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0. INTRODUCTION

I. Newton certainly believed that the Solar System is topologically unstable. In

his view the perturbations among the planets were strong enough to destroy the

stability of the Solar System. He even made the hypothesis that God controls the

instabilities so as to insure the existence of the Solar System: "but it is not to be

conceived that mere mechanical causes could give birth to so many regular motions ....
This most beautiful system of the sun, planets, and comets, could only proceed from
the counsel and dominion of an intelligent powerful Being" [N, p. 544]. The problem
of Solar System stability was (and for many aspects still is) a real one: Halley was
able to show, by analyzing the Chaldean observations transmitted by Ptolemy, that
Saturn was moving away from the Sun while Jupiter was getting closer. A crude

extrapolation leads to a possible collision in 6 million years (Myrs) in the past.
From a mathematical point of view arguments supporting the long-time stability

of the orbits of the planets were given by Lagrange, Laplace and Poisson who proved
the absence of secular evolution (polynomial increase in time) of the semi-major axis
of the planets up to third order in the planetary masses.

On the contrary the researches of Poincaré [P] and Birkhoff [B] showed that
instabilities might occur in the dynamics of the planets and that the phase space
must have a quite complicated structure.

In the course of the year 1954, Kolmogorov [K] stated his famous theorem of
persistence of quasiperiodic motions in near to integrable Hamiltonian systems, and
first suggested that the picture may be twofold: stability in the sense of measure

theory conjugated with topological instability. Arnold moreover proved [Arl] that
bounded orbits have positive measure in the planar three-body problem and claimed
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that the same result must be true for the n-body problem (provided that the masses
of the planets are sufficiently - unrealistically - small). He also first proved in the

general context of Hamiltonian systems with many degrees of freedom the existence of
orbits which drift (or diffuse) along resonances so as to change by a finite amount their
action [Ar2]B even if this process is very slow [Ne]. This reinforced the belief that

"the time after which chaos manifests itself under a sufficiently small perturbation of
the initial state is large in comparison with the time of existence of the Solar System"

[Ar3, p.82].
Following Herman [He2] one can legitimately ask the following question: If one

of the masses mo = 1 and all the other masses m~ « 1 are sufficiently small, are

there wandering domains2 in any neighborhood of fixed distinct circular orbits around
the mass mo and moving in the same direction in a plane ?

Quite recently some progress has been made in the heuristic understanding of

the dynamics of the planets of the Solar System, due largely to the help provided

by computers but also due to a better understanding of the underlying dynamics,

resulting from the great progress in the overall field of Dynamical Systems. Modern

computers allow extensive analytic calculations and numerical integrations of realistic

models over very long times, even if the shortness of the step-size needed for the

computation has for many years limited the investigation to the outer planets of the

Solar System (Jupiter, Saturn, Uranus, Neptune and Pluto) [CMN], [SW]. Indeed, the
faster the orbital movement of the planet is, the shorter is the step-size required (from
approximately 40 days for Jupiter to 12 hours for Mercury). As a result, until 1991
the only available numerical integration of a realistic model of the full Solar System
was spanning only 44 centuries. For this reason the analytical approach, which makes

use of perturbation theory, is needed.

J. Laskar replaced the full Newtonian equations of the motion by the so-called

secular system introduced by Lagrange where the fast angular variables are eliminated.

This system, instead of giving the fast motion of the planets in space, describes the

slow deformation of the planets’ orbits. In this way Laskar reduced the number of

degrees of freedom of the system and achieved an impressing reduction of the step-
size required (most of the computational time in traditional numerical integrations is

actually spent in the numerical solution of Kepler’s problem). In fact he was able to

~ 
"Thus, even if the motion of a planet or an asteroid is regular, an arbitrarily small perturbation

of the initial state is sufficient to make it chaotic" [Ar3, p.82].
2 i.e. an open set V and to > 0 such that n V = 0 for all t > tp, where f denotes

the Hamiltonian flow.
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use a step-size of 500 years. The numerical integration of this system shows that the
inner Solar System (Mercury, Venus, Earth and Mars) is chaotic with a Lyapounov
time of 5 Myrs. This measures the rate of the exponential growth of the distance in
phase space between the orbits of two points initially close [Yo]. As a consequence
it is not possible to compute ephemeris for the position of the Earth over 100 Myrs:
an error of 15 meters in the initial position of the Earth may grow to an error of 150
million kilometers (i.e. its present distance to the Sun) after 100 Myrs. This kind
of strong instability could even result in the escape of Mercury in 3.5 billion years
(Gyrs). The deformations of the planets’ orbits is responsible for an external forcing
on the Hamiltonian describing the evolution of the obliquity of each planet. The

obliquity is the angle between the equator and the orbital plane. Laskar shows that
it can undergo dramatic variations on a time scale very short in geological terms.

In what follows we will describe these results and the ideas underlying Laskar’s
approach, mainly coming from the theory of Hamiltonian systems and classical per-
turbation theory. We will also briefly discuss the technique of the numerical analysis
of the fundamental frequency developed by Laskar to study the mixed phase space
structure of quasi-integrable Hamiltonian systems.

The style of this exposition will be quite informal, partially because most of
the results reported here lack a rigorous justification (and sometimes even a good
mathematical formulation). In the last section we will try to formulate some open
problems inspired by Laskar’s work.

Acknowledgments. In the preparation of this review I have extensively used
references [Arl], [L1995a], [L1996] and some unpublished seminar notes of M. Herman
[He3]. I have also benefited a lot from many discussions with A. Chenciner, J. Laskar,
D. Sauzin and J.-C. Yoccoz.

0.1. Hamiltonian systems, integrable systems, quasiperiodic motions [Ar4]
Usually in mechanics the equations of the motion of a conservative system with

phase space M = T * N (here the configuration space N is an f -dimensional rieman-
nian manifold) are given in Hamiltonian form: = ~H ~pi , 1  i  / .
Here the "generalized coordinates" qi and their "conjugate momenta" pi are a system
of local canonical coordinates in M and H : M - R is smooth (the Hamiltonian
of the system). Note that in many problems arising from celestial mechanics the
flow is not complete due to the unavoidable occurence of collisions (see [Ch2] for a
recent review). The symplectic form on M is VJ = A dqi and maintains this
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expression in all canonical systems of coordinates (they form an atlas by Darboux’
theorem). Two functions F, G E are in involution if their Poisson bracket

{F, G} = 0, i. e. when their Hamiltonian flows commute.

An important extension of the Hamiltonian formalism is obtained considering
time-dependent Hamiltonian functions H : M x R - R. These are especially useful,
as we will see, for modeling non-isolated systems, i. e. mechanical systems under the
action of some external forcing.

An especially interesting case is provided by the manifold llgf x 1rf which can
be identified with the cotangent bundle of the f -dimensional torus 1rf = Rf 
This manifold has a natural symplectic structure defined by the closed 2-form 03C9 =

d Ji 039B di where (J1,... Jf, iJ1,... is a point on Rf x 1rf. Let U denote an

open connected subset of Whenever an Hamiltonian system can be reduced by a

symplectic change of coordinates to a function H : U x 1r f - R which does not depend
on the angular variables ~ one says that the system is completely canonically integrable
and the variables J are called action variables. Note that in this case Hamilton’s

equations take the particularly simple form ji = -1 = 0, ji = § , i =

1,... , I. Let vi(J) = i = l, ... , f . The associated flow t e (J(t) - J(0),
d(t) = d(0) + tv(J(o))), t E R, is linear and leaves invariant the f -dimensional
torus J = J(o). The motion is therefore bounded and quasiperiodic if the Z-module

{k E Zf , k . v(J(0)) = 0} has dimension at most f - 2. Otherwise the motion is

periodic. The Hamiltonian is non degenerate (i.e. satisfies the "twist condition") if

det (~)) / 0 for all J E U, thus the "frequency map"

is a local diffeomorphism. This condition is generic, but in many applications and

especially in the two-body problem (see below) the Hamiltonian H is properly degen-

erate : det (aff0. (J)) = 0 for all J E U. In this case the linear flow on the invariant
tori can be described by only f o  f frequencies, where f o = rank by suit-

ably choosing new action-angle coordinates J’ _ J, d’ = Ad, A E GL ( f , 7~).

0.2. The two-body problem and action-angle variables. If the mutual attrac-

tion of the planets is neglected, each planet is attracted only by the Sun. This leads

to the two-body problem whose Hamiltonian T* (I~3 ~ ~0~) H l~ in the center of
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mass frame is3

where mo is the mass of the Sun, m is the mass of the planet and  = mo m j (mo + m)
is the reduced mass of the system. is called the Kepler Hamiltonian. For negative

energy, the solutions are ellipses with one focus at the origin (i.e. the center of mass).
These are called Keplerian orbits. The shape and the position of the ellipse in space
are determined from the knowledge of the semi-major axis a, the eccentricity e, the

angle of inclination i of its plane w.r.t. the horizontal plane q3 = 0, the argument of

the perihelion cJ and the longitude of the ascending node (2 (fig. 1). The position of
the planet along the ellipse is determined by the mean anomaly l which is proportional
to the area swept by the position vector q of the planet starting from the perihelion.

The system admits 5 independent first integrals: the total energy H, the three

components of the angular momentum qAp and one of the components of the Laplace
vector A = (q A p) - Among these integrals one can choose three

integrals in involution and construct the canonical transformation to action-angle
variables (see [P2], Ch. III and [Chl]). The other two integrals are responsible for
the proper complete degeneration of the Kepler problem: for all initial conditions the
orbit is periodic and the period depends only on the energy. A set of action-angle

3 We have set the universal gravitational constant = 1.
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coordinates (L, G, 0, 1, g, 9) E 1~+ x R x ~3 such that two of the three frequencies of
the linear flow on the invariant tori vanish is given by Delaunay variables. They are
related to the orbital elements as follows:

Note that G is the modulus of angular momentum q A p, thus 0 is its projection
along the q3-axis. One has the obvious limitation (0)  G. The new Hamiltonian

reads ’1J thus vg = Q1io.. - - o = 0. The Delaunay variables
are not suitable for the description of the orbits of the planets of the Solar System
since they are singular at circular orbits (e = 0, thus L = G and the argument of
the perihelion g is not defined) and at horizontal orbits (i = 0 or i = 7r, thus G = 0
and the longitude of the ascending node 8 is not defined). But all the planets of the
Solar System have almost circular orbits (with the exception of Mercury and Mars)
and small inclinations (see Table 1).

TABLE 1: Orbital elements of the planets of the Solar System (without Pluto):

~7, Q, i and À are given in degrees, a is given in Astronomical Units (1 A.U. = 1.5 10 km).

This problem is solved by introducing a new set of action-angle variables (A, H, Z,

A, h, () ~ R3 x 1f3:  = L, H = L - G, Z = G - 0398, 03BB = l + g + 03B8, h = -g - 03B8, 03B6 = -03B8
(the variable A is called the mean longitude, -h is the longitude of the perihelion)
then considering the couples (H, h) and (Z, () as polar symplectic coordinates:

(0.3) ~2 = 2Z cos ~ , r~2 = 2Z sin ~ .

The variables (A, 03BE, a, ~) E R+ x R2 x T1 x R2 are called Poincaré variables. They
are well defined also in the case of circular (H = 0) or horizontal (Z = 0) orbits. The
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new Hamiltonian reads H0 = - 3(m0+m)2 22 thus A = 3(m0+m)2 3 whereas , 03BE and 1]
are constant. The relation between Poincare variables and the original momentum-

position (p, q) variables is much more subtle and will not be discussed here (see [P2],
Ch. III, [L1989a]). Note however that A is proportional to va,

Astronomers actually use the non-canonical coordinates given by the orbital elements
themselves.

0.3. KAM theory, Nekhoroshev theorem, Arnol’d diffusion. Following Poin-

care, the fundamental problem of dynamics is the study of quasi-integrable Hamil-
tonian systems, i.e. Hamiltonians H : U x ~f H R (smooth or analytic) of the
form

where c is a small real parameter. As we will see in Sect. 1.1, the Solar System
Hamiltonian has this form with f = 3n, where n is the number of the planets. ho is

equal to the sum of n independent Kepler Hamiltonians and c is of the order of the

planetary masses. The Keplerian orbits give an n-dimensional torus invariant for the
flow associated to ho.

Most results have been obtained under the assumption that the unperturbed
Hamiltonian ho is non degenerate. The general picture is provided by KAM [Bo, Yl]
and Nekhoroshev [Ne, Lo] theorems: if c is sufhciently small, most initial conditions

(w.r.t. Lebesgue measure) lie on invariant f -dimensional Lagrangian tori carrying
quasiperiodic motions with diophantine frequencies. The action variables correspond-
ing to these KAM orbits will remain 6’-close to their initial values for all times. The

complement of this set is open and dense and it is connected if f > 3. It contains a

connected ( f > 3) web R of resonant zones corresponding to Zf-linearly dependent
frequencies: vo (J) . k = 0} x 1r f. Motion along these resonances cannot
be excluded, resulting in a variation of of the actions in a finite time4. But if
the Hamiltonian is analytic and ho is steep in the sense of [Ne] (for example convex)
then this variation is very slow: it takes a time at least 0 (exp ~ ~ ) ) to change the

4 It is conjectured [Ar4, p. 189] that generically quasi-integrable Hamiltonians with more than
two degrees of freedom are topologically unstable.
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actions by 0 (cb), where a and b are two positive constants. Moreover each invariant
torus T has a neighborhood filled in with trajectories which remain close to it for an
even longer time [MG]. Indeed assume that ho is convex and the frequencies v of the
linear flow on T satisfy a diophantine condition (see [Yl]) of exponent T > ~ 2014 1, i.e.
there exists 1 > 0 such that

Unfortunately the proper degeneration of the Kepler Hamiltonian makes the

application of these results to the Solar System problematic. One can introduce

the secular system of Lagrange and use the perturbation to remove the degeneracy.

However, this leads to a small twist which is of the order of c and the application of

KAM theory to the Solar System Hamiltonian is a very delicate task [He3].
A much simpler but still important case is given by the problem of stability

of Lagrange’s equilateral equilibrium solutions in the restricted three-body problem
In the Sun-Jupiter situation computer-assisted proofs can be

made so accurate to prove the practical stability of some Trojan asteroids for 10 Gyrs

[GDFGS,GS].

1. FREQUENCY MAP ANALYSIS

1.1. The frequency map analysis. Let No C Rf be the image of U under the

frequency map v = ~ : !7 -~ No and assume that this map is a diffeomorphism.
One of the consequences of KAM theorem is the existence, for sufficiently small values

of c, of a Cantor set Nc C No of values of the frequencies v for which the Hamiltonian

system (0.4) has smooth invariant tori with linear flow with frequencies v. This

Cantor set corresponds to diophantine frequencies (0.5) with T > ~ - 1 and "’( = 

Moreover there exists a diffeomorphism

which on Nc x 1rf "straightens out all these invariant tori at the same time" 

p. 655), i.e. transforms Hamilton’s equations of motion of (0.4) into 03C6 = v, v = 0.

This diffeomorphism is c-close to (~h0 ~J , idTn) and restricted to N~ x Tf is smooth

in the sense of Whitney w.r.t. the first factor and analytic w.r.t. the second (if the
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Hamiltonian (0.4) is analytic). Let us fix 03B8 = 0 and consider the diffeomorphism
Fc : . No - U induced by (1.1). If the initial conditions (J(0), 0) lie on a KAM

torus with frequency v E Nc each component zr of ..., will be an

analytic quasiperiodic function of time c-close to Given >

0, the frequency map analysis [L1993, L1995b] is the numerical construction of an

approximate inverse of on the whole actions space U from the datum of

{zr(t) , r = 1, ... , f , t E ~to, to + 2T~~. As T - +oo, this approximate inverse

converges to on the set of KAM tori.

1.2. Construction of the approximate frequency map on the set of KAM
tori. Assume for simplicity that to = -T and that zr has a Fourier series of the form

zr(t) = eivrt + with  1 (here er is the r-th canonical basis
vector of Zf, thus er . v = vr). Laskar looks for a quasiperiodic approximation to zr
of the form of a finite sum ~rN~ (t) = ~N 1 where the coefficients have

decreasing amplitude with s, and k(r,s) . v for some suitably chosen

E Zf, s = 2, ... N.
This quasiperiodic approximation is chosen in the following way.

1. Consider the weighted L2 scalar product

where z and ware smooth quasiperiodic functions. Here x~ is the so-called

verifies Xp(y)] = 0 uniformly w.r.t. y E K, where K is any
compact subset of R Applying the implicit function theorem to the function
(y, T) H neighborhood of the point (o, +oo) one obtains the
existence of a unique value xr of x which maximizes x H (zr, e2xt)T,pl for sufli-
ciently large T.
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The pointwise convergence of .~~ T,to restricted to the set of KAM tori to ,~~ 1 fol-
lows from the following asymptotic estimate proved in [L1995b]: there exists

cp,c > 0 such that IVr - This error term actually is the

first term of an asymptotic series in powers of 1 T which is Gevrey. Applying the clas-
sical method of summation of the series to the smallest term one may choose p = p(T)
so as to obtain an exponentially small error term but for the time being this seems
to be more mathematically entertaining than numerically useful.

To obtain one iterates the above procedure: once the first periodic approxi-
mation is obtained, (1)r is computed by orthogonal projection and the process
is started again on the remaining part = zr - of the function.5

1.3. Applications of the frequency map analysis. Outside the set of KAM

tori one can still apply the method described above but the result lacks a rigorous

justification. This is mainly due to the fact that the dynamics "between" KAM tori

is far from being understood. Keeping T and the initial condition (J(0), d(0)) fixed
one computes (t) _ F-1~,T,t(J(0)) for different values of t. The time-dependence of p
is then used by Laskar to measure the "diffusion" of the orbit since, as we have seen,
for KAM orbits p is constant.

This method was first introduced by Laskar [L1990] in his study of the Solar

System in order to estimate the size of the chaotic zones. Outside the domain of

celestial mechanics it has been applied to many different dynamical situations. For

exact area preserving twist maps, applying the classical theory of Birkhoff for KAM

curves [Hel] (these must be graphs of Lipschitz functions) one can derive a very

practical criterion for the non existence of KAM curves [LFC]. The frequency map
analysis has also been succesfully applied to the study of realistic models of particle
accelerators [LRo].

5 Note the analogy between this procedure and the epicycloid theory of Ptolemy where one adds

up uniform circular motions to represent the motion of the planets: see [St] for a very beautiful

exposition.
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2. CHAOTIC BEHAVIOUR IN THE SOLAR SYSTEM

2.1. Planetary theory in Poincaré’s canonical heliocentric coordinates.6 Let

us consider n + 1 bodies with masses mo, ... mn. Let 0 denote the center of mass of

the system and ui E R~ the coordinate of the i-th body in a fixed barycentric reference
frame. The conjugate momenta are vi = miui and the Hamiltonian of the system is

simply given by H(v,u) = 03A3ni=0 v2i 2mi - 03A30~ijn mimj ~ui-uj~ . Clearly 1-l is defined on

~* (~3(n+1) 10) where 0 = ~ (uo, ... , un) E 1~3(n+1) , ~i ~ j , ui = Heliocentric

canonical coordinates are induced by the linear transformation in configuration space
qo = qi = Uo, 1  i  n thus the conjugate momenta become po =

pi = vi , 1  i  n. By Noether’s Theorem the classical first integrals of
the system can be deduced from the symmetries of the Hamiltonian: the invariance
with respect to uniform translations in configuration space implies the conservation
of the total momentum po, thus it is not restrictive to fix po = 0 (reduction of the
center of mass). Conservation of energy is a consequence of the independence of
the Hamiltonian from time and its invariance with respect to rotations of R3 implies
the conservation of total angular momentum C = A pi. After reduction of

the center of mass the number of degrees of freedom becomes 3n and in canonical
heliocentric coordinates the Hamiltonian is given by ~l (p, q) _ + 

with

where 1 - 1 + 1 m0. H0 is the Hamiltonian of a collection of n independent Kepler
problems each relative to a planet of mass pi attracted by a fixed point at the origin
of mass mo + mi. In the case considered by Laskar n = 8 (he did not consider Pluto
whose mass is negligible), the phase space has 48 dimensions and is foliated with
8-dimensional tori invariant for the flow associated to the Kepler Hamiltonian 

6 
Actually Laskar in his numerical computations did use the same set of non canonical heliocentric

coordinates traditionally used by astronomers since Laplace which allowed him comparison with the

semianalytical theory of the Solar System of Bretagnon [Br]. This is irrelevant for our purposes. In
the words of Poincare [P, tome II, p. 37] "Les equations ou s’introduisent les crochets de Lagrange
prennent ainsi une forme en apparence plus compliquee. Mais cette difference n’a rien d’essentiel".
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Choosing units mo = 1, mi = cMi, i =1, ... n, where ~  10-3 for the Solar System,
the conformally symplectic coordinate change p = cP, shows that il
has the form (0.4) of a quasi integrable properly degenerate Hamiltonian system and
that 1-l1 is formally of the first order (w.r.t. 1-l0) in the planetary masses.

In order to study the long term behaviour of the planetary orbits it is convenient
to introduce for each planet Poincare’s variables i = 1, ... n, ~i =

(yi, E ~2 ~ ~i = ~2i) E ~2 . The Hamiltonian becomes

2.2. Averaging and the secular system. In order to study the behaviour of

the orbits in a neighborhood of a fixed Keplerian orbit we translate A = Ao + A.

Neglecting constant terms and the terms of order at least three in O we obtain a new

Hamiltonian where ilo = N . A and

Note that it is already an approximation of (2.2) since we have neglected all the terms

(~ (A3 ) . Following Poincare [P] we now look for a canonical transformation to new

variables (A’, a’, ~’, r~’) formally close to the identity such that the new Hamiltonian

~’ does not depend on A’ when terms of the third order in the planetary masses are

neglected

where and ~l2 are of the first and of the second order respectively in the planetary
masses. This "partial averaging procedure" (or resonant normal form) is a standard
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technique in the study of quasi integrable Hamiltonian systems (see, for example,
[Ar4], Ch. 5) and leads to the secular system studied by Laskar [L1992]. A first

order calculation easily shows that 1-lb(A’) = N . A’ and ~1 (~1’, ~’, r~’) _ 

~1 (A’, a, ~’, The frequencies vector N E I~n must be non resonant (i.e.
linearly independent on zn) and this imposes a condition on Ao. For the same reason
the coordinate change, as well as the Hamiltonian ~l’, cannot be globally defined in
the phase space.

Clearly the new variables A’ are first integrals of the Hamiltonian flow of ~’.

They are thus omitted from the numerical integration. Of course, this does not

necessarily prove that the original variables A (i.e. the actual major semiaxes) are
constant in time. Indeed this is not true. Since A = ~A, ~ll }, at the first order in
the planetary masses one has ~A, ~ll } _ ~A’, whose average w.r.t. a is zero.

This is the classical theorem of Laplace [Lpl, Lp2] and Lagrange [Lg] asserting the
absence of secular terms in the time evolution of the major semiaxes at first order in
the masses. Poisson [Po] generalized this result to the second order whereas it is false
at order three [Ha].

TABLE 2: Secular frequencies of the solar system (J. Laskar [L1996, p. 167])
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~l is an even function of (~’, r~’) and has an equilibrium position at ~’ = r~’ -
0. By a linear symplectic coordinate change (~", ~") = S(~’, r~’) its quadratic part

~i2 (~’, ~l’) can be written

where the secular frequencies gk > 0, k = l, .. , n, s5 = 0, s~;  0, ~ ~ 5 (see Table 2).
The vanishing of s5 is due to the existence of the total angular momentum integral

(2.3). Note that the labeling of the secular frequencies does not correspond to the

labeling of the planets since the matrix S is not diagonal. Thus the choice of s5 = 0

is conventional. The solutions of Hamilton’s equations associated to (2.5) are

thus the secular frequencies describe the (small amplitude) quasi periodic time-

dependence (in this integrable approximation) of the inclinations and the eccentricity
of the planets (fig. 2).
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The Keplerian ellipses are no longer fixed: they are subject to a double preces-
sionary motion (precession of the perihelion and of the line of nodes) with periods
ranging from 45000 to 1940000 years. The quite long time scale of these phenomena
has allowed Laskar to use a time-step of 500 years in the numerical integrations of
Hamilton’s equations associated to 1-l’.

2.3. Planetary evolution over millions and billions of years. The actual

secular systems numerically integrated by Laskar [L1989, L1990] is accurate up to

second order w.r.t. the masses and up to degree 5 in the eccentricities and inclinations

(i.e. is obtained retaining polynomial terms of degree up to 6 w.r.t. the variables ç, 7y
in the Hamiltonian (2.4)). It contains about 150000 polynomial terms and the secular
effects of general relativity and the Moon represent a few terms which have been added
to the secular system. Its accuracy has also been tested comparing it with a direct
numerical integration of the full Solar System which spans 6 Mys [LQT].

The first main result obtained by Laskar is that the whole solar system, and more

specifically the inner Solar System (Mercury, Venus, Earth and Mars) is chaotic with
a very short Lyapounov time of 5 Myrs. Since the typical time scale of the Laplace-
Lagrange integrable secular system (2.5) is about 50000 years this Lyapounov time

corresponds just to about 100 "periods". This has the conceptually striking conse-

quence that it is practically impossible to predict the motion of the planets beyond
100 Myrs. This chaotic behaviour is essentially due to the presence of two secular
resonances among the planets: 0 = 2(g4 - g3) - (s4 - s3) N -10-3 "/yr, which is
related to Mars and the Earth, and a = (gl - g5 ) - (sl - s2 ) ~ -10-1 "/yr, related to
Mercury, Venus and Jupiter. They are the two most important small divisors appear-
ing in the numerical integration as the frequency analysis of the solution shows since
they appear with a large amplitude in the construction of quasiperiodic approximate
interpolations of the orbits. The two corresponding arguments change several time
from libration to circulation 7 over 200 Myrs, a phenomenon which is also typical of
chaotic orbits (fig. 3).

7 Near an approximate resonance one can introduce canonical coordinates such that the Hamilto-

nian is in its first approximation a pendulum Hamiltonian H(p, q) = p2 + cos q, (p, q) E R X 1rl .
Libration corresponds to homotopically trivial orbits (H  1), circulation to homotopically non-
trivial orbits (H > 1).
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It should be stressed that the exponential divergence of the orbits results mostly
from these repeated changes from libration to circulation of the resonant precession

angles, which leads to a total indeterminacy of the orientation of the orbit in space.
The eccentricities and inclinations variations are much much slower and become rel-

evant only on a time scale of billions of years.
The numerical integrations later carried over by Laskar [L1994, L1995a, L1997]

on time spans up to 25 Gyrs should be considered as an attempt to explore the

chaotic zone where the Solar System evolves so as to have a qualitative description
of the possible behaviour of the orbits on a time scale comparable to the age of the

universe. The large planets (Jupiter, Saturn, Uranus and Neptun) have always very

regular orbits whereas the eccentricities and inclinations of the inner planets show

very large and irregular variations. In particular the eccentricity of Mercury reaches

0.5. Indeed exploiting the idea underlying the shadowing lemma [Y2] one can even

find an orbit leading Mercury’s orbit to intersect Venus’ orbit in 3.5 Gyrs, thus leading

to a collision or to escape.

2.4. The chaotic obliquity of the planets. Another kind of instabilities manifest

themselves in the motion of the Solar System’s planets. Because of their equatorial

bulge the planets are subject to torques arising from the gravitational attraction of

their satellites and of the Sun. This is at the origin of the precession of equinoxes

(26000 years for the Earth). Moreover the obliquity of each planet is not fixed but

is perturbed by the secular motion of the planet’s orbit. Let Ii = I2  I3 be the
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principal moments of inertia of the planet and assume that the axis of rotation of the
planet is also its axis of maximum momentum of inertia 13 . The precession motion of
the planet is given by fl) = L, where H is its spin angular momentum and L = L(A)
is the torque exerted by the Sun. By averaging over the mean anomaly one obtains
the secular equations of precession corresponding to the Hamiltonian8

where a = 2~ ~~, v is the rotational angular velocity of the planet, mo is the solar
mass. X = cos e, where e is the obliquity, ~ is the precession angle. Here A(t) + iB (t)
is proportional to dt (~2 (t) + ir~2 (t) ) thus it depends on the change of orientation of
the planet’s orbital plane (inclination and longitude of the node).

When the effect of the perturbation to the orbital elements due to the other
planets is not considered, the eccentricity e is constant and A - B - 0. The resulting
Hamiltonian describes a free rotator, is clearly completely integrable and the obliquity
is constant. X is an action variable and 03C8 is its canonically conjugated angle variable.
If e is kept constant and (A(t) sin cos is replaced with a single periodic term
Ao sin(vot+ ’l/J+ 1» then the resulting Hamiltonian is once again completely integrable.
In the model studied by Laskar and Robutel [LR], e(t) and A(t) + iB(t) take into
account the secular perturbations of the whole Solar System, modelled as a system
with 15 degrees of freedom. Since the orbital solution [L1990] is not coupled with the
precession variables it appears in the Hamiltonian H as an external time-dependent
aperiodic forcing. The result is that all terrestrial planets could have experienced
large, chaotic variations in obliquity at some time in the past. As frequency analysis
shows, the obliquity of Mars is still in a large chaotic region, ranging from 0° to 60°,
Mercury and Venus have been stabilized by tidial dissipation. In the case of Venus
the crossing of a large chaotic zone extending from 0° to 90° during the slow-down
process of his rotation speed due to dissipative effects may have contributed to the
planet’s retrograde rotation.

8 In the case of the Earth the term ~(1 - e (t) 2 ) -3/2 X2 must be changed because of the
asymmetry of the earth (7i  I2 ) and of the torque exerted by the Moon.



In its present state the Earth obliquity is essentially constant, with only small

variations of ~1.3° around the mean value of 23.3°. Still, according to Milankovitch

theory, this small variation is responsible for the ice ages. This relative stability is due

to the fact that the Earth’s precession frequency is presently far from being resonant

with its secular frequencies, thus avoiding a large chaotic zone which extends from

60° to 90° in obliquity [LJR]. This zone would be even larger if the Moon were not

present, extending from nearly 0° up to about 85° and leading to dramatic changes
in climate (fig. 4).
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2.5. Minor bodies in the Solar System. In addition to the 9 planets the Solar

System is crowded with thousands of catalogued minor bodies (satellites, asteroids
and comets). One can use simplified models, since their masses are negligible, but
due to the variety of their canonical elements one needs to understand the dynamics
in an even more global way.

One of the first examples of chaotic behaviour was given by the chaotic tumbling
of Hyperion, a small irregularly shaped satellite of Saturn whose strange rotational
behaviour was detected during the encounter of the Voyager spacecraft with Saturn.
In this case the dynamics is quite well understood and can be reduced to a pendulum
Hamiltonian with a time-periodic perturbation [WPM]. For other satellites of the
solar system one has a much more regular behaviour of their rotation since many
KAM invariant tori populate the phase space [Ce].

The dynamics of the asteroids also raises a number of interesting problems. Their

distribution, observed by plotting the number of asteroids against their semi-major
axis length, shows gaps and accumulations first remarked by Kirkwood in 1867 (fig.
5). In this problem two and three-body mean motion resonances with Jupiter, Saturn
or Mars play a very important role [Mo]. The chaotic diffusion in the inner asteroidal
belt may even be at the origin of Mars and Earth-crossing asteroidsQ [MN].

d These are recently most popular among Hollywood’s producers.
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3. SOME OPEN PROBLEMS

The work of Laskar raises a number of challenging mathematical problems. What
follows is a very rough list.

1. Can one give a rigorous justification of the frequency map analysis outside
the set of KAM tori9? This implies to explore a largely unknown land ([He2], Section
6). At least for area-preserving maps the work of Mather [M] should provide some
insight.

2. Prove a realistic stability result in the spirit of Nekhoroshev theorem for
the system of the 4 outer planets and for a time comparable to the age of the Solar

System.
3. Prove the existence of a KAM solution close to the Jupiter-Saturn system

(see [Ro] for a discussion).
3’. Can one do the same for the 4 outer planets?
4. How long do the semi-major axes of the planets remain close to their initial

values (see [Ni])?
5. Control the error term in the construction of the secular system numerically

integrated by Laskar (is it possible to do it without answering to 4?)
6. Can one prove the existence of a transition chain which can possibly lead to

the ejection of Mercury?
7. Can one find a mathematically satisfactory definition of stability for finite

times, which reduces to orbital stability for infinite time, and which can be used to

prove theorems? (An attempt in a somewhat well-defined context is given in [Gi]).
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