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MOTIVIC MEASURES
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Mars 2000

1. INTRODUCTION

An n-jet of an arc in an algebraic variety is a one parameter Taylor series of length
n in that variety. To be precise, if the variety X is defined over the algebraically
closed field k, then it is a point of X. The set of such n-j ets
are the closed points of a variety also defined over k and the arc space of

X, .C(X), is the projective limit of these. Probably Nash [24] was the first to study
arc spaces in a systematic fashion (the paper in question was written in 1968). He
concentrated on arcs based at a given point of X and observed that to each irreducible
component of this ’provariety’ there corresponds in an injective manner an irreducible
component of the preimage of this point in any resolution of X. He asked the (still
unanswered) question how to identify these components on a given resolution. The
renewed interest in arc spaces has a different origin, however. Batyrev [4] proved
that two connected projective complex manifolds with trivial canonical bundle which
are birationally equivalent must have the same Betti numbers. This he showed by
first lifting the data to a situation over a discrete valution ring with finite residue
field and then exploiting a p-adic integration technique. (Such a p-adic integration
approach to problems in complex algebraic geometry had also been used by Denef
and Loeser [12] in their work on topological zeta functions attached to singular points
of complex varieties.) When Kontsevich learned of Batyrev’s result he saw how this
proof could be made to work in a complex setting using arc spaces. The new proof
also gave more: equality of Hodge numbers, and even an isomorphism of Hodge
structures with rational coefficients. The underlying technique, now going under the
name of motivic integration, has led to an avalanche of applications. These include
new (so-called stringy) invariants of singularities, a complex analogue of the Igusa
zeta function, a motivic version of the Thom-Sebastiani property and the motivic
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McKay correspondence. Some of these were covered in a recent talk by Reid [26] in
this seminar.

The idea is simple if we keep in mind an analogous, more classical situation. Con-
sider the case of a complete discrete valuation ring (R, m) with finite residue field F.
There is a Haar measure on the Boolean algebra consisting of the cosets of powers of m
that takes the value 1 on R (so it is also a probability measure). This induces one on
a suitable Boolean algebra of subsets of the set of R-valued points of any scheme that
is flat of pure dimension and of finite type over Spec(R). Associated to this measure
is a function that essentially counts the number of ’points’ in each reduction modulo

the Igusa zeta function, introduced by Weil, and intensively studied by Igusa,
Denef and Loeser (and reported on by Denef in this seminar [11]). A missing case
was that of equal characteristic zero: 0 = l~~~t~~, ~ D Q. The proposal of Kontsevich
is to give C~ a measure that takes values in a Grothendieck ring of k-varieties in which
the class of the affine line, L, is invertible: the value on the ideal (tn) is then simply
L-n (or which is sometimes more convenient). If JU is a suitable 0-scheme,
then we obtain a measure on the set of sections as before, but now with values in
this Grothendieck ring. The corresponding zeta function is a very fine bookkeeping
device, for it does its counting in a ring that is huge. There is no a priori reason
to restrict to the case of equal characteristic, for Kontsevich’s idea makes sense for

any complete discrete valuation ring. Indeed, with little extra effort the material in
Sections 2, 3 and 9 can be generalized to that context.

This report concerns mainly work of Denef and Loeser. Some of their results are

presented here somewhat differently, and this is why more proofs are provided than
one perhaps expects of the write up of a seminar talk. References to the sources are
in general given after the section titles, rather than in the statements of theorems.

I thank Jan Denef for inviting me for a short visit to Leuven to discuss the material

exposed here. I am also indebted to Maxim Kontsevich and especially to Jan Denef for
comments on previous versions, from which this text has greatly benefitted (though
remaining errors are my responsability only). This applies in particular to the motivic
Thom-Sebastiani theorem and a word of explanation is in order here. In the original
version I had introduced (albeit somewhat implicitly) a binary operator on a certain
Grothendieck ring of motives, called here quasi-convolution. Quasi-convolution is
almost associative, but not quite, and since I thought this to be a serious defect, I

passed to the universal associative quotient. But in a recent overview, Denef and

Loeser [19] noted that there is no need for this: the property one wants (which is
another than associativity) holds already without passing that quotient. As this no
longer justifies its introduction, I thought it best to take advantage of their observation
and rewrite things accordingly.



2. THE ARC SPACE AND ITS MEASURE [14], [23]

Throughout the talk we fix a complete discrete valuation ring 0 whose residue field

k is assumed to be algebraically closed and of characteristic zero. The spectrum of C~

is denoted D with generic point and closed point o. A uniformizing parameter is

often denoted by t so that C~ = l~~~t~~. The assumption that k be algebraically closed
is for convenience only: in most situations this restriction is unnecessary or can be

avoided.

The symbol N stands for the set of nonnegative integers.

The Grothendieck ring of varieties

Consider the Grothendieck ring of reduced k-varieties: this is the abelian

group generated by the isomorphism classes of such varieties, subject to the relations

[X - Y] = [X] - [Y] , where Y is closed in X. The product over k turns it into a

ring. Note that if we restrict ourselves to smooth varieties we get the same ring: the

reason is that every k-variety X admits a stratification (i.e., a filtration by closed
subschemes X = X 1 ~ ~ ~ ~ ~ = 0 such that X~ - is smooth)
and that any two such admit a common refinement. The latter property implies
that [X] := X ~+1~ is unambiguously defined. In fact, is generated
by the classes of complete nonsingular varieties, for any smooth variety U admits

a completion U by adding a normal crossing divisor and then ~U~ _ ~(-1)i~Ui~,
where UZ stands for the normalization of the codimension i skeleton of the resulting
stratification. Wlodarczyk’s weak factorization theorem (in the form of the main
theorem of [1]) can be used to show that relations of the following simple type suffice:
if X is smooth projective and X ~ X is obtained by blowing up a smooth closed

subvariety Y c X with exceptional divisor Y, then [X] - ~Y~ _ [X] - [Y] .
We denote the class of the affine line Al by L and we write Mk for the localization

Recall that a subset of a variety X is called constructible if it is a finite
union of (locally closed) subvarieties. Any constructible subset C of X defines an
element [C] G Mk. The constructible subsets of X form a Boolean algebra and so
we obtain in a tautological manner a Mk-valued measure defined on this Boolean

algebra. More generally, a morphism f : Y ~ X defines on that same algebra an
Mk-valued measure assign to a constructible subset of X its preimage in Y.

The ring Mk is interesting, big, and hard to grasp. Fortunately, there are several
characteristics of Mk (i.e., ring homomorphisms from Mk to a ring) that are well
understood. We describe some of these in decreasing order of complexity under the
assumption that k is a subfield of C. The first example is the Grothendieck ring
Ko(HS) of the category of Hodge structures. A Hodge structure consists of a finite
dimensional Q-vector space H, a finite bigrading H ~ ~ _ such that HP,q

is the complex conjugate of and each weight summand, is defined



over Q. There are evident notions of tensor product and morphism of Hodge struc-
tures so that we get an abelian category HS with tensor product. The Grothendieck
construction produces a group Ko(HS), elements of which are representable as a for-
mal difference of Hodge structures [H] - [H’] and [77] = [H’] if and only if H and 77’
are isomorphic. The tensor product makes it a ring.

For every complex variety X, the cohomology with compact supports, H~ (X; ~),
comes with a natural finite increasing filtration W, H~ (X ; ~), the weight filtration,
such that the associated graded GrW Hrc(X; Q) underlies a Hodge structure having

as weight m summand. We assign to X the Hodge characteristic(1)

If Y c X is closed subvariety, then the exact sequence

is compatible in a strong sense with the Hodge data. This implies the additivity
property = xh(X - Y) + xh(Y). For the affine line H~ (~1; Q) is nonzero
only for r = 2; the cohomology group H2 (~.l ; Q) is one-dimensional and of type (1,1).
So (usually denoted as ~(-1)) is invertible. It follows that ~h factorizes over
Mk. If we only care for dimensions, then we compose with the ring homomorphism
K0(HS) ~ Z[u, v, v-1], [H] H to get the Hodge number
characteristic xhn : ~G~~c, u-1, v, v-1~. It takes L to uv. The weight char-
acteristic ~wt : Mk ~ Z[w, is obtained if we go further down along the map
Z[u, v, --~ Z[w, that sends both u and v to w. Evaluating the latter at
w == 1 gives the ordinary(2) Euler characteristic ~top : Mk ~ Z.

In the spirit of this discussion is the following question raised by Kapranov [22] :

Question ~.1. - Let X be a variety over l~. If an(X) E Mk denotes the class of its
nth symmetric power, is then

a rational function in the sense that it determines an element in a suitable localization

of (Since the logarithmic derivative Z’/Z defines an additive map 
Mk[[T]], we may restrict ourselves here to the case of a smooth variety.) Does it

all our characteristics are compactly supported we omit the otherwise desirable subscript c
from the notation.

(2) A complex algebraic variety can be compactified within its homotopy type by giving it a topo-
logical boundary that is stratifyable into strata of odd dimension. This boundary has zero Euler

characteristic, hence the compactly supported Euler characteristic of the variety is its ordinary Euler
characteristic.



satisfy a functional equation when X is smooth and complete? Kapranov shows that
the answer to both questions is yes in case dim(X)  1.

A measure on the space of sections

Let us call a D-variety a separated reduced scheme that is flat and of finite type
over D and whose closed fiber is reduced. Given a D-variety with closed fiber X,
then the set of its sections up to order n, is the set of closed points of a k-variety
(also denoted xn) naturally associated to JU. It is obtained from x modulo mn+1

essentially by Weil restriction of scalars [20]. So xo = X. The set Xoo of sections of
is the projective limit of these and is therefore the set of closed points of a

provariety. If is of the form X x D - D, with X a k-variety, then we are dealing
with the space of n-jets (of curves) on X and the arc space of X, here denoted by

resp. ,C(X ).
For m > n we have a forgetful morphism xn. (When n = 0, we shall

often write 1rx instead of A fiber of lies in an affine space over
the Zariski tangent space of the base point. In case X is smooth, it is in fact an
affine space over the tangent space of the base point: has then the structure
of a torsor over the tangent bundle. A theorem of Greenberg [21] asserts that there
exists a constant c such that the image of 03C0n equals the image of 03C0cnn. So is

constructible.

The goal is to define a measure on an interesting algebra of subsets of Xoo in such a
way that its direct image under 03C0X is the tautological measure Mx when X is smooth.
(This will lead us to deviate from the definition of Denef-Loeser and Batyrev by a
factor ILd and to adopt the one used in [26] instead.) For this we assume that x is
of pure relative dimension d and we say that a subset A of x~ is stable if for some
n G N we have

- is constructible in xn and A = 
- for all m 2 n the projection 03C0m+1 (A) ~ 03C0m(A) is a piecewise trivial fibration

(that is, trivial relative to a decomposition into subvarieties) with fiber an affine space
of dimension d.

The second condition is of course superfluous in case is smooth. It is clear that
md is independent of the choice of m > n; we call this the (virtual)

dimension dim A of A. The same is true for the class E we denote
that class by ~cX (A). The collection of stable subsets of x is a Boolean ring (i.e., is
closed under finite union and difference) on which defines a finite additive measure.
A theorem of Denef Loeser (see Theorem 9.1) ensures that there are plenty of stable
sets.

In order to extend the measure to a bigger collection of interesting subsets of
~~ we need to complete Mk. Given m E Z, let FmMk be the subgroup of Mk
spanned by the with dim Z  m + r. This is a filtration of Mk as a ring:



FmMk.FnMk C So the separated completion of Mk with respect to this
filtration,

Mk :== lim Mk/FmMk (m ~ -oo in this limit),
to which we will refer as the dimensional completion, is also a ring. The kernel of

the natural map Mk is nmFmMk, of course. It is not known whether this is

zero(3). In case k C C, the Hodge characteristic extends to this completion:

Here Ko (HS) is defined in a similar way as Mk with ’dimension’ replaced by ’weight’.
The assertion follows from the fact that the weights in the compactly supported coho-

mology of a variety of dimension d are  2d. Likewise we can extend the characteristics

counting Hodge numbers or weight numbers (with values Laurent power series in the
reciprocals of their variables). This does not apply to the Euler characteristic, but
in many cases of interest the weight characteristic gives a rational function in w that
has no pole at w = 1. Its value there is then a good substitute.
We will be mostly concerned with the composite of and the completion map,

for it is this measure that we shall extend. We call this the motivic measure on x and

denote it by Let us say that a subset A c Xoo is measurable if for every (negative)
integer m there exist a stable subset Am C Xoo and a sequence (Ci C of

stable subsets such that the symmetric difference A0394Am is contained in ~i~NCi with
dim Ci  m for all i and dim -oo, for i -j oo.

PROPOSITION 2.2. - The measurable subsets of make up a Boolean subring and
extends as a measure to this ring by

In particular, the above limit exists in k and its value only depends on A.

The proof is based on

LEMMA 2.3. - Let of pure dimension and A C x~ a stable subset. If
C = a countable covering of A by stable subsets with dim Ci ~ -oo a.s

z --~ oo, then A is covered by a finite subcollection of C.

Proof. - Let n E N be such that A = Suppose that A is not covered by
a finite subcollection of C. Choose k e N such that dim Ci  -(n + 2)d for z > k and
let un+1 E We have C A. This set is not covered by
a finite subcollection of C, for clearly is not covered by and for

i > k, Ci n ~rn.+1 (u) is of positive codimension in (u).

(3)This issue is avoided if we work with the adic completion ~((L-1)) instead, but in

practice this is too small. Nevertheless, it seems that in all applications we are dealing with elements

lying in the localization Q(L) 



With induction we find a sequence {um E so that for all m > n 

lies over um and is not covered by a finite sub collection of C. The sequence
defines an element u E JU. Since E we have u E A and so u E Ci for

some i. But if Ci is stable at level m > n, then C Ci, which contradicts a

defining property of um. D

For k = C, the condition limi~~ dim Ci = -oo is unnecessary, for we may then
use the Baire property of C instead [5].

Proof of 2. 2. - Suppose we have another solution C ~i~NC’i with Am and. C:
stable,  m for all i and dim Ci -~ -oo as i -~ oo. It is enough to prove that
the dimension of the stable set is  m. Since Am0394A’m C U Ci),
Lemma 2.3 applies and we find that Am0394A’m C U Ci) for some N. Since

every term has dimension  m, this is also true for D

So a countable union of stable sets A = UnENAn with dim An = -oo is
measurable and fLx(A) = limn~~ ~(~k~nAk).

Remark 2.4. - Given a D-variety X, then for any d ~ N there is a d-measure d~
that induces fly on Yoo for any D-subvariety y of pure dimension d. We expect this
measure to extend to a much bigger collection of subsets of JU so that if f : S is a

dominant D-morphism of pure relative dimension d, then every fiber of f * : Soo
is d~-measurable.

Here is a sample of the results of Denef and Loeser on the rationality of Poincaré
series [14].

THEOREM 2.5. - Let X be a k-variety. Then E is a

rational expression in T with each factor in the denominator of the form 1- ILaTb
where a E Z and b is a positive integer.

We will not discuss its proof, since this theorem is not used in what follows. Denef
and Loeser derive this by means of Kontsevich’s transformation rule discussed below,
which is applied to a suitable projective resolution x, and a theorem about semial-
gebraic sets, due to Pas [25]. It is likely that this theorem still holds for the space of
sections of any D-variety.

3. THE TRANSFORMATION RULE [23], [14], [16]

We describe two results that are at the basis of the theory. The proofs are relegated
to Section 9.



PROPOSITION 3.1. - For a D-variety X/D of pure dimension, the preimage of any
constructible subset under xn is measurable. In particular, is mea-

surable. If y c x is nowhere dense, then is of measure zero.

For of pure relative dimension we have the notion of an integrable func-
tion 03A6 : ~~ ~ k: this requires the fibers of 03A6 to be measurable and the sum

~a (~-1 (a))a to converge, i.e., there are at most countably many nonzero terms
and we have E Fmik with limi~~ mi = -oc.

The motivic integral of 03A6 is then by definition the value of this series:

We have a similar notion for maps with values in topological k-modules. An im-
portant example arises from an ideal I c Ox: such an ideal defines a function

ordz : by assigning to 03B3 G Xoo the multiplicity of The condition

ordI 03B3 = n only depends on the n-jet of 03B3 and this defines a constructible subset
Cn C Hence the fibers of ordl are measurable. We shall see that the function

is integrable.
There is a beautiful transformation rule for motivic integrals under modifications.

Let H : be a morphism of D-varieties of pure dimension d. We define the
Jacobian ideal :J H C Oy of H as Oth Fitting ideal of This has the nice property
that its formation commutes with base change. The following theorem generalizes an

unpublished theorem of Kontsevich.

THEOREM 3. 2. - Let H : be a D-morphism of pure dimensional D-varieties
with y/D smooth. If A is a measurable subset of y~ with HIA injective, then HA ia
measurable and = f A 

4. THE BASIC FORMULA [14]

A relative Grothendieck ring

It is convenient to be able to work in a relative setting. Given a variety S, denote by
the Grothendieck ring of S-varieties and by Ms its localization with respect

L. The ring MS can be dimensionally completed as usual. Notice that an element of

MS defines a Mk-valued measure on the Boolean algebra of constructible subsets of S.
Often measures are naturally represented this way. For instance, the preceding shows
that for all n E N, the direct image of on xn is given by an element E ~n.
(Notice that is then the direct image of ,ax,n+l.)



A morphism f : S’ --~ S induces a ring homomorphism f * : Ms --~ Ms~ . This

makes Ms’ a Ms-module. We also have a direct image f * : Ms~ --> Ms that is a

homomorphism of Ms-modules. Notice that f itself defines an element f ~ E Ms; this

is also the image of 1 E Ms’ under f * .
There are corresponding characteristics. For instance, the ordinary Euler charac-

teristic xtop becomes a ring homomorphism from Ms to the Grothendieck ring 
of

constructible Q-vector spaces on S. This ring is generated by direct images of irre-

ducible local systems of Q-vector spaces over smooth irreducible subvarieties Z of S.

(A better choice is to take the intersection cohomology sheaf in S of this local system

along Z; this has the advantage that it only depends on the generic point of Z.)

Similarly, the Hodge characteristic xh takes values in a ring Ko(HSs) that is gen-
erated by variations of Hodge structures over a smooth subvariety of S. The ho-

momorphisms f * and f * persist on this level: f : S’ ~ S induces homomorphisms

f * : Ko(HSS) - Ko(HSsI) and f* : Ko(HSS).

The basic computation

A case of interest is when the base variety is (N x This fails to be finite

type, but that is of no consequence and we identify with ~~Tl, ..., 
in the obvious way.

We use a uniformizing parameter of 0 to define

by assigning to q its order resp. the first nonzero coefficient of 03B3 (ac stands for

angular component). Integration along ac sends a k-valued measure on L(A1) to an
element of The prime example is when this measure is given by a regular
function f : Al on a D-variety ~ of pure relative dimension: this induces a map

f * : ,C(~1 ) and we then define

so that [acf] E Gm [[T]]. More generally, given a morphism f - ( f l, ... , f r) :
Ar, we abbreviate

So E X Grm [[T1, ... , Tr]].

Conventions I~.1. - If E is a simple normal crossing hypersurface on a smooth

k-variety Y, then we adhere to the following notation throughout the talk: (Ei)iEirr(E)
denotes the collection of irreducible components of E (so these are all smooth by
assumption) and for any subset I C irr(E), Ej stands for the locus of p E X with
p E E2 if and only if i E I. (With this convention, Y - E.) We denote
the complement of the zero section of the normal bundle of EZ by UEi (so this is a



CGm-bundle over Ei) and UI designates the fiber product of the bundles i E I

(a G~-bundle whose total space has the same dimension as Y).
If £ is a simple normal crossing hypersurface on a D-variety y/D with y smooth,

then we shall always assume that its union with the closed fiber Y has also normal

crossings. The notational conventions are as above to the extent that restriction or
intersection with Y is indicated by switching from calligraphic to roman font (e.g.,
Ei = Y). If Y is smooth, then we may identify irr(E) with a subset of 
(An equality if E has no component in Y.)

The following proposition accounts for many of the rationality assertions in [14].

PROPOSITION 4.2. - Let be a of pure relative dimension and H :
resolution of singularities. Let ~ be a simple normal crossing hypersurface on

y that has no irreducible component in the closed fiber Y. Assume that the Jacobian
ideal JH of H is principal and has divisor 1)E2 (so Vi  l~. Let for p =

1,..., r, f p : x -~ Al be a regular function such that f pH has zero divisor ~i 
and put Ni := (N~,l, ~ ~ ~ E N1’, i E irr(E). Then

where Ui - X x (~m has first component projection onto EI C X followed by the
restriction of H and second component induced by f H.

Proof. - Given m E consider the set y(m) of 03B3 ~ Yoo with order mi along ~i.
So for, E y(m) we have ordJH (03B3) _ 03A3i m2(vi -1) and 03A3i miN03C1,i. If

supp(m) C irr(E) is the support ofm, then we have a natural projection em : y(m) -+
Usupp(m) . Its composite with the morphism Usupp( m)  X x (~m is a restriction of

acX,fH : = (03C0XH, acf1H,...,acfrH) : Y~ ~ X x (N x CGm)r with N1’-component

03A3i miNi. In other words,

So the transformation formula 3.2 yields

If we drop the assumption that £ has no irreducible component in Y, then the

above formula must be somewhat modified: now each irreducible component of Y con-

tributes with an expression of the above form times a monomial in IL-1 and Ti,..., Tr.



COROLLARY 4.3. - In the situation of .~.~, the class of X x I~r

in XyTl, ..., Tr]] equals

In particular, the direct image of on X is represented by

Proof. - Since UI is a GIm-bundle over El, the class of the projection X is

(IL -1)~1~ times the class of EI -~ X. D

This corollary shows that Xoo is measurable so that the measurable subsets of Xoo
form in fact a Boolean algebra. It also implies that the Hodge number characteris-
tic of X~ is an element of Q[u, v~ ~(uv)N - 1)-1 ~ IN = l, 2, ... ~ ] on which the Euler
characteristic takes the value xtop (E) ) DiE1 
Remark 4.4. - We can also express the direct image of on X in terms of the

closed subvarieties EI: if irr’(E) denotes the set of i E irr(E) with Vi  2, then

All varieties appearing in this expression are proper over X and nonsingular. So it

gives rise to an element of a complex cobordism ring of X localized away from the
classes of the complex projective varieties. This class, and the values that various

genera take on it, might deserve closer study.

5. THE MOTIVIC NEARBY FIBER [13], [18]

An equivariant Grothendieck ring
Let G be an affine algebraic group. We consider varieties X with good G-action,

where ’good’ means that every orbit is contained in an affine open subset. For instance,
a representation of G on a k-vector space V is good. For a fixed variety S with
G-action, we define the Grothendieck group as generated by isomorphism
types of S-varieties with good G-action modulo the usual equivalence relation (defined
by pairs) and the relation that declares that every finite dimensional representation p
of G has the same class as the trivial representation of the same degree (i.e., 1L deg(p)).

In case the action on S is trivial, the product makes Kf(Vs) a 
If moreover G is finite abelian, then assigning to a variety X with good G-action its
G-orbit space X := GBX augments this as a K0(VS)-module:



(Not as an algebra, for the orbit space of a product is in general not the product of
orbit spaces.) That this is well-defined follows from the lemma below. (We do not
know whether this holds for arbitrary finite G.)

LEMMA 5.1. - Let be given a representation of a finite abelian group G on a h-vector

space V of finite dimension n. Then the class of V in is Ln.

Proof. - Let V = ~~~V~ be the eigenspace decomposition of the G-action. Given
a subset I C G, denote by VI the set of vectors in V whose Vx-component is nonzero
if and only if x E I. We have a natural projection VI - This has the

structure of a torus bundle, the torus in question being a quotient of GIm by a finite
subgroup. So the class of VI in Mk is (L - 1)|I| times the class of 03A0~~IP(V~). Since

VI has also that structure, the classes of VI and VI in Mk coincide. Hence the same

is true for V and V. D

Similarly we can form MS := and its dimensional completion. The
class of an S-variety Z/S with G-action in MS or MS is denoted by [Z/S; G] . If G

is abelian and acts trivially on S, then we have corresponding augmentations taking
values in Ms and its completion.

There are corresponding characteristics in case k C C. For instance, the ordinary
Euler characteristic defines a ring homomorphism from Mf to the Grothendieck ring

of finite dimensional representations of G over Q and more generally, we have a

ring homomorphism ~Gtop from MS to the Grothendieck ring of constructible sheaves
with G-action on S, Similarly, there is a Hodge character xh : 
K~ (HSs).

The case G 

We will mostly (but not exclusively) be concerned with the case when G is a group
of roots of unity. We have the Grothendieck ring M~ of varieties with a topological
action of the procyclic group jl = lim~. J1n (such an action factorizes through a finite

quotient ~n ) . The inverse automorphism of ~c, ~ H ~ ~ 1, defines an involution 
* in

M~.
The group of continuous characters of jl is naturally isomorphic with Q/Z, with

the involution * acting as multiplication by -1; the projection J1n followed by the

inclusion ~en C Gm corresponds to ~ (mod Z). In other words, Z[e" a E
For every positive integer n there is a rational irreducible representation of

J1n, namely the field Q(J1n), regarded as Q-vector space. These make up an additive
basis of The image of Xn in Z[Q/Z] is ~(~,~)-1 which allows us to

regard as a subring of a C Q/Z].
The so-called mapping torus construction gives rise to an Mk-linear map



with the property that composition with the direct image homomorphism Mk
is (L - 1) times the augmentation It is defined as follows. If X is

a variety with good Mn, then its mapping torus is the [tale locally trivial fibration

Gm xJ-Ln X ~ Gm whose total space is the orbit space of the n-action on Gm x X
defined by ((A, x) == (a~-l, (x) and for which the projection is induced by (A, x) - ~n.
Notice that the fiber over 1 E Gm can be identified with X and that the monodromy
is given by the action of Mn on X. The projection on the second factor induces a

morphism X -~ X that has the structure of a piecewise Gm-bundle.
So the image of Gm X in Mk is (1L -1 ) ~X~ . If m = kn is a positive multiple
of n and we let act on X via --~ then (~, x) f--~ (~’~, x) identifies the two
fibrations over Gm and so we have a map as asserted. This generalizes at once to the
case where we have a base variety with trivial f1-action.

Aut (D)-equivariance
The automorphism group Aut (D) can be identified with the group of formal power

series l~~~t~~ with nonzero constant term where the group law is given by substitution.
It acts on the arc space of any k-variety by composition: h() := ~yh-1. If the variety
is of pure dimension, then this action is free outside negligible subset. Clearly, a
morphism of k-varieties induces an Aut(D)-equivariant map between their arc spaces.
Since we end up with more than just a Aut(D)-invariant measure on an arc space,
it is worthwhile to explicate this structure by means of a definition. If denotes

the subscheme of D defined by the ideal (tn+1), then (which has the same
underlying variety as the group of units of l~ ~ ~t~ ~ / (tn+1 ) ) acts naturally on For

n > 1, the kernel of can be identified with Ga. Its action is

trivial on (~ri +1)-1 (0) and free on the complement (~1 +1)~1 (TX - ~O}). By choosing
a constructible section of the latter we lift the direct image homomorphism (~rn+1 ) *
to a map 

The result is easily seen to be independent of this choice.

DEFINITION 5.2. - An equivariant motivic measure on ,C(X ) is a collection ~1 =

(An E so that An is the direct image of n+1 for all n.

It is clear that such a collection determines an k-valued measure on the stable
subsets. The definition is so devised that the measure constructed earlier comes
from an equivariant motivic measure.

This notion is of particular interest when the variety in question is a smooth curve
C and we are given a closed point o E C. An Aut(D)-orbit in ,C (C, o) is given by
a positive integer n that may also take the value oo. If n is finite, then this orbit
projects onto the set of nonzero elements of (03C0nn-1)-1(0) ~ T ® o . The group Aut(Dn)
acts on the latter orbit through Gm with fLn C Gm as isotropy group. So



the value of A on a fiber over T®o - ~0~ is naturally an element An of We call

the generating series

the zeta function of a. It is not hard to verify that this series determines a completely.
This is particularly so if we view A as a k-valued measure on £(C, o). For instance,
its value on the preimage in ,C(C, o) of a constructible subset A of o) consisting
of order n-arcs (with n  m) is Notice that the series 

converges to the full integral of A.

A motivic zeta function

Given a pure dimensional variety X and a flat morphism X --~ let Xo := (0)
and denote by f the restriction (X, Xn) -~ 0). Then the direct image of >

(regarded as an equivariant measure) on Xo x ,C(~l, 0) is then also equivariant. V~Te

will (perhaps somewhat ambiguously) refer to this measure as the direct image of the
motivic measure of £(X, Xo) on Xo x ~(~l, o). Its zeta function is denoted by

We now assume that X is smooth and connected. The smoothness of X ensures that

the preimage in ,C(X, Xo) of a stable subset of of level n is stable of level ~~;

so that Sn ( f ) already is defined as an element of Mxo (but we shall not bring out
the distinction in our notation). The series S( f ) can be computed from an embedded
resolution of the zero set of f, H : Y --~ X of X, as in 4.1. We assume here that
the preimage E of Xo is a simple normal crossing hypersurface that contains the

exceptional set. Let m be a positive integer that is divided by all the coefficients 
of the divisor ( f ) on the irreducible components of E. If we make a base change of

f : := f H over the mth power map A1 ~ Aland normalize, then we get a m-covering
Y -~ Y. Let EI be a connected component of the preimage of EI in Y. The restriction

E~ -~ E~ is unramified, and has ~~-stabilizer of EI as its Galois group. The latter
is easily seen to be the subgroup where N(I) := gcd~Ni ~ i E I ~. This defines

This element lies over Xo if I is nonempty, an assumption we make from now on.

We wish to compare it with the fiber over 1 of the projection UI  
induced by f . This projection has weights (Ni)iEI relative to the GIm-action and so

03A0i~I Ni C GIm preserves This finite group contains a monodromy action by
write N(I) = 03B1iNi and embed Gm in GIm by t H (tai)2EI (since the
are relatively prime, this is an embedding indeed). Notice that the projection
Gm is homogeneous of degree NI relative to the action of this one parameter



subgroup. This implies that C ~m may serve as monodromy group. (There are

a priori several choices for this action, but they are all EoI-isomorphic.)

LEMMA 5.3. - In have 

Proof. - One verifies that the Stein factorization of the projection UI(1) -~ EI has

EI -> EI as finite factor with UI(1) -~ EI being an algebraic torus bundle of rank
~ - 1. In view of Lemma 5.1 the equivariant class of the latter is (IL -1 ) ~ I ~ -1 times
the equivariant class of the base. The lemma follows. D

Much of the work of Denef-Loeser on motivic integration centers around the fol-

lowing

THEOREM 5.4. - The following identity holds in 

Proof. - Start with the identity of Proposition 4.2 (with r = 1). Omit at both sides
the constant terms (on the right this amounts to summing over nonempty I only),
and restrict the resulting identity to the fiber over 1 E Gm. If we take into account

the monodromies and use Lemma 5.3, we get the asserted identity, at least if we take

our coefficients in Inspection of the proof shows that this actually holds in~ 

a

So the expression at the righthand side is independent of the resolution, something
that is not at all evident a priori. Since it lies in the MX0-subalgebra of [[T]]
generated by the fractions (L~T-~ - 1)’~ with v, N > 0, S( f ) has a value at T = oo:

Comparison with ordinary monodromy

The element has an interpretation in terms of the nearby cycle sheaf
of f as we shall now explain.

Suppose first that k = C. Let X - Xo ~ X - Xo C X be the pull-back along
f of the universal covering exp : C  C~ C C. Take the full direct image of the

constant sheaf Q on X and restrict to Xo: this defines an element of the

derived category of constructible sheaves on Xo. Let a : X - Xo -~ X - Xo be a

generator of the covering transformation that induces in C translation over 201427r~/~T.
This generator has the property that its action is the monodromy

Let H : Y ~ X be a resolution as in 4.1. In the same is defined as an

element of the derived category of constructible sheaves on the zero set Yo of f . The

full direct image on Xo is equal 



An elementary calculation shows that the stalk at a point of Ej is the coho-
mology of NI copies of a real torus of dimension NI -1. More precisely, the restriction
of to Ej is naturally representable as the full direct image of the constant sheaf
on UI(l) (an algebraic torus bundle of dimension NI - 1 over E~) under the pro-
jection We have a canonical isomorphism Q)
and hence the Euler characteristic Q)] in Ko(HS) is (-1)r times
the Euler characteristic In other words, it is the value of

xh on ( 1 - Hence, if Z is a subvariety of EI with preimage Z in E~ , then

~~(-1)~~H~ (Z; ~ f)~ is the value of xh on This shows that ~,f
and -S( f ) have the same Hodge characteristic. We therefore put

We refer to ~~ f~ as the nearby cycle class of f along Xo. Its component in the

augmentation submodule,

is by definition the vanishing cycle class of f.

Let S be a variety with trivial p-action. Given a S-variety Z with a good topological
p-action, then for any positive integer n the fixed point locus of ker(p -j /-in) in Z
is a S-variety which inherits a good /-in-action. This defines a homomorphism of

Ms-algebras

If a E j~ generates a dense subgroup of ~,, then the fixed point locus of 
is also the fixed point locus of an. In case k C C, a Lefschetz fixed point formula

(applied to a partition of Z by orbit type) implies that xh ] equals the trace of
an in So we may then think of Trn [Z] as the motivic trace of an. This is why
the following proposition is a motivic version of a result of A’Campo [2].

PROPOSITION 5.5 (see Denef-Loeser [18]). - The series S(I) and ~~ 1 
in MXo [[T]] are congruent modulo L - l.

Proof. - The monodromy a acts on EI as a covering transformation of order So

o~n has no fixed point if N7 does not divide n and is equal to all of E[ otherwise. It

follows from formula for the nearby cycle class that



If we reduce modulo (IL -1) only the terms with I a singleton remain. Theorem 5.4
shows that this has the same reduction modulo (IL -1 ) as S ( f ) . D

6. THE MOTIVIC ZETA FUNCTION OF DENEF-LOESER [13]

This function is a motivic analogue of Igusa’s local zeta function. It captures

slightly less than the function S( f ), but has the virtue that it is defined in greater
generality. First we introduce two homomorphisms of Grothendieck rings.
An arrow ~ M nS is defined by assigning to a variety with good rn-action its

orbit space with respect to the subgroup ~cr C JLrn (with a residual action of The

totality of these arrows forms a projective system whose limit we denote by Ms(P).
This is not the same as M~, but there is certainly a natural ring homomorphism

It is given by assigning to a variety X with good p-action, the system (Xn)n, where
Xn is the orbit space of X by the kernel of endowed with the residual action

of 

We next define the Kummer map

Given a S-variety Y and a morphism f : Y --~ CGm, then for every positive integer n, let
f1/n : Y(fl/n)  Gm be the pull-back of f over the nth power map [n] : Gm.
So is the hypersurface in t~m x Y defined by f(z) = The projection of
Y(f1/n) ~ y is a n-covering and thus defines an element of Notice

that Y(f1/n) is the orbit space of relative to the subgroup ,~r C Hence

the f ~l/’~’S define an element f ~1/°° 
The following lemma is a straightforward exercise.

LEMMA 6.1. - The composition of the mapping torus construction and the Kummer
map is equal to (IL -1)p.



For X a smooth D-variety of pure relative dimension d, define the Denef-Loeser
zeta function by

where is just a variable with a suggestive notation. Then Corollary 4.3 and
Lemma 6.1 yield

THEOREM 6.2. - The following identity holds in MX ( j~) ~~IL-S~~ :

Putting L = 1

Consider the Z[L, L-1]-subalgebra S of Q(L, L-S) generated by the rational func-
tions (L -1) (Ln+SN -1)-1, n, N > 1. The spectrum of S contains the generic point of
the exceptional divisor of the blow up of (1,1) in (~m x AI. The corresponding special-
ization is the evalation homomorphism S --~ Q(s) which sends (L -1)(L’~+sN -1)-~
to According to Theorem 6.2, I( f ) lies in Evaluation
at L = 1 yields

This is the motivic incarnation of the topological zeta function considered earlier by
Denef and Loeser in [12]. At the time the resolution independence of this function
was established using Theorem 6.3 below.

Comparison with Igusa’s p-adic zeta function

Suppose we are given a complete discrete valuation ring (R, m) of characteristic
zero whose residue field F = R/m has finite cardinality q. Then R contains all the
(q - 1 )st roots of unity and this group projects isomorphically onto F" . Let K
be the quotient field of R. If we choose a uniformizing parameter 7r E m - m2, then
the collection is a system of representatives of K" /(1 + m). Define

by assigning to u E + the value and 0 to 0. (Here q-s is just the
name of a variable; the righthand side can be more canonically understood as the
group algebra of + m).) There is a natural (additive) Haar measure  on the
the Boolean ring of subsets of K generated by the cosets of powers of m that takes the
value 1 on R. It takes values in Given an f E ..., xd~ whose reduction
mod m is nonzero, then its Igusa local zeta function is defined by



where Rm is endowed with the product measure. We regard this as an element of
the coefficient of (q-ns is the volume of f -1(~~n + mn+1). (It is

customary to let s be a complex number-the series then converges in a right half

plane-and to compose with a complex character ~ ~ x . )
Let us write X for ..., and regard f as a morphism x ~ ~R over

Spec(R). Suppose we have an embedded resolution H : y  X of the zero locus of f
over Spec(R) with a simple normal crossing hypersurface £ relative to Spec(R) (so no
irreducible component in the closed fiber). Then we get an embedded resolution of
the closed fiber Y -~ X with simple normal crossing divisor E. Make a base change
of f H : Ak over the (q - l)st power map [q - 1] : A~ and normalize; this
gives a q-1-covering  ~ y. We now get a covering EI defined over F with
Galois group where Nq (I ) := over F in much the same way

as before. The ( j)-set EI (F) determines an element

Denef proved earlier [10] the following analogue of 6.2: 
’

THEOREM 6.3 (Denef). - In this situation we have

where vi and Ni have the usual meaning.

As appears from 6.2, Z( f ) is what we get from the value of on Xo (K)
(with K an algebraic closure of K) if we replace classes in Mx by the number of
F-rational points in their F-counterparts (so that we substitute q for L) and pass
from ,~ to This should be understood on a more conceptual level that involves
a Grothendieck ring which specializes to both and ~~~q_l~~~q-5~~,
and avoids resolution.

7. MOTIVIC CONVOLUTION [15]

Join and quasi-convolution

Consider the Fermat curve Jn in G~ defined by un + vn = 1. Notice that it is

invariant under the subgroup ~C~ C If d is a positive divisor of n, then the
space of Jn is In particular, the 2n-orbit space of Jn is Jl, an affine

line less two points. Given varieties X and Y with good n-action, then we have the
variety with Mn x Mn -action



(If a group G acts well on varieties A and B, then A x G B stands for quotient
of A x B by the equivalence relation (ga, b) N (a, gb) with G acting well on it by
g~a, b~ . = ~ga, b~ _ ~a, gb~.) Let act on Jn (X, Y) diagonally: ~~(u, v), (x, g)~ .-

~(~u, (v), (x, g)~. The natural map Jn(X, Y) - Jl is [tale locally trivial. If Y has
trivial n-action, then In(X, Y) = Jn (X, pt) x Y and the variety Jn (X, pt) can be
identified with (CGm - X. The latter has the structure of a piecewise
(~~-bundle over X from which a copy of X has been removed. Similarly, the natural
projection of X x Y is a piecewise Gm-bundle from which a copy of
X x Y has been removed.

The construction is perhaps better understood in terms of the fibrations over (~~"
defined by the mapping torus construction. Recall that for a variety X with n-action,
its mapping torus ~m X fibers over (~m by [A, x] H ~~ with {1} x X mapping to
the fiber over 1. The monodromy is the given n-action on X. If Y is another variety
with n-action, then the composite

is a fibration over Gm. The fiber over 1 E (~a is identified as Jn(X, Y) and the
monodromy is the given n-action on Jn(X, Y) defined above.

Clearly, Jn(X, Y) ^-_’ X ). If m is a divisor of n and the action of ~cn on X and
Y is through then Jm(X, Y) = Jn(X, Y). So this induces a binary operation, the
join

The preceding discussion shows that the join is commutative and bilinear over Mx.
and that (i) J(a,1) _ and (ii) J(a, ~) == (L - ab, where we recall
that a E Mt r-+ a E Mk is the augmentation defined by ’passing to the orbit space’.
This suggests to define another binary operation *, the quasi-convolution, on M~ by:

The quasi-convolution is commutative and bilinear over Mk, whereas the properties
(i) and (ii) come down to

(i) 1 is a unit for *: a * 1 = a (and hence a * b = ab) and
(ii) a * b = ab.

Neither the join nor the quasi-convolution is associative, but we do have:

(iii) a * (b * c) - c) + is symmetric in a, b and c,
which shows that the quasi-convolution is associative modulo elements of Mk. This
property is seen as follows. Let J; denotes the Fermat surface in (~m defined by
un + vn + wn == 1 and consider the morphism

This morphism is equivariant with respect to the action of f-Ln on Jn x Jn that is

diagonal on the first factor and trivial on the second and the diagonal action f-Ln on



It also factorizes over the orbit space of Jn x Jn with respect to the ,~n action
defined by ~((ul, vl), (u2, v2)) _ ((ul, (~u2, ~v2)). One easily verifies that this
identifies the orbit space for this action with in Kn, where Kn C is defined

by un = 1. A choice of an nth root a of -1, identifies Kn with ,un x c~m x ~n
via (u,v,w) ~ (u, v, aw/v). The 3n-action on Kn carries in an obvious manner to
JLn x x 

It follows from these observations that if X, Y, Z are varieties with good n-action,
then X x Y x Z decomposes as a JLn-variety into two pieces that can be
identified with In(X, Z) ) and X x (Y x Z) ) respectively. The factor
Gm (Y x Z) has the structure of a Gm-bundle over Y x Z. Passing now to M~
we find that

is symmetric in a, b, c and this is equivalent to property (iii) above.
Join and quasi-convolution extend to k and admit relative variants.

Formation of the spectrum

Join and quasi-convolution also descend to the Grothendieck ring of

Hodge structures with p-action. We need:

LEMMA 7.1 (Shioda-Katsura, [27]). - Given (a, ~) E (~/~)2, then for every com-
mon denominator n of a and ,Q, the Hodge type of the eigenspace of x ttn
in with character (a, ~) E (n-17~/~)2 is independent of n and we have
dim Ia,/3 == 1 for (a; ,Q) ~ (0,0) and dim Io,o = 2. I f a E E ~0,1 ~ is
the obvious section, then is of Hodge type

The only other nonzero group is HZ(Jn), which is isomorphic to ~(-1) and has trivial
character (0, 0) .

Anderson [3] investigated Hodge structures with ,~-action using a notion of a frac-
tional Hodge structure. For us such a structure will consist of a complex vector space
V defined over Q with a complex decomposition V = such that Yqe
is the complex conjugate of and is defined over Q for every n E Z.
They form an abelian category HS(Q) with tensor product. Anderson associates to a
Hodge structure H with -action a fractional Hodge structure a(H) whose underlying



vector space is H, leaves the bidegrees on Ho unaltered and increases the bidegrees
of Ha by (c~ 1 - ~) if ~ ~ 0. We shall refer to this operation as the f ormation of
the spectrum. It defines an additive functor and hence a homomorphism of groups
sp : Ko(HS(Q)). This is not a ring homomorphism, but Corollary 7.2
shows that sp takes quasi-convolution to the tensor product:

Convolution

In what follows we need the (additive) group structure on the affine line, so we
write ~~ instead of A 1. We have a bijection o) ^--’ m, defined by assigning to
q E 0) the pull-back of the standard coordinate on (~~.

Let A = (An)n and A’ = be equivariant measures on 0). Then A x A’ :==
(An x defines a measure on the algebra of stable subsets of 0)2 (that
is, preimages of constructible subset of some truncation 0)2). For instance, if
C C ~n 0)2 is constructible and consists of pairs of truncated arcs of fixed order
(k, l) (with k, l  n), then the value of A x A’ on the preimage of C in 0)2) is

The direct image of A x A’ under the addition morphism add : Ga x ~t~,
A * A’ := x O~))~ l, is an equivariant measure on called the

convolution of 03BB and 03BB’.

LEMMA 7.3. - The zeta function of a * 03BB’ is determined by those of 03BB and 03BB’:

Proof. - The preimage of tn + in m x m under decomposes into the
following pieces: (tn + mn+l) x mn+1, x (tn + mn+1) and for i = l, ... , n
the preimage Cn,i of the subset Cn;i C ((mi - of pairs + ... +

+... + with 03B1k + 03B2k = 0 for k = Z, ... , rt - 1 and an + 03B2n = I.

We must evaluate A x A’ on each of these (relative to the diagonal tLn-action). The
first piece gives and the second the same expression with A and

A’ interchanged. Since ~Cn,i~ _ ~(m2 - (L - we find that for

i  n, the value of A x A’ on Cn.i equals (the action of tC~ is trivial
here). Notice that Cn,n is embedded in (mn - as Ji in G~. From the
above discussion one sees that A x A’ takes on this set the value ~n). If we

substitute the defining equation for *, the Lemma follows. D

This lemma suggests a notion of a convolution operator for series A(T) =
ÀnTn E with the property that the mass (L - 1) ~~ 1 ~n converges.

For a M we set



Expanding the denominators (1 - in T embeds M(T) in M[[T]] and ex-
panding (1-T-NLv)-1 in T-1 embeds M(T) in M[[T-1]][T].

According to Theorem 5.4, S( f ) E Míl(T).
THEOREM 7.4 (Abstract Thom-Sebastiani property). - Let A and A’ be equivariant
measures on 0) whose zeta functions lie in Then .1 *~’ has this property,
too. If moreover ~ and ~’ have zero mass and zeta functions converging at T = oo,

A’ (T) has these properties as well and (~ * ~’)(oo) _ * ~’(oo).

COROLLARY 7.5. - Let X and Y be smooth connected varieties and f : X ~ Ga,
g : Y ~ Ga nonconstant morphisms with zero fibers Xo and Yo. Let f *g : X x Y ~ (~a
be defined by ( f * g)(x, g) := f(x) + g(y). Then the restriction of ~~ f*9~ to Xo x Yo
and the exterior *-product ~~ f~ * ~~g~ E MXo XYo coincide.

If we apply the Hodge number characteristic followed by formation of the spectrum,
then we recover the Thom-Sebastiani property for the spectrum, proved earlier by
Varchenko in case f and g have isolated singularities and by M. Saito [28] in general.

For the proof of Theorem 7.4 we need the following

LENIMA 7.6. - Let M and N be L-1]-modules and let a E M(T) and b E N(T)
both be zero at T = 0 and regular at T = oo. If resp. bkTk are their
expansions at 0, then is the expansion at zero of acE (M 
N) (T) whose value at T = oo equals -a(oo) ~ b(oo).

Proof. - It is easy to see that it suffices to prove this for M = N = ~~L, L-l~. The
idea of the proof in this case is inspired by a paper of Deligne [9]. Fix for the moment
L E (C - ~0~. Let ro > 0 be a radius of convergence for the two expansions. Let 
be such that ITI  ro and choose  r  ro. Consider the integral

On the circle of integration the expansions converge uniformly and absolutely and so

Since summation and integration may be interchanged, only the terms with k = l

remain and hence c(T) == If Pa resp. Pb denotes the set of poles of
a resp. b, then the integrand has polar set TP-1a U Pb (there is no pole in 0 or oo)
and the poles enclosed by the circle of integration are those in TPa 1. By the theory
of residues, -c(T ) must then be equal to the sum of the residues of the integrand at
Pb. This description no longer requires ~T~  ro and defines an analytic extension
of c to the complement of PaPb. This extension is easily seen to be meromorphic at
PaPb. To compute its behavior at oo, we note that a(T/T) converges for T ~ oo on a
neighborhood of Pb absolutely (with all its derivatives) to the constant function a(oo).



So as T -~ oo, -c(T) tends to the sum of the residues of dT at Pb. This
sum is opposite to the residue at the remaining pole oo, hence equal to 
In particular, c is a rational function with polar set contained in PaPb.

Assume now that a, b E R. A pole of an element of R in x C satisfies an
equation T N = L" for certain integers N > 0, v > 0. A product of such poles satisfies
a similar equation, and this implies that a product of c and a finite set of polynomials
of the form TN - L" is in C[L, L- l, T]. Since the expansion of c at T = 0 has integral
coefficients, this product lies in L-1, T~. D

Proof of Theorem 7.1~. - We start with the convolution formula 7.3. It says that

We now assume that A and A’ are massless so that (L-1) A, = -(L-1) A,
and similarly for a’. We then have

We consider each series on the right separately. By Lemma 7.6, - ~n~o ~~,, ~ is

in the in with value at oo equal to A’(oo). We also have

By the same 7.6 the righthand side is in and takes the value zero at oo. Since

is in with value zero at oo it follows from 7.6 that the same is true for (L -
1) Likewise for (L-1)03A30i~n(03BBn03BB’i)Tn. So (03BB*03BB’)(T) is in 
and has value at oo. D

8. THE MCKAY CORRESPONDENCE [6], [16], [26]

Suppose a group G of finite order m acts well and effectively on a smooth connected
variety U of dimension d. This defines an orbifold p : with underlying variety

Let us write X for the orbifold UG. We also fix a primitive mth root of unity
~.



Let g E G and let U9 be its fixed point set in U. The action of g in the normal
bundle of U9 decomposes that bundle into a direct sum of eigensubbundles

where vg has eigenvalue (~. We like to think of vg as the pull-back of a fractional
bundle on a subvariety of X whose virtual rank is k / m times that of v;. A more
formal discussion involves the extension of Mx obtained by adjoining an
mth root ofL. To be precise, let w(g) :_ ~~ m considered as locally constant

function m-1Z, and let be the element of Mug that

this defines. Then is the image under p* of

Here Uf is the connected component of U9 labeled by i, Gi is the G-stabilizer of

this component, and Wi the value of w(g) on Uf. The sum is over a system of

representatives of the conjugacy classes of G and can be rewritten as one over the
orbifold strata of X (see Reid [26]): the decomposition of U into connected strata
by orbit type (a stratum is a connected component of the locus of points with given
G-stabilizer) induces a partition of X into orbifolds and W (X ) has the form 
where the sum is over the orbifold strata, and Ws is a polynomial in We will

see that W (X ) can be understood as the class of an obstruction bundle for lifting arcs
in X to arcs in U.

The McKay correspondence identifies W(X) in terms of a resolution of X:

THEOREM 8.1 (Batyrev [6], Denef-Loeser [16]). - Let H : Y ~ X be a resolution
of the orbifold X whose exceptional divisor E has simple normal crossings. With the

usual meaning of EI and with vi as defined below we have the following identity in
X[L1/m]:

The statement does not involve arc spaces, but the proof does. It could well be that
the identity is already valid in The relative simplicity of the lefthand side
has implications for the righthand side, one of which is that all the ’non-Tate’ material
in a fiber of H must cancel out in the sum. For that same reason the lefthand side is

hardly affected if we apply the weight character relative to X to it, that is, if we take
the image of W (X ) in the Grothendieck ring of constructible on

X: just substitute w2 for L.
We first seek an orbifold measure on on ,C(X ) with the property that for

every G-invariant measurable A C ,C(U) we have



where the righthand side should be interpreted as follows: think of (A) as an
element of Mf, and then let (A) be the image of (A) under the augmen-
tation Mf  Mk. Since p* : .~(U) -~ ,C(X ) need not be surjective, this will not
characterize the orbifold measure a priori. But it suggests how to define it: suppose
that the Jacobian ideal Jp has constant order e along A. Then the usual measure
of ,C(X) pulled back to A is (A. We therefore want the orbifold measure
restricted to p* (A) to be the restriction of ILe~,~(X) . This can be done as follows. Let
r be a positive integer such that descends to an invertible sheaf c~~X~ on X.
(So for every u E U, Gu acts on on the tangent space TuU with determinant an rth
root of unity.) There is a natural homomorphism (S~X)®r --~ whose kernel is the

torsion of (S~X)~r. The image of this homomorphism has the form for an

ideal ~~r~ . We set

It is a measure that takes values in 

LEMMA 8.2. - The pull-back of under p* is a measure that assigns to any
G-invariant measurable subset A of £(U) the image of A under the augmentation
map 

Proof. - If we apply p* to the identity = we get ,~~ (S~U)~r =
p* (Z~r) )w~r. Since S~U = uu, it follows that p* (Z~r) ) _ ,~~ . So pulls back

under p* to IL- = The rest is left to the reader. D

The following lemma describes the direct image of on X in terms of a reso-

lution of X: let Y -~ X be a resolution of singularities with simple normal crossing
divisor E. We have = for some fractional ideal on Y. It is known

that the multiplicity m2 of Ei in this ideal is > -r. So vi := 1 + mi/r is positive.
Entirely analogous to the proof of Theorem 4.2 one derives:

LEMMA 8.3. - The direct image of on X is represented by the class

Let ,C’ (X ) be the set of arcs in X not contained in the discriminant of p : U - X .
This is a subset of full measure. We decompose ,C’ (X ) according to the ramification
behavior of p : ~7 -~ X. Let ~m~ : ~ --~ D be the mth power map and denote the

parameter of the domain by We regard (m (through its action on the domain)
as generator of the Galois group of [m]. For, E ,C’(X ), lifts to a morphism

~y : ~ --~ X and this lift is unique up to conjugation with G. Given the lift, there is

a g E G such that gi = Its conjugacy class [g] in G only depends on ~y. This

conjugacy class determines the isomorphism type of the G-covering over ~y: if m’ is



the order of g, then ~y* (p) is isomorphic to G x ~9~ ~ ~ with g acting on D as

multiplication by Notice that ~y(o) is in the fixed point set Ug. The ’fractional

lifts’ § that so arise are like arcs in the total space of the normal bundle of U9

(based at the zero section) which in the v;-direction develop as times a power

series in t.

Denote the set of arcs in ,C’ (X ) belonging to the conjugacy class of [g] of g by

.C (X, ~g~ ) . The McKay correspondence now results from:

LEMMA 8.4. - The subset ,C(X, [g]) is measurable for ~c~~X) and the restriction of
subset is represented by the class E 

where Gg is the G-stabilizer of U9 .

The proof is a calculation which we only discuss in a heuristic fashion. The elements

of .C (X , ~g~ ) correspond to Gg-orbits of fractional lifts as described above. In view of
our definition of orbifold measure, we need to argue that these fractional lifts are

represented by the element If rl, ... , rm-1 are positive integers, then the

arcs in of Ug based at the zero section and which in the v;-direction have order
rk make up a constructible subset of ,C(~~v9 ) whose class is easily seen to be equal
to with w = ~~(1- rk ) rk(vg ). The fact is that this also holds for the fractional
values rk = So in that case we have w = ~~(1-1~/m) rk(vg ) = 

9. PROOF OF THE TRANSFORMATION RULE [14]

Let X /D be a D-variety of pure relative dimension d. The dth Fitting ideal of

defines the locus where X fails to be smooth over D; we denote that ideal by
Locally this ideal is obtained as follows: if X is .given as a closed subset of

then is the restriction to X of the ideal generated by the determinants

det((a where f l, ..., fL are taken from the ideal Ix C ..., ]
defining X and 1  ii  ...  z~  d + l.

Let, E Xo be such that has finite order e. This implies that, maps 
to the part where X is smooth over D. In particular, is a O-module

of rank d. Since the formation of a Fitting ideal commutes with base change, the dth

Fitting ideal of will be me. This means that the torsion of has length
e.

It is clear that O) ~ Homo O) is a free O-module of rank
d (where 0 is a via ~y~). The fiber over o, C~) ~~ 1~,
is d-dimensional subspace of the Zariski tangent space which we shall denote

by Any O-homomorphism that kills the torsion lifts to a

O-homomorphism ~ O. This is automatic when n > e and so only

depends on the e-jet of ~y. The space has a simple geometric interpretation: it



is the ’limiting position’ of the tangent space along the fibers of X /D at the generic
point of in the closed point 

If V : has the same n-jet as ~y, then and ~y’* differ by a homomor-
phism --~ mn+1. The reduction modulo m2~’~+l~ of this homomorphism is a
O-derivation, i.e., defines an element of Homo m’~+1 ~m2~’~+1> ). Its reduction
modulo mn+2 will lie in mn+l/mn+2, provided that n > e. The next lemma
shows that every element of this k-vector space so arises.

LEMMA 9.1. - Assume that n ~ e. The fiber 03C0n~~ over an

affine space with translation space ~~ This defines an affine space
bundle of rank d over the locus of 03C0n~~ defined by  n.

Proof. - Assume that X is given as a closed subset of as above. There

exist fi, ... , f L E Ix and l~zi---~~d+/ l such that the Jacobian matrix
det((~fj /~xik )lj,k=1) has order e along 03B3, whereas for any other matrix thus formed

the order is > e. By means of a coordinate change we may arrange that

so that e = ~~ ej. The subspace of A~~+~ spanned by the last d basis vectors is then
just 
We investigate which uo e kd+l appear as the constant coefficient of an u E 

with the property that q + e We first do this for the complete intersec-
tion defined by f l, ... , fl. This complete intersection contains X and the irreducible
component that contains the image of 03B3 lies in X. So we want + = 0 for

j = 1,..., l. By expanding at 03B3 this amounts to identities of the form

with the derivative of fj at 03B3 and Fj E ..., Equivalently:

All the terms are regular and the reduction modulo t yields the jth unit vector in
Hensel’s lemma says that a solution u exists if and only if uo solves this set of

equations modulo t. This just means that uo E In particular, we see that for all

kEN, is isomorphic to an affine space and hence is irreducible. This

implies that all elements of (~y) map to the same irreducible component of the
common zero locus of f l, ... , f l. It follows that C Xoo. The last assertion
is easy. D

Proof of Proposition ~.1. - Suppose that X is of pure relative dimension d. Let Ce
denote the subset of Xo defined by = e. It is clear that Ce = 

It follows from Greenberg’s theorem [21] that 03C0e(Ce) is constructible. Hence Ce is

stable by Lemma 9.1. We have UeCe = In view of Lemma 2.3 it now

suffices to see that dim 1r e (Ce) - de - -oo as e -~ oo. This is not difficult. 0



Let H : y be a D-morphism of D-varieties of pure relative dimension d. Recall
that the Jacobian ideal JH of H is the Oth Fitting ideal of Suppose 03B3 G yoo
is such that JH has finite order e along q. Then ~y resp. maps the generic point

to (y/D)reg resp. We have an exact sequence of 0-modules

The base change property of Fitting ideals implies that the length of must

be e. So if is torsion free and n > e, then the kernel of the map

induced by the derivative of H is contained in can be

identified with and is of length e. The proof of Theorem
3.2 now rests on the

KEY LEMMA 9.2. - Suppose smooth and let A c y~ be a stable subset of level
l : A = Assume that HIA is injective and that ordJH|A is constant equal
to e  oo. If n 2: sup~2e, l + e, then Hn : 7rnA -~ Hn7rnA has the
structure of affine-linear bundle of dimension e.

Proof. - Let, E A and put x := ~y(o), ~ := H(x). Suppose ~y’ E A is such that H~y’
and H~y have the same n-jet. We first show that, and ~y’ have the same (n - e)-jet.
We do this by constructing a ~yl E Yoo (by successive approximation) with the same
(n - e)-jet as q and with = Since n - e > l, we will have ~yl E A and our
injectivity assumption then implies ~y1 = V.

The difference (H~y)* - (H~y’)* defines a O-derivation over

~y* and hence a v E Since n > this
element annihilates the torsion of This is then also true for its reduction
modulo mn+2 and it follows from the fact that n > e that this reduction is of the form
D.~yn+1~ (~c) for some u E Regard u as a O-derivation

mn-e+1/mn+2 and let ~yl E y~ be such that ~y* represents u. Then
= 7rn-e(,) and ~rn+1 (H~1 ) _ ~rn+1 (H~y) . Replace, by ~yl and continue with

induction on n.

So (~y’)* - ~y* defines a O-derivation and hence a
0-derivation (because n > 2e). The latter is zero if and

only if _ 7rn(,). This proves that the fiber of Hnl7rnA through is an

affine space over the kernel of D~,n~, which has length e.
The last assertion is easy. Q

Proo f of 3.2. - It is enough to prove this for A stable. In that case the theorem
follows in a straightforward manner from Lemma 9.2. 0
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