwl = 1, ar = 0 and thus ic = where a is a constant.
This proves the uniqueness of the profile up to rotations.

Since tim converges (up to the extraction of a sub-sequence) in towards
this profile (unique up to rotations), also since ic becomes zero exactly at 0 and since

has rank 2, one can then verify that on u~ 1(~0}) _ ~0~. Thus on the
ball is equal to zero at a unique point.
We have up to now used the fact that the couple (um, Am) is minimal in order

to get the convergence of theorem 2.4 and the index 1 of u* at each pj . From the
extension of the results 2.4 and 2.6 to any of the critical configurations (um, A, )
under the energy levels described at the end of section 2.2, we have shown
the following proposition.

PROPOSITION 2.7. - Let (um, Ak) be a sequence of configurations - 

solutions of the Ginzburg-Landau equation (1), verifying the energy bounding
.~’,~(~c,~, Am) = O(log and converging towards a couple section-connection (u*, A*)
singular at pl ...pQ . If the index of u* at pj is ±1 for all j, then there exists 03BA0 such
that for 03BA > Ii: 0 , we have

The role of the renormalized energy W. - Let us again place ourselves in the hy-
potheses of proposition 2.7. The section u03BA for 03BA sufficiently large thus intersects
exactly Q times the zero section with each time an intersection index ±1. Each of
those zero points of u~ converges towards a limiting vortex pl...pQ. Considering how
important the part played by the position of the zero is in P. Mironescu’s uniqueness
argument, a natural question is whether, more generally, two solutions of (1) hav-
ing the same zero sets in the London limit, are equal (up to the gauge invariance).
This proposition would generalize to the strongly repulsive case the same proposition
proved above by Jaffe and Taubes for the non-interacting case. The answer to this
question is yes under the same hypotheses as in proposition 2.7.



PROPOSITION 2.8 ([PR]). - Let (um, Am) and Bm) be two sequences of solutions

of the Ginzburg-Landau equations (1) in the London limit (~ - verifying the

common energy bounding = = and both

converging towards the same singular configuration (u*, A*). We suppose that the

index of u* at each singularity is ±1. Then there exists 03BA0 such that for K > 03BA0

where denotes the gauge equivalence.

The proof of the preceding proposition relies amongst other things on the following

generalization of P. Mironesu’s argument. In a Coulomb gauge in the vicinity of any
limiting vortex we reconsider under the hypotheses of the proposition, the ratio of

the two solutions w = v . Instead of making dilations with respect to the conformal
field X = r tr centered at the common zero of u and v, which do not give any results
in that case, we dilate with respect to the following field, constructed from the second

solution of v,

where we identify the field with the dual 1-form given by the scalar product. We can

observe that Y coincides with the usual conformal dilation field X = in the case

where v has a radial symmetry. The action of this field on the functional for which

(w, A) is a critical point gives a Pohozaev identity in the vicinity of Pk, which all put
together enable us to conclude that for sufficiently large ~ (u,~, A,~) ^~ 

The use of Y rather that the usual field X = is a posteriori natural in view of
the functional for which (w, A) is a critical point and of the property of |v|-conformality
of Y (see [PR]).

The proposition 2.8 is the first step to describe the space of solutions below the

energy levels in the London limit. The second step consists in constructing
a sequence Bm) converging towards a (u*, A*) whose configuration of associated
vortices pl...pQ is any critical point of W (non-degenerate up to the actions of isome-
tries of M) and whose multiplicities dj Such a construction has been done in

[LL] for dj = +1 by means of variational arguments, by establishing a link between
the level sets of the function Wand the functional 0m. In [PR] this construction is
done for dj = ::l::1 by means of the local inversion theorem which also has the advan-

tage to bring the local uniqueness. The argument of linearization around a solution is
rendered complex by the existence of a "kernel at infinity": the inverse of the linearized

operator of (1) around an accumulation of vortices which converges towards (u*, A* ),
blows-up in the standard norms W 2’2 - L~ when ~ tends to infinity. This is due to the
action of the invariance group of the limiting profile equation (38) (here the isometries
of the plane). We are thus led to develop the Lyapunov-Schmidt reduction argument
which first consists in working in a direction perpendicular to this kernel at infinity,
which we reintroduce in the final non-linear argument. This technique applied to the



elliptic P.D.E. has often been used in a number of constructive problems of differential

geometry like the existence of minimal surfaces, the existence of surfaces of constant
mean curvature, the Yamabe problem, the Yang-Mills monopoles... by N. Kapouleas,
R. lVlazzeo, F. Pacard, R. Schoen, K. Uhlenbeck, S.T. Yau... with each time new

difficulties. (vm, Bm) being thus constructed benefits from a local uniqueness in an
adapted functional space. If (u,~, Am) is another solution of (1), converging towards
the same limiting configuration whose singularities are pi...pQ, we know (proposi-
tion 2.7) that the zeros of converge towards those singularities and are thus close
to those of . The argument of the proof of proposition 2.8 is then converted in
order to obtain, no longer directly that (u,~, Am) rr (v,~, B,~), a sufficiently small bound
of the "separation" of (~c~, A~) and (v,~, Bm) which, by means of the local uniqueness
established previously, enables to conclude that (v,~, B,~ ) . We thus have
the following theorem.

THEOREM 2.9 ([PR]). - Let be a critical point of the renormalized energy
W for the multiplicities (dl...dQ) in ~- l, +1 ~ . Suppose that this critical point is

non-degenerate up to the action of isometries of M. Let (u*, A*) be the singular
couple section-connection associated to dj ) . Then let (u,~, A~) and be two

sequences of Ginzburg-Landau equations (1) verifying the common energy bounding
Am) = o (log ~) and Bm) = O(log K), if their singular closure set is the

configuration (u*, A* ), then for sufficiently large 03BA

up to the action of isometries of M ( N is the gauge equivalence ).

Comments. - Theorem 2.9 tells us that under certain hypotheses, the study of
the critical points of the functional .~’,~ in the London limit-infinite dimensional

problem-can be brought to that of the critical points of the function W-finite di-
mensional problem. The limits of our description of solutions to the Ginzburg-Landau
equations in the strongly repulsive case are the following. First, in order to be in the
context of the BBH asymptotic, we have restricted the critical points to energies below

C log ~. How about other eventual solutions to (1)? In the case A = 0 on a star-

shaped domain, it has been shown that all the Ginzburg-Landau solutions are under a
certain energy level C log ~. The second restriction in the hypotheses of theorem 2.9 is

the constraint on the limiting multiplicities dj who have to belong to ~+1, -l~. How
about the branches of solutions linking a critical point of W where some of Idj 1’8 are

greater than I? This question is completely open. Neither the variational methods,
in the spirit of [LL], or [AB1], [AB2], nor critical points methods, seen above, have
enabled up to now the construction of solutions (other than the axially symmetric
solutions) converging towards a critical point of W with multiplicities d~ ~ ~ 1. We
do not even have a precise idea of the aspect of such solutions near the vortices.

The understanding of the possible limiting "profiles" is also lacking in that case (see



conjectures on that theme in [OS]). Nevertheless, it seems that the case d~ _ ~ 1 is

"generic" in the following sense: for a "generic" perturbation of the metric, a critical

point of W having multiplicity indices greater than 1 should be transformed into a
critical point whose indices are ±1.

To end up the study of the free energy, we should mention that the techniques
presented above help to bring a partial answer to the Jaffe and Taubes conjectures
on all ffi.2 in the strongly repulsive case.

THEOREM 2.10 ([Ri3]). - The conjecture 2.3 is true in the London limit (sufficiently
Large 03BA) if we replace "stable critical point" by "minimum in the homotopy class".

3. INTERACTION WITH AN EXTERNAL MAGNETIC FIELD;
TOWARDS THE ABRIKOSOV LATTICES

3.1. Introduction

Up to now, we have studied the Ginzburg-Landau free energy ,~’,~ without the
interaction term with the magnetic field 2he  dA. Moreover, we have placed ourselves
on a plane torus in order to ignore in a first approach, the border effects which are
however very important in phenomenological studies, and about which it would be
very interesting to recover the conclusions by the mathematical study itself. Finally, in
the absence of external magnetic field, in order not to work with a trivial fundamental
state, we have imposed a global vorticity through the choice of a certain bundle on
our torus of non zero Euler class. The analysis of our model problem has enabled us
to isolate and understand the mechanism

and to bring the study of the space of solutions to that of the positions of the vortices,
governed by the renormalized energy.

In her PhD thesis [Sel], then in her works in collaboration with E. Sandier 
[SS2], S. Serfaty considers the complete functional ~,~ including the interaction term
with the external magnetic field, on n a simply connected bounded domain of 
The vorticity is thus free and should spontaneously appear by increasing the external
magnetic field and thus the total free energy of the system as it has been observed
for type II superconductors (~ > 

We still place ourselves in the London limit (~ -~ +oo) and the magnetic field he
is assumed to be uniform (we will confuse the 2-form and the corresponding constant).



3.2. The Meissner solution

When the applied field he = 0, the fundamental state of ~,~ is clearly reached by the
pure state solution h = *dA = 0. When we increase the field he, the superconducting
character of the sample changes a little without however forming any vortex ] >
1/2 for sufficiently large ~). We expect this configuration which is vortex-free, stable,
and absolute minimum for not too strong external fields, to be unique. This is what
S. Serfaty shows by combining energy estimates and convexity arguments.

THEOREM 3.1 ([Se3]). - in the London limit (03BA sufficiently large), there exists a,

unique stable, vortex free (|u03BA| ~ 1/2) critical point which minimizes G03BA amongst
the vortex-free critical points, with the condition he = 0(~a) where a is a positive
constant. This solution known as the "Meissner solution" verifies in particular

The constant 1/2 is of course a constant chosen at random between 0 and 1. In

fact the Meissner solution remains stable up to a critical value of the applied field
he = Hsh  C~ known as the "super-heating field", and above which it is no longer
stable. This separation has been studied in detail by H. Berestycki, A. Bonnet and
J. Chapman in [BBC]. Moreover, the uniqueness of the Meissner solution in the

vicinity of the field Hsh is proven by A. Bonnet, J. Chapman and R. Monneau in

[BCM].
What is then natural to ask oneself is for which value Hc1 of the external field he,

the Meissner solution ceases to be a minimum of The calculations of Abrikosov on

all ffi.2 predict As we shall see, the work of S. Serfaty has enabled to show.
that following a conjecture in [BR2], Nci is in fact larger on a bounded domain. This
is a consequence of border effects and is more precisely as follows: in the principal
term of the factor 1/2 in front of log ~ has to be replaced by ki = 1/2 max ]
where ~o is the solution of

ço is also solution of + = 0. We can easily verify using the maximum

principle that > 1 and ço  0 inside 0 and thus that lço I  1. E. Sandier and

S. Serfaty then show the following result.

THEOREM 3.2 (~SS1~). - There exists a constant Cl > 0 such that if



the Meissner solution is an absolute solution of G03BA and there exists C2 such that if

the Meissner solution is no longer an absolute minimum of ~,~.

It is then tempting to place oneself in the vicinity of kllog Ii and to try to observe
the vortices appearing one after the other as the external field is increased. Technically,
this implies that we should work with the absolute minimum of ~,~ for which we would

try to cover precisely the "bad set" A4 , in the spirit of the BBH asymptotic, by means
of uniformly bounded number of balls of radii of which we would then study
the minimal value (eventually 0) and the energetically most advantageous respective
positions.

With the above scheme, we unfortunately come across a major difficulty which has
not yet been solved and which is exposed in the next section. The BBH analysis was
built on the initial estimate of the free energy Ak) = O(log ~) which can be
expressed by a bound of the number of vortices a priori independent of Ii (knowing
that the cost for one "isolated" vortex is about 2~r log In the case we are actually
considering, where the total vorticity is moreover not under control and has become
a variable of the problem, the bound of the energy is a priori

From that we cannot deduce a better estimate than .~’,~(u,~, Am) = 0(log2 ~) for the
free energy part. This thus tells us that the number of vortices that have to be

considered a priori is O(log 03BA) (which must be true for a field he = 2k1 log 03BA, but
not for he = k1 log 03BA + 0(1) where we expect rather a uniformly bounded number
of vortices). The difficulty of working with an a priori so large number of vortices
is responsible for the fact that we have to get out the BBH asymptotic scheme and
that the lack of precision is larger as can be seen between ki C log log K and
k1 log 03BA + C2 in theorem 3.2 which is yet a very nice achievement.

The proof of theorem 3.2 has its roots in the asymptotic arguments of the previous
section. The point is to realize the best possible lower bound of the total energy of
a critical configuration with vortices and to show that for a sufficiently low external
field, the Meissner solution is energetically preferable. In order to obtain such a lower
bound, we begin by renormalizing the induced field by "extracting" the external field
described following [BR2]. Let ç be the solution ~~ = h on Q, which is equal to 0 on
0Q (A = *dç is the Coulomb gauge of h on Q), we note ( the difference ( = ~ 2014 heço
(where ço is given by (41)). *d( is the Coulomb connection on all 0, from which we
have removed the influence of the external field. We show without much difficulty



that the energy of the minimal configuration (um, A) can be decomposed as follows:

We suppose then that he = O(log /~) and we proceed to a decomposition of the domain,
in the same spirit as that used to prove theorem 2.6, but more complex in the present
case where the "bad set" is a priori far much bigger. We shall have n = ns U Sw where
03A9s and Sw are disjoint and Sw will be a union of disjoint balls {Bri(ai)}i~I covering
.I1~1, the "bad set", and containing as much self energy as possible, without taking into
account the interaction energy of the vortices amongst themselves as in the proof of
theorem 2.6. Precisely, by means of a technique introduced by R. Jerrard [J], we show
(see [SS1]) the existence of a family of balls B such that

We then choose nv = UiEIBri (ai). The radii replace the radii b = 0(1) of
the proof of theorem 2.6 since the number of vortices tends towards infinity a priori
as 0(log ~). The role of the ai is a bit like intermediate vortices of degree di and this
choice of covering gives in particular

Combining (43), the choice of (44) and the minimizing character of (u, A) for 
we have

and so if |di] ~ 0, we must get he > k1 log 03BA + O(log log 03BA), which establishes
the first part of theorem 3.2. The second part will be a consequence of theorem 3.3.

This technique of extracting the external magnetic field and then decomposing the

domain in order to optimize the lower bound of the energy is a recurrent theme in

the work of E. Sandier and S. Serfaty and appears through different forms to prove
the theorems below.

3.3. Family of stable solutions having 1, 2, 3...vortices; the blooming of the
lattice

For a while, let us give up the idea of considering the absolute minimum of ~,~, but

yet keeping an external field in the vicinity of ki log /~.



In her first work [Sel], S. Serfaty constructs a family of stable solutions which
have a finite number of vortices for the fields 1 « he « K" (a being positive non
explicit constant). To counteract the difficulty of showing evidence of a finite num-
ber of vortices for the fundamental states themselves, S. Serfaty makes an ansatz
which consists in considering, instead of the absolute minimum (um, Am) of ~,~ in all
yvl,2(~, C) x W1.2(~~ the (um, Am) contained in the following set.

Dn = (u E W1,2(03A9, C) such that 203C0n log 03BA + B   (203C0n + 1) log 03BA}
where 

_

uT is the projection of the function u on the unitary disc (uT = u if u ~  1 and

uT = ujlul otherwise) and B is a negative constant which remains fixed throughout
the proof. The idea is that, in the Coulomb gauge on 0, the cost for a vortex is
(F,~ (uT) N 2~r log r~). Thus, restraining to Dn, we a priori constrain the configuration
(u, A) not to have more than n vortices so that we can get back to the BBH asymptotic
in order to establish a complete description of (u, A). The main difficulty of this
approach comes from the fact that it is not at all evident that a minimum of ~,~ in
Dn, once we have established its existence, should be in the interior of Dn and thus
be a solution of the Ginzburg-Landau equation (1). Suppose that we have proven the
existence of a minimum Am) of ~,~ in Dn. We are tempted to use once more the
arguments of section 2 to cover the "bad set" .M... in order to establish an asymptotic
expansion of Am) as in (31) and verify that (um, Ak) is well in the interior of
Dn (i.e. 203C0n log + B  F(uT)  (203C0n + 1) log 03BA) and thus solution of (1). The

difficulty of this approach resides in the fact that as long as we do not know that
(u, A) is solution of (1), we do not have an estimate of the form = 0(~),
no longer dispose of the quantization result (19) and the set A4 can be very diffuse,
etc. We also no longer have any control of its size, which was given in section 2 by
Pohozaev identities. The idea is then, not to work any longer with (u, A) itself, but
with its parabolic regularization v which minimizes

for some, > 0. The advantage of replacing u by its parabolic regularisation v is that
(v, A) will both be energetically very close to (u, A) and benefit from the properties
of the minimum of ,~’,~ in section 2 (such as v ~  1, ] _ ~ ( ~) ... ) which come
from the elliptic equation verified by v. This idea of the parabolic regularization has
been introduced in the context of Ginzburg-Landau equations by L. Almeida and
F. Bethuel in [AB2], in order to define an approximated configuration of vortices for
any function u in the energy zone F(u) = We then establish an asymptotic
expansion for v in the spirit of section 2.2, which enables to deduce that (v, A) (and
thus (u, A) too) which is energetically close to it, is in the interior of Dn. The existence



of a minimum ~~ in Dn also rests on the use of the parabolic regularization. We then
prove the following theorem which we present in the case where S~ is a disc centered
at 0: s~ = BR(o).

THEOREM 3.3 (~Sel~). - Let D be an arbitrary positive constant, a function
of 03BA tending towards +oo at infinity and verifying  where a is a positive
constant. Then there exists a positive constant such that for K > and

for all n E N*, n  D , there exists a f amily of stable critical points (um, Ak) of 
solution of the Ginzburg-Landau equations (1), verifying

- where are isolated points of BR(o).
- For all j = l...n, _ +1.
- The configuration a~ - ajo converges, up to the extraction of a sub-

sequence, towards a configuration of n points of minimizing

- The asymptotic expansion of Am) is

where Qn only depends on n.

This theorem is very rich in information which have to be extracted one by one,
according to the questions posed in the introduction of this talk.

The information on the location of the zeros is not as precise in Serfaty’s original
work but can be deduced from the arguments in part 2.3 of the present survey.

As opposed to the case without border of section 2, the vortices here tend towards
a same point which coincides with the point where ]go is maximum. Had there been
several points where is maximal, the vortices would have separated to form groups
of nj vortices, in an optimal way amongst those points (we optimize nj )) .
We can calculate, as a function of he, the number of vortices n which optimize the

energy and find through the Serfaty ansatz 27rD a very precise estimate of
We can clearly see that the optimal number of vortices is an increasing function

of he for fixed ~ (large ~). We can easily verify the existence of k2 > 0 such that,
for he > ki log ~ + k2 , the Meissner solution ceases to be minimizing amongst those
solutions with a finite number of vortices, which proves the second part of theorem 2.2.
More generally, denoting by Hn the value of the field where the solution with n vortices
is energetically preferable, we calculate (n > 1)

Figure 2 graphically represents those results.



FIGURE 2. Solutions with 1,2,3... vortex

To know if the solution with n vortices for Hn  he  Hn+1 is a fundamental

state on the whole space is an open seemingly difficult problem discussed in the next
subsection. An important point is also the stable character of these solutions proven
for 1 « he « K" and which we have seen above for the Meissner solution and the

"super-heating" field. This stability is responsible for hysteric phenomena observed in
experiments. The stable character of the solutions having a finite number of vortices
for fields smaller than Nci has been observed by Q. Du and F.H. Lin in [DL].

Although the expression for the renormalized energy W is relatively simple, the
eventual symmetries of its fundamental states, which constitute the bloomings of the
Abrikosov lattices, are still to be completely explored. In [GS], S. Gueron et I. Shafrir
have done stability analyses of the symmetric configurations as well as numerical
studies. They have made the following observations on the probable fundamental
states (see figure 3)

- n  3: these are regular polygons centered in 0
- ’l  n  10: these are regular, star-shaped (regular polygon + origin)
- 4  n  6: the two previous types of configurations are locally minimizing and

are observed
- n > 11: these are clusters of regular concentric polygons which "converge" to-

wards a triangular lattice centered in 0 when n becomes large.

3.4. An interesting open problem: remove S. Serfaty’s Ansatz

It would be nice to really characterize the phase change at HCl through a rigorous
proof of the spontaneous creation of vorticity for absolute minimizers. In other words
an interesting question would be to remove S. Serfaty ansatz and to replace the



FIGURE 3. Blooming of Abrikosov Lattices.

constrained minimization of ~,~ inside Dn by the minimization of ~,~ inside the whole
space C) x The hope is to prove that the solutions obtained in
theorem 3.3 are the absolute minimizers of ~,~ for the various ranges of external fields
given by (48).

There is an interesting discrete model derived from the original one in the large
~-limit. Assume each vortex has zero size and lul = 1 out of the vortices located at
xl...xN with vorticity dl...dN. Following [BR2] one can extract the main terms in the
energy (43):

One of the major step in understanding fully the creation of vortices and the phase
transition at H~1 would be to show that a minimizing configuration d2)i=l...N of
1t for an external field of the order he = HCl + o (log log K) = k1 log K + o (log log h;)
verifies

This question is the main issue in describing the formation of vortices. If one assumes
that all the di’s have the same sign, answering to this question seems reasonably easy.
The difficulty here comes from possible mixing of + and - creating negative clusters
which are not a-priori energetically less favorable.



3.5. The second renormalization: the free boundary problem
In this last section, come back on the study of the fundamental states of ~,~ but

for much more intense fields that inside the mixed phase (see figure 1) and
still in the London limit (x - +00). In that case, the number of vortices will a

priori tend towards infinity with x. One must then develop adapted methods to
account for the limiting set occupied by the vortices in S~. The first renormalization
method consists in subtracting the interaction of each vortex on itself that

is 203C0N log x, to the minimal energy. For reasons seen above, because the a priori
estimate (42) is insufficient, the precision on N to order 0(1) is very difficult to reach
for the fundamental state for fields larger than ki log ~ + O(log The second

renormalization proposed by E. Sandier and S. Serfaty in [SS2] consists in dividing
~,~ by he and in studying the F-limit of the ratio, for at least the fundamental states.
The result is then as follows.

THEOREM 3.4 ([SS2]). - Let be a positive function so that ~ = 
exists. If a = 0, we suppose he (~) = 0(~2 ) . Let k* be a solution of the following
problem

Then k* is unique,  = -0394h* + h* is positive and coincides with the characteristic
function 1~, of the locus of points c~ where k* is minimal and equal to 1- 2

Moreover, the lack of strong convergence is exactly given by the measure of the fol-
lowing defect

Finally we have the following expansion of the renormalized fundamental energy

where is a minimal configuration.

Remark 2. - When a is equal to 0, (i.e. he » is the characteristic function
of all S~ and h/he converges strongly towards 1.



The absence of strong convergence for the case A > 0 can be understood in the
following sense. Apart from the bad set which is covered by balls M c nv =
~i~IB03BA-1(xi) (supposedly disjoint), h = *dA verifies

is then very close to the solution of

where di is the degree of u/lul on the boundary (xi). We recall that the second
Ginzburg-Landau equation (1) gives in particular

and that, moreover, again by means of this equation,

Let JL be the limit of the vortex density per unit external field.

If we consider the energy of the limit k*, solution of -Ak* + k* _ ~c instead of the
limit of the energy 

we forget that J1 has been obtained by means of Dirac sums and we miss the part of
the energy coming from the interaction of each Dirac on itself divided by he which is

The difficulty of the analysis of this second renormalization is not only due to the
above handwaving understanding of the mechanism of the energy partitioning, but
essentially in the application of rigorous arguments which enable to establish theo-
rem 3.4. The proof is somewhat in the same spirit as that of theorem 3.2, where, in
order to obtain an optimal lower bound of the energy, we proceed by decomposing
the domain which separates the self energy of the vortices from the rest of the energy.
This decomposition of M relies on a more refined covering of the "bad set" than that
of theorem 3.2, where the method of enlargement of balls introduced in [Sa] is used.

As described by the above simple reasoning,  is the limiting density of vortices
per unit applied field. It is either maximal and equal to 1- A/2 in the sub-domain w
of 0 where k* = 1 2014 ~ also, or equal to zero in its complementary (see figure 4). The
problem verified by k* is a free boundary problem in the sense that the knowledge of



FIGURE 4. Free-boundary problem

cv determines k* in a unique way. This is an obstacle-problem, now quite classical,
considered in particular in [R]. It has been shown by A. Bonnet and R. Monneau in

[BM] that acv is regular for almost all the values of A and that, whenever it is the

case, c~ is determined by the existence of the solution (...) of the following problem.

3.6. Conclusion

What about the Abrikosov lattices? It would be interesting, in the previous ap-
proach, to place oneself at a scale 1/ y’h; -the minimal mean relative distance between
two vortices- and to try then to understand the limit ~ 2014~ -t-oo. We can hope in this
asymptotic, to show the existence of an infinite renormalized energy on countable con-

figurations of points of ffi.2, which govern the set up of the vortices amongst themselves
and try to understand the fundamental states of this energy by restraining ourselves,
in a first approach, to periodic lattices. The first difficulty of this analysis is to un-
derstand the terms of lower order in the expansion of the energy (55). The first term
only gives the mean density of vortices and does not see their relative positions to

0(1/ he).



In his PhD thesis, M. Dutour [D] adopts a different approach which we shall not
develop more extensively here since that would lead us beyond the scope of this talk.
One places oneself on any flat torus T, which can be seen as a unit cell of a lattice
of and whose size and geometry are variables of the problem. On that cell T
which is considered occupied by only one vortex (one fixes a complex line bundle E
on T of Euler class equal to 1), one studies the minima of ~,~ the Ginzburg-Landau
functional under the action of an external uniform field he. When the external field

increases, the increase in the vortex density, in that model, gives rise to a decrease in
the size of the cell T, etc. M. Dutour thus gives a very complete description of the

phase diagram (figure 1) namely in the vicinity of where he manages to show

the existence of exactly two solutions; the first with vortices (close to one another by
~ ~-1 ) and the second in the normal state dA = he . He establishes whether each
of these solutions is minimizing or not with respect to he, and accounts for the large
precision of the Abrikosov bifurcation from the critical value 1/2. The optimality of
such or such lattice is only partially discussed, but this approach seems to open a new
direction towards a rigorous understanding of the relative positions of the vortices in
the fundamental state (very far from the boundary which has disappeared from this
model) and eventually of the energetically favorable nature of the Abrikosov triangular
lattices.
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