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RECENT WORK ON DIFFERENTIAL GALOIS THEORY

by Marius VAN DER PUT

Seminaire BOURBAKI

50eme amnee, 1997-98, n° 849
Juin 1998

1. INTRODUCTION

Linear differential equations have a rich variety of aspects: asymptotic theory, differen-
tial Galois theory, the construction of algorithms, arithmetic properties, Grothendieck’s

conjecture, rigid differential equations et cetera. We will restrict our attention to recent

progress on the inverse problem for the differential Galois theory. For the history of this
problem we refer to the excellent survey paper [S] and its references. Our purpose is to
explain and partly prove the results obtained by J.-P. Ramis, C. Mitschi and M.F. Singer.
Let us give two examples of the results that we hope to explain:

(1) Every connected reductive groups over C can be realized as the differential Galois
group of an equation ~ = (Ao + Aiz)y, with constant matrices Ao, A1.

(2) There is no linear differential equation over the field of convergent Laurent series
C({z}) with differential Galois group G~.
In this presentation we have taken the liberty of changing proofs, omitting material and
adding new material with respect to the original papers.

2. PICARD-VESSIOT THEORY

A differential field K is a field equipped with a differentiation (or derivation) f H f’
satisfying the usual rules: ( f + g)’ = f’ + g’ and ( f g)’ = f’g + f g’. The field of constants
C is defined by C = {a E KI a’ = 0}. We will suppose in the sequel that C is an
algebraically closed field of characteristic zero and that C ~ K. The derivatives of an
element f will be denoted by f’, f", fill, ... or f (11, f(2) , f (3i, .... A scalar homogeneous
linear differential equation of order n is an equation of the form



The solution space {y E K~ L(y) = 0} is a vector space over C of dimension  n. In gen-
eral the dimension is strictly less than n. This leads to the definition of a Picard- Vessiot

ring E D K for the equation L:

(i) The K-algebra E is equipped with a differentiation (also denoted by ’) extending
the differentiation of K.

(ii) E has only trivial differential ideals.
(iii) The space V := {a L(a) = 0} is a vector space over C of dimension n.
(iv) The K-algebra E is generated by the elements of V and their derivatives.

It can be shown that a Picard-Vessiot ring exists and that it is unique up to differential

isomorphism. Moreover E has no zero divisors and its field of fractions has C as set

of constants. The field of fractions of a (or the) Picard-Vessiot ring is called a (or the)
Picard-Vessiot field of the equation over K. The space V will be called the solution space
of L. Let G denote the group of the differential automorphisms of E/K. This group acts
as a group of C-linear automorphisms of V C E. The induced group homomorphism
G --~ GL(V) turns out to be injective and its image is an algebraic subgroup of GL(V).
The di ff erential Galois group of the equation Lover K is defined to be G with its structure
of linear algebraic group given by the embedding G C GL(V). The group G also coincides
with the group of all differential automorphisms of the Picard-Vessiot field over K.

The Tannakian approach to (linear homogeneous) differential equations over K is given
in [De-M] and [De]. This approach can be described as follows. Let DiffK denote the cat-
egory of the differential modules over K. Under the hypothesis that the field of constants
C of K has characteristic 0 and is algebraically closed, one can show that this category
is a neutral Tannakian category. In other words, there is an equivalence of Tannakian

categories DiffK ~ ReprH, where H is a certain affine group scheme over C and ReprH
denotes the Tannakian category of the finite dimensional representations of H.

For a fixed differential module M over K one can consider the full subcategory {~M}}
of DiffK generated by all M ® ~ ~ ~ Q9 M Q9 M* ® ~ ~ ~ Q9 M*. This subcategory is also

a neutral Tannakian category and thus there is an equivalence of Tannakian categories

{{M}} ~ ReprG for some affine group scheme G over C. It turns out that G can be iden-

tified with the differential Galois group of M (and is thus a linear algebraic group). The

equivalence can be made explicit by N H ker(8, E Q9K N), where E is a Picard-Vessiot

ring for M over K. The G action on E induces a G action on E Q9K N which commutes

with the action of 8 on E ®~ N. In particular, ker(8, E Q9K N) is a finite dimensional

(algebraic) representation of the linear algebraic group G.

This more abstract Tannakian approach to differential modules has some advantages.
An easy application is the following useful statement:



Suppose that G is a differential Galois group over K and let N C G be a normal algebraic

subgroup. Then the linear algebraic group G/N is also a differential Galois group over K.

Important examples of differential fields:
Let C denote an algebraically closed field of characteristic 0.

(1) K = C((z)), the field of the formal Laurent series in z over C with the derivation ~.
(2) K = C({z}), the field of the convergent Laurent series over the field of the complex

numbers with the derivation ~.
(3) K = C(z), the field of rational functions over C with the derivation dx.
(4) K a finite extension of C(z), equipped with the unique derivation extending the

derivation dz of C(z). In other words, K is the function field of a curve (irreducible,
smooth, projective, connected) over C.

The theme of this exposition is to answer, for the differential fields K in the above list,
the question:

Which linear algebraic groups G are differential Galois groups over K ?

3. THE THEOREMS

Let G be a linear algebraic group (over the field C). The subgroup L(G) of G is defined
as the group generated by all (maximal) tori lying in G. It is clear that L(G) is a normal
subgroup of G, contained in the component of the identity GO of G. The group L(G) is

generated by algebraic subgroups of G and hence is itself algebraic. Thus the factor group
G / L( G) is again a linear algebraic group.

Theorem 3.1 (Ramis). The local theorem.- A linear algebraic group G is a differ-
ential Galois group over the field C({z}) if and only if G/L(G) is topologically (for the
Zariski topology) generated by one element.

Corollary 3.2 (Ramis).- Suppose that G is a differential Galois group over the field
C({z}), then G/L(G) is topologically generated by the image of the topological monodromy.

Explanation
The differential equation L(y) = 0 over C ( { z} ) lives in fact as a meromorphic differ-

ential equation on a neighbourhood {z E  E} of z = 0, which has only z = 0 as
singularity. The solution space V can be identified with the solutions of the equation at
the point E/2. Analytical continuation of the solutions at e/2 along the circle around 0



and through E/2 (with positive orientation) induces a C-linear automorphism of V. This
automorphism can be shown to belong to G C GL(V). The element is called the topolog-
ical monodromy. It is unique up to conjugation. (See section 7 for more information.)

Examples 3.3 : Order two
Again K = C(~z~) and consider a differential equation over K of order two with

differential Galois group in SL(2). The well known classification of the algebraic subgroups
of SL(2) can be used in order to determine the possible differential Galois groups. The
list (of conjugacy classes) that one finds is:

where B is the Borel subgroup, Ga the additive group, Gm the multiplicative group and
D~ is the infinite dihedral group, i.e., the subgroup of SL(2) leaving the union of two
lines Li U L2 C C2 (through the origin) invariant.
Every group in the above list can be realized by a differential equation

In fact the choices (m, ao)= (o, z), (o, z2+3z+5/4), (l, o), (o, -z42 ), (o, z-2), (o, - sz-2+
z-1), (0, 4(-1+(n)2)z-2) with § E Q produce the above list of differential Galois groups.

Some definitions: regular, regular singular and irregular
Let X/C denote a curve (irreducible, smooth, projective) of genus g. At this point

of the exposition it is convenient to define a (linear homogeneous) differential equation
over X as a matrix differential equation y’ = Ay, where A is a n x n-matrix with coef-
ficients in K, the function field of X. Consider a point c E X with local coordinate z~.
The field K is embedded in K~ = C(~z~~), the field of the convergent Laurent series in
Ze. Let B E GL(n, Ke). Put v = By. Then v satisfies the matrix differential equation
v’ == (B-lAB - B-1B’)v. This new equation over K~ is called locally equivalent with
y’ = Ay. The equation y’ = Ay is called regular, resp. regular singular at c if there is a lo-
cally equivalent equation v’ = Dv such that D E M(n, resp. z~D E M(n, 
Otherwise the point c will be called an irregular singularity of y’ = Ay.

Theorem 3.4 (Ramis). The global theorem.- Let X/C be a curve (irreducible,
smooth, projective ) of genus g and S ~ X a finite set with cardinality m > 1. A linear
algebraic group G can be realized as the differential Galois group of a differential equa-
tion over X with singularities in S if and only if G/L(G) is topologically generated by
2g + m 2014 1 elements.

Remark.- The theorem remains valid for S = 0 and 2g + m -1 replaced by 2g.



Corollary 3.5 (Ramis).- (1) Suppose that G is the differential Galois group for a differ-
ential equation on X with singularities in the finite set S. Then the natural homomorphism

S, *) -~ G/L(G) has dense image for the Zariski topology.
(2) Suppose that the linear algebraic group G can be realized for the pair (X, S), then

G can be realized by a differential equation with at most one irregular singular point (to
be chosen freely in S) and the other singularities, regular singular (and in S).

Examples 3.6 : Order two, continued

1) {0, oo}) and order two.
The list of possible groups G C SL(2) coincides with the list that we have considered
in 3.3. The above list is in fact the theoretical background for the simplification of the
Kovacic algorithm for order two differential equations with at most two singular points,
presented in [P2].

2) (P1, t0,1, oo}) and order two.
Every algebraic subgroup of GL(2) can be realized for this pair. More precisely, every
algebraic subgroup G C GL(2) is the differential Galois group of an equation

where al(z), a2(z) E C[z]. (This equation is regular singular at 0,1 and has an arbitrary
singularity at oo).

Some definitions : The defect and the excess of a connected linear algebraic group.
C denotes an algebraically closed field of characteristic 0. Let G be a connected linear

algebraic group over C. The unipotent radical of G is denoted by Ru. Let P ~ G be
a Levi factor, i.e., a closed subgroup such that G is the semi-direct product of Ru and
P (see [H], p 184). The group Ru/(Ru, where (Ru, Ru) is the (closed) commutator
subgroup, is a commutative unipotent group and so isomorphic to C". The group
P acts on Ru by conjugation and this induces an action on Ru). Therefore we
may write Ru/(Ru, Ru) = Ul 1 ® ~ ~ ~ ® Us 8, where each Ui is an irreducible P-module. For
notational convenience, we suppose that Ui is the trivial 1-dimensional P-module and

0. Since P is reductive, one can write P = T . H, where T is a torus and H is a
semi-simple group. Define mi := nt if the action of H on Ui is trivial and mi := ni + 1 if
the action of H on Ui is not trivial. Define N = 0 if H is trivial and N = 1 otherwise.
The defect d(G) is defined to be rcl and the excess e(G) is defined as max(N, m2, ..., ms).
Since two Levi factors are conjugated, these numbers do not depend on the choice of P.
Furthermore, one can show that d(G) is the dimension of Ru/(G, Ru).

Theorem 3.7 (Mitschi-Singer).- Let G be a connected linear algebraic group over C.
Then G is the differential Galois group of a matrix differential equation over C(z) of the



where A;, i = 1, ... , d(G) are constant matrices and A~ is a matrix with polynomial
entries of degree at most e(G). In particular, the points al, ..., ad(G) are the singularities
of the equation in C. These singularities are regular. The point oo is possibly an irregular
singular point.

Remarks

The proof of the result above is purely algebraic and moreover constructive. The state-
ment is more precise than the one of Ramis’ global theorem and more restricted in the
sense that the group G is supposed to be connected and that the representation of G
on the space of solutions is not prescribed. Using Tannakian arguments one may also

prescribe the faithful representation of G on the space of solutions (at the cost of intro-
ducing possibly apparent singularities). In section 10 we will show that d(G) is equal to
the minimal number of topological generators of G / L( G).
The special case of the theorem, where the group G is supposed to be connected and

reductive, is rather striking. It states that G is the differential Galois group of a matrix

differential equation ~ = (A + Bz)y with A and B constant matrices. In section 9 we

will present an explicit proof of this statement in case G is connected and semi-simple.

4. ABHYANKAR’S CONJECTURE

The base field k is an algebraically closed field of characteristic p > 0, e.g. Fp. One con-
siders a curve X/k (irreducible, smooth, projective) of genus g and a finite subset S ~ X
with cardinality m > 1. Abhyankar’s conjecture is concerned with the Galois coverings of
X which are unramified outside S. For a finite group G one denotes by p(G) the subgroup
generated by all the p-Sylow subgroups of G. In other words, p(G) is the smallest nor-
mal subgroup such that G/p(G) has order prime to p. We recall the well known theorems.

Theorem 4.1 (Raynaud).- The finite group G is the Galois group of a covering of P1,
unramified outside oo, if and only if G = p(G).

Theorem 4.2 (Harbater).- (1) Let the pair (X, S) be as above. The finite group G is a
Galois group of a covering of X, unramified outside S, if and only if G/p(G) is generated
by 2g + m 2014 1 elements.

(2) 1 f G is a Galois group for the pair (X, S), then the natural homomorphism

1 S, *) --~ G/p(G) is surjective.



(3) Suppose that G/p(G) is generated by 2g + m -1 elements. Then there is a Galois
covering of X with Galois group G, wildly ramified in at most one (prescribed) point of
S, tamely ramified at the other points of Sand unramified outside S.

Remark.- The group S,* ) denotes the prime to p, algebraic fundamental group
of X B S. This group is known to be topologically generated by 2g + m 2014 1 elements and

depends in fact only on the number 2g + m - 1.

The translation

During a dinner at Toulouse (nuit de la musique 1993), Raynaud and Ramis discussed
the remarkable relation between the inverse problem for differential Galois theory and

Abhyankar’s conjecture. The following transformation rules seem to link to two subjects:

Differential Characteristic p > 0

X/C curve, finite 5’ C X, 5’ ~ 0 X/k curve, finite 
differential equation equation with Galois covering of X

singular point (in S) ramified point (in S)
local differential Galois group inertia group

regular singular tamely ramified

irregular singular wildly ramified
linear algebraic group finite group

L(G) p(G)
7ri(X B S) - G/L(G) Zariski dense (X ~ S) - G jp( G) surjective

In the work of P. Deligne, N. Katz and G. Laumon on (rigid) differential equations
there is also a link, this time more concrete, between differential equations and certain
sheaves living in characteristic p. It would be interesting to find a mathematical theory
explaining the philosophical link observed above.

5. FROM LOCAL TO GLOBAL

Proposition 5.1.- Assume that the local theorem 3.1 is valid. Let the following data be
given:

1) A compact Riemann surface X of genus g.
2) Points pi,... pm on X with m > 1.
3) A vector space V of dimension n over C.
4) An algebraic subgroup G c GL(V), such that G/L(G) is topologically generated by

2g + m -1 elements.



Then there exists a differential equation over X, singular at most at the points pl, ..., pm,
regular singular at pl, ..., pm-l, having a solution space, which is identified with V such
that G C GL(V) is the differential Galois group.

Proof.- The function field of X will be denoted by K. For a point p E X we denote the
field of the meromorphic functions at p by Kp.
First one chooses small disjoint disks around the points pl, ... , pm. Put

Xt = X; i , ~ p2 ~ . In X~ one chooses a point c. The fundamental group c), where
Xo = X B ~pl, ... , is generated by al, bl, ... , ag, bg , Ai,..., Am and has one relation
alblallb11 ... ~1 ~ ~ ~ Am = 1. The element Am is a loop in X~ around pm and the other
~i are loops around pl, ... , pm-i . The differential module over X is constructed by glue-
ing certain connections Mo,..., Mm (with possibly singularities), living above the spaces
Xo, ... , Xm.

Let pr : G ~ G / L( G) denote the canonical homomorphism. One chooses a homomor-
phism p : ~rl (Xo, c) -~ G c GL(V), such that the homomorphism prp has Zariski dense
image. Consider the algebraic group G’ = prp(Am) »), where « a » denotes
the algebraic subgroup generated by the element a. The group G’ contains L(G) and so
G’/L(G’) is topologically generated by the image of p(Am) . According to the Ramis’ local
theorem, G’ is the differential Galois group of a differential equation over the field Kpm.
One can extend this very local object to a differential module Mm, living above Xm, with
only p~ as singular point. The solution space at the point c E Xm and the action of G’
on this space can be identified with V and G’ C GL(V). The topological monodromy
corresponding to Am can be arranged to be E G’.
The usual solution of the Riemann-Hilbert problem (in weak form) provides a differen-

tial module Mo above Xo such that the monodromy action is equal to p.
The restrictions of Mo to X~ and Mm to X~ are determined by their local monodromies.
These are both equal to p(Am) E G c GL(V). Thus we have a canonical way to glue Mo
and Mm over the open subset X~. For each point can consider
the restriction of Mo to Xi . This restriction is determined by its local monodromy around
the point pi. Clearly, the restriction of Mo to Xi can be extended to a differential module
M~ above Xi with a regular singular point at pi.
The modules Mo, Ml, ..., Mm (or rather the corresponding analytic vector bundles)

are in this way glued to a vector bundle M above X. The connections can be writ-

ten as V : Mo - S2x 0 Mo, V : Mi -+ ® Mi for i = l, ... , m - 1 and
V : Mm - ® Mm for a suitable integer d > 0. The connections also glue
to a connection V : M - 03A9X(p1 +... + + ® M. Let M* denote the set of
all meromorphic sections of M. Then M* is a vector space over K of dimension n with
a connection V : M* - OK/C 0 M*. Thus we have found a differential module over K
with the correct singularities. K has a natural embedding in the field Kc. The differential
module is trivial over Kc and its Picard-Vessiot field PV over K can be seen as a subfield



of Kc. The solution space is V C PV C Kc.

Finally we have to show that the differential Galois group H C GL(V) is actually G.

By construction G’ cHand also the image of p lies in H. This implies that G C H.
In order to conclude that G = H we can use the Galois correspondence. Thus we have

finally to prove that an element f E PV C Kc, which is invariant under G, belongs to K.
Since G’ is by construction the differential Galois group of Mm above Xm, we con-

clude from the invariance of f under G’ that f extends to a meromorphic solution of the
differential equation above Xm. The invariance of f under the image of p implies that

f extends to a meromorphic solution of the differential equation above Xo U Xm. The

points pl, ... , are regular singular and any solution of the differential equation above

X;, i =1, ... , m -1 extends meromorphically to Xi. Thus f is meromorphic on X and

belongs to K.

Remark.- For the case of X = P~ and pm = oo, it is possible to refine the above reason-

ing to prove the following statement.

Corollary 5.2.- Let G C GL(n, C) be an algebraic group such that G/L(G) is topolog-
ically generated by m -1 elements. Then there are constant matrices A1, ..., and

there is a matrix A~ with polynomial coefficients (all matrices of order n x n) such that
the matrix differential equation

has differential Galois group G c GL(n, C).

This result is close to the one of Mitschi-Singer. We note however that there seems to
be no bound on the degrees of the coefficients of the matrix Aoo.

6. THE FORMAL THEORY

In this section the differential field is k := C((z)). The classification of differential
equations over K is well known (Birkhoff, Turrittin, Malgrange, Levelt, et al.). We will
present this classification in a somewhat different form, which clarifies the connection with
the differential Galois group. For this purpose we need a universal differential extension
R of k which can be defined as follows:

(i) The 7~-algebra ~ has a differentiation extending the one of k.
(ii) Every differential ideal of R is trivial, i.e., 0 or R.
(iii) Every homogeneous linear differential equation of order n over K has a solution

space in R, which is a C-vector space of dimension n.
(iv) R is minimal in the sense that R is generated over k by all the solutions and their



derivatives of all homogeneous linear equations over K.
For any differential field one can show that there exists an universal differential extension

(as above). Moreover one can show that this extension is unique up to differential iso-

morphism. The interesting thing is that one can write down this extension explicitly in
the case of K.
We introduce first some notations: 6 is the derivation z1;. We will write f’ for z1;I.

Put Q = The K-algebra R is represented by generators and rela-
tions as follows.

R = {e(q)}qEQ, lJ and the relations are:
za+b = e(ql + q2) = e(q1)e(q2) and za = za E K for a E Z.
The differentiation on R is given by:
(za)’ = e(q)’ = ~’ = l.

The intuitive interpretation of  is:
za is the function l is the function log(z) and e(q) is the function 
In sectors at the point z = 0 this interpretation makes sense and can be combined with
the lifting of certain formal Laurent series in K to actual meromorphic functions on a
sector.

Some differential automorphisms of R/K:
The formal monodromy , is the differential automorphism of / defined by:

,~,(za) = e27ria za and - ~ -~- 27ri,
in particular the action of q on the algebraic closure of K and on Q is defined.

= 

The exponential torus Hom(Q, C*) acts as a group of differential automorphisms of
For an element c of this group, one defines the differential automorphism c by

cza = za, cl = l, ce(q) = c(q)e(q).
It is possible to write down all the differential automorphisms of R/K. This has the struc-
ture of an affine group scheme over C. The subgroup generated by the formal monodromy
and the exponential torus is a dense subgroup in a certain sense. For our purposes the

formal monodromy and the exponential torus will suffice.

The triple (V, associated to a differential equation over K.

Let L(y) = 0 be a homogeneous differential equation of order n over K. Put V := {r E

RI L(r) = 0}, the solution space of L in R. Then V is a vector space over C of dimension
n. The set V is invariant under the actions of the formal monodromy and the exponential
torus. Let ’v denote the restriction of 7 to V. Put Vq := V ~ K[{za}a~C,l]e(q). Then for

almost all q E Q the vector space Vq = 0. One has further V = ~q~QVq and = %q
for all q E Q. This defines the triple (V, associated to the differential equation
over K.



The important observation is:

The differential equation over k is equivalent to the associated triple (V, {Vq}, w).

We will make this statement more precise by considering the category Gri, whose ob-

jects are the triples (V, {Vq}, satisfying:
(i) V is a finite dimensional vector space over C,
(ii) is a family of subspaces such that V = ®Vq.
(iii) ~y~ is a C-linear automorphism of V such that = Vyq for all q E Q.

One can give Gri (in an obvious way) the structure of a (neutral) Tannakian category.
Let Diff denote the Tannakian category of the differential modules over k.

Proposition 6.1.- The above construction is an equivalence between the Tannakian cat-

egories Diff and Gr1.

Corollary 6.2.- Let the triple (V, {Vq}, be associated to the differential equation

L(y) = 0 over k. Then the differential Galois group G of L can be identified with the al-

gebraic subgroup of GL(V) generated by ~yy and the action of the exponential torus on V.

Examples 6.3 : The Airy equation
The Airy equation y" = zy has a singular point at z = oo. The triple associated to

the equation is V = Vz3/2 ® V_z3/2. The two spaces Vz3/2, V_z3/2 have both dimension l.

After a suitable choice of bases for the two spaces the formal monodromy has the matrix

0 } and the exponential torus has the form ~ I t E C*~. The differ-
ential Galois group is therefore the infinite Dihedral group Doo C SL(2).

The information in this section on the formal differential Galois group suffices to give
a proof of the "easy halves" of the theorems.

Proposition 6.4. The easy implications for the local and the global theorem.- (1) Let
G be the differential Galois group of an equation over the field C({z}). Then G/L(G) is
topologically generated by one element.

(2) Let X be a compact Riemann surface of genus g, S ~ X a finite subset with
cardinality m > 0 and G the differential Galois group of a differential equation over X
with singularities in S. Then the natural homomorphism S, *) -~ G/L(G) has
dense image.

Proof.- (1) The group G’/L(G’) is according to section 2 also the differential Galois group
of some equation y’ = Ay over C({z}). The differential Galois group H of this equation
over C((z)) is a subgroup of G/L(G). The latter group has a trivial maximal torus



and thus the exponential torus is not present in H. Therefore the differential equation
is regular singular and is equivalent to zy’ - By where B is a constant matrix. It is

well known that the differential Galois group (either over C({z}) or over C((z)) ) is the
algebraic subgroup of GL(n) generated by e2"iB.

(2) Let K denote the function field of X. The group G/L(G) is the differential Galois
group of a matrix equation y’ = Ay over X which has its singularities in the set S. As in

(1), it follows that the equation has only regular singularities. Take a point c E X B Sand
let V be the space of the local solutions of the equation. The Picard-Vessiot field L can be
identified with the subfield of K~ generated by K and (the coordinates of the elements of)
V. The monodromy of y’ = Ay on X ~ S induces a homomorphism S, c) -~ GL(V).
The image of this homomorphism lies in G/L(G). Let f E L be invariant under this

image. Then f extends to a meromorphic function on X B S. Since the singularities of

y’ = Ay are regular singular, f extends to a meromorphic function on all of X. Therefore

f E K. From the Galois correspondence we draw the conclusion that the image of

S, c) in G/L(G) is Zariski dense.

7. THE ANALYTIC LOCAL THEORY

In this section the differential field K is C({z}). For notational convenience we take the
derivation 6 to be b( f ) = f’ = For the description of the differential modules
over K we introduce a second category Gr2. First we will need some notation. Let d E R

and 0. Then d (or rather eid) is considered as a direction at the point z = 0.
The front o f q, in notation Fr (q), consists of the d’s such that the function h := eJ has

maximal decrease in the direction d. In other words has maximal decrease when

r > 0 tends to zero. For the example q = z-1 one finds = and the front

Fr(z-l) is thus 7r + 27rZ. For any q E Q, one denotes the projection (along the
other by prq. Using this terminology we can define an object (V, StV,d) of
Gr2 as follows:

(1) (V, {Vq}, qv) is an object of Grl.
(2) For every d E R there is given an automorphism StV,d of V of the form

where Nq2,Ql is a C-linear map V ~~2 Vq2 -~ Vql C V.
(3) The StV,d should satisfy the relation = 

The are seen to be unipotent maps.
If (V, {Vq~, is fixed then there are modulo 2~r only finitely many d’s such that there

exists q2, ql with d E Fr(q2 - ql) and Vq2 ~ 0, 0. The possibilities for the StV,d
form thus a finite dimensional vector space over C.



Morphisms between two objects are C-linear maps preserving all the data. The tensor

product of two objects V = (V, {Vq}, qv, Stv,d) and W = (W, {Wq}, qw, StW,d) is defined
as the vector space V 0 W with the data:

(v 0 W)q = Wq2.
= iv ® ’Yw and
= StV,d ® Stw,d.

One can show that Gr2 is a neutral Tannakian category over C. Let DiffK denote the

Tannakian category of the differential modules over K = C({z}). The main results of
Martinet and Ramis on multisummation can now be phrased as:

Theorem 7.1.- The multisummation operator provides an equivalence between the Tan-

nakian categories DiffK and Gr2.

Corollary 7.2.- Let L be a linear homogeneous differential equation over K and let

(V, {Vq}, yy, Sty,d) denote the object of Gr2 associated to L. Then the differential Galois

group of L can be identified with the Zariski closure of the subgroup of GL(V) generated
by:

(1) The formal monodromy ~yv.
(2) The exponential torus.
(3) The collection {Stv,d}, called the Stokes matrices of L.

Remark.- It must be stressed that the theorem and the corollary are at the heart of the

theory of multisummation and form moreover the essential part of the proof of Ramis’
local theorem.

The category Gr3

The categories Grl and Gr2 were introduced in [PI] in order to obtain a nice and
compact formulation of the work of Martinet and Ramis. A further reformulation, due
to Ramis, will simplify the proof of the local theorem even further. The category Gr3 is
defined by:
the objects are tuples (V, {Vq}, qv, stv,d) with

(1) (V, is an object of Grl.
(2) For every d E R there is given a stv,d E 
(3) The stv,d should satisfy 03B3-1V stV,d03B3V = 

We identify, as before, with a linear subspace of End(V). A mor-

phism f : (V, {Vq}, stv,d) ~ (W, {Wq}, qw, stw,d) is a linear map V -3 W satisfy-
ing f(Vq) C Wq, = ~yw o f, f o stv,d = stw,d o f. The tensor product of two

objects (V, {Vq}, (W, {Wq}, stw,d) is the vector space V ® W with the data
(v®W )q - =’Yv®’Yw and = stV,d~idW+idV~stW,d.



It is easily seen that Gr3 is again a neutral Tannakian category. In fact, the Tannakian

categories Gr2 and Gr3 are isomorphic.

Lemma 7.3.- (1) The exponential map induces an equivalence of Tannakian categories
Exp : Gr3 --~ Gr2.

(2) Let the object (V, {~}, stv,d) be associated to a differential equation over C({z~).
Then the differential Galois group G C GL(V) is the smallest algebraic subgroup such that:

(a) The exponential torus and TV belong to G.
(b) All stV,d belong to the Lie algebra of G. -

Proof.- The exponential map associates to (V, ~Vq~, stV,d) the object (V, ~Vq}, Stv,d)
with Stv,d = exp(stv,d). It is easily seen that this results into an equivalence of Tannakian

categories. The second part of the lemma is a reformulation of 7.2.

Multisummation and the Stokes matrices 

Consider a differential equation L(y) = g over K and with g E K. Let f E k be a
formal solution of the equation. The main theorem o f the asymptotic theory o f differen-
tial equations states that for a sector S at 0 with small enough opening, there exists a

meromorphic function f on S with asymptotic expansion f and still satisfying L(/) = g.
In general this f is not unique. Multisummation produces a unique choice for the f above.
For d E R one considers the direction eid at 0. There are, modulo 27rZ, finitely many
singular directions d for the differential equation L(y) = g. For a direction d, which is

not singular, there is a multisummation operator Sd which maps a formal solution f to a
solution of the equation, which lives on a certain sector with bisector d and has f as
asymptotic expansion. In general depends on the choice of d. This is usually called
the Stokes phenomenon. However Sd( f ) does not depend on d E (a, b) if this interval does
not contain any singular direction.

Let d be a singular direction. Then we define Sd+ ( f ) and Sd- (/) as and 

for E > 0 and small enough. The difference between Sd+ ( f ) and is measured by
the Stokes matrix StV,d. We will make this more precise.

Let M be a differential module over K = C({z~). The solution space V is defined
as V = ker(a, R Q9K M). The ring R is given a basis over K = C((z)), e.g. zalne(q)
with a E C and 0  Re(a)  0 and q E Q. Further M can be given
a basis over K. Combining this one obtains a basis of R Q9K M over K. The

elements v E V can be written as finite sums £ with /~ i E K. The f are formal
solutions of a set of (inhomogeneous) linear differential equations over K. For a direction

d, which is not singular, one defines Sd(V) as where intd(Bi) is the in-

terpretation of B~ (this involves za and the logarithm) in the direction d. There results
a C-linear bijection Sd : V - Sold, where Sold is the vector space of the solutions of



M on a suitable sector containing the direction d. For any direction d, there are two

isomorphisms Sd+ , Sd- : V -~ Sold. One defines Stv,d = E GL(V). Clearly 
is the identity if d is not a singular direction. It is not difficult to prove that the object

(V, ~Vq~, belongs to the category Gr2, and that multisummation produces in

fact a functor F2 : DiffK - Gr2 of Tannakian categories. The proof of 7.1, i.e., proving
that F2 is an equivalence of categories, is rather involved (see [P3] and [R2]).

The relation between the formal and the topological monodromy

Let the differential module M over K be given with F2 (M) = (V, ~Vq~, Sty,d). Let
0  di  d2  ...  dm  27r denote the singular directions (in fact for the differential
module Hom(M, M)) lying in [0, 2~r). The topological monodromy ~yM of M is easily seen
to satisfy (up to conjugation) the formula

Examples 7.4 : The Airy equation, continued

We consider again the Airy equation y" = zy. There are two singular directions d = 0, ~r
modulo 27rZ. The topological monodromy is trivial and the formal monodromy is not triv-
ial. The formula for the topological monodromy implies that both Stokes matrices Stv,o

and are different from 1. The two matrices have the form O1 1 * j and 
with respect to the decomposition V = Vz3/2 ® V_z3/2. It follows from 7.2 that the differ-

ential Galois group of the Airy equation over C(z) is SL(2).
The same argument shows that the differential Galois group of any equation y" = ry

with r G C(z~ a polynomial of odd degree is SL(2).

8. THE PROOF OF THE LOCAL THEOREM

The following lemma will be a.guide for the construction of a suitable object in the
category Gr3.

The data

V is a finite dimensional vector space over C and G c GL(V) is an algebraic subgroup.
T denotes a maximal torus and g, t c End(V) are the Lie algebras of G and T.
The action of T on V yields a decomposition V = where the X~ are distinct

characters of T and the non-trivial spaces Vx; are defined as {v E VI tv = Xi(t)V for all

For each i, j one identifies Hom(Vx;, VXj) with a linear subset of End(V) by identifying



L E with V ~ Vx~ -~ Vx~ C V, where pr; denotes the projection onto 
along 
The adjoint action of T on g yields a decomposition g = g 0 By definition,

the adjoint action of T is the identity and is multiplication by the character o; 7~ 0
on the spaces g . (We note that here the additive notation for characters is used. In

particular, o; ~ 0 means that a is not the trivial character.)
Any B E fl can be written as with Bi,j G The adjoint action

of t E T on B has the form Ad(t)B = It follows that the a ~ 0 with
0 have the form In particular E g C g. Let L(G) denote,

as before, the subgroup of G generated by all the conjugates of T.

Lemma 8.1 (Ramis).- (1) L(G) is a normal algebraic subgroup of G (and of GO).
(2) The Lie algebra of L(G) is generated by the subspaces t and 

Proof.- The first statement follows from [Bo], Ch 2, Prop.(7.5) p.190 and Thm.(7.6)
p.192. Consider some a ~ 0 and a non-zero element ~ From the definition of g
and o; ~ 0 it follows that there is an ordering, denoted by V[,..., K , of the spaces 
such that ç maps each v into some g with j > i. In particular, ~ is nilpotent and Cç
is an algebraic Lie algebra corresponding to the algebraic subgroup E C} of
G. Let h denote the Lie algebra generated by the algebraic Lie algebras t and C~ for all

ç E g with Q! 7~ 0. Then h is an algebraic Lie algebra. ([Bo], loc. cit.).
Take an element t E T such that all Xi(t) are distinct. Then clearly t . is

semi-simple and lies therefore in a conjugate of the maximal torus T. Thus 

t-l . (t . E L(G) and 03BE lies in the Lie algebra of L(G). This proves that the Lie
algebra h is a subset of the Lie algebra of L(G).
On the other hand, h is easily seen to be an ideal in g. The connected normal algebraic

subgroup H C GO corresponding to h contains T and therefore L(G). This proves the

other inclusion.

We start the proof of Ramis’ local theorem by considering the data:
V is a finite dimensional vector space over C and G C GL(V) is an algebraic group such
that G/L(G) is topologically generated by one element a. It suffices to construct an ob-

ject (V, {V~}, ~yv, stv,d) in the category Gr3 with group G, i.e., G is the smallest algebraic
subgroup of GL(V) such that:

(1) G contains and the exponential torus.

(2) The Lie algebra g of G contains all stv,d.

* Choose a maximal torus T C G and a representative A E G of a E G/L(G). Since T is
also a maximal torus of L(G), there exists B E L(G) such that BT B-1. After

replacing A by B-1 A we may suppose that T.



* Let V = denote the decomposition of V with respect to the action of T.
* The element A E G permutes the spaces VXi. More precisely, == VXj where
the character xj is given by Xj(t) = We will write Axi = xj. Indeed, for
t E T, v E Vxi one has

* We recall that Q = carries an action of 03B3 given by = 

Lemma 8.2.- There are elements ql, ..., qs E ~ such that

(1) If Ã~i = ~j then = qj.

(2) If n1~1 + ... + ns~s = 0 (here with additive notation for characters) for some
nl, ... , ns E Z, then n1q1 + ... + nsqs = 0.
Let N > 1 be any integer, then there exists ql, ..., qg satisfying ( 1 ) and (2) and such that
for any i the degrees of qi - qj in z-1 are > N.

Proof- Conditions ( 1 ) and (2) can be translated into: the Z-module zxl + ~ ~ ~ + Zxs can
be embedded into Q such that the action of Ã is compatible with the action of 03B3 on Q.

Let Q denote the algebraic closure of Q. Consider M := Q 0 (Zxl + ... + 
Zxr + ... + Zxs with the induced A action. Since a power of ~4 acts trivially on M we
may present this action by M = where (j runs in a finite set of all roots of unity
and ~4 acts on M~~ as multiplication by (j .
Further Q = ~03BB~Q,03BB0Cz03BB and 03B3 acts on Cz03BB as multiplication by Define

Aj E Q, Àj  0 by = (j and Àj is maximal. Choose for every j an embedding of
Q-vector spaces M~~ C Then the resulting embedding M C Q has the
required properties. Moreover, any non-zero element of M is mapped to an element of
degree > N in the variable 

We continue now the proof of the Ramis’ local theorem. Define the formal structure

(V, (i.e., an object of Gr1) by VXa = Vqi and 03B3V = A. As before g denotes the
Lie algebra of G (or G°). The decomposition of g with respect to the adjoint action of
the torus T has already been made explicit, namely

For the definition of the structure of an object from the category Gr3 on V we may
choose arbitrary elements stv,d E fla, where a = E Fr(qi - qj), 0  d  27r.
The number of directions d modulo 27r in Fr(qi - qj ) is by construction sufficiently large
to ensure a choice of the set such that these elements generate the vector space

Finally, we verify that the algebraic group G, associated to the object (V, {~}, 
is equal to G. By construction G C G and G is the smallest algebraic group with:

(a) The exponential torus and yy lie in G.



(b) The Lie algebra of G contains all stv,d.
By construction, the exponential torus is equal to T and its Lie algebra t lies in G. Again
by construction, the g (with 0) belong to the Lie algebra of G. Thus G contains
L(G). The choice of ’v implies that G = G.

9. THE CONSTRUCTIVE INVERSE PROBLEM

In this section we will present a constructive proof of the following "gem" which is at
the heart of the work of Mitschi and Singer.

Theorem 9.1 (Mitschi-Singer).- The field C is supposed to be algebraically closed and
of characteristic 0. Every connected semi-simple linear algebraic group is the differential
Galois group of an equation y’ _ (Ao + Alz)y over C(z), where Ao, Al are constant

matrices.

The proof given here uses the language of Tannakian categories (see [De-M]). For a
differential module M (over C(z)) one denotes by {~M}} the full Tannakian subcategory
of Differ) generated by M. By definition the objects of {{M}} are the differential modules
isomorphic to a finite direct sum of subquotients M1/M2 of some M ~ ... 0 M 0 M* 0
... 0 M* (i.e., M2 C Mi are (differential) submodules of such a tensor product). For any
linear algebraic group L (over C) one denotes by ReprL the Tannakian category of the
finite dimensional representations of L (over C). The differential Galois group of M is L
if there is an equivalence between the Tannakian categories ~~M}} and ReprL.

Let a finite dimensional vector space V over C and an algebraic subgroup G C GL(V)
be given. Our first aim is to produce a differential module M = (C(z) 0 V, 8) and a
functor of Tannakian categories 

9.2. The functor 

The Lie algebra of G will be written as g C End(V). One chooses a matrix A(z) E
C(z) ® g c C(z) 0 End(V). To this choice there corresponds a differential equation
y’ = A(z)y and a differential module M :_ (C(z) ®V, 8) with 8 defined by 8(v) _ -A(z)v
for all v E V. Let a representation p : G -3 GL(T) be given. The induced maps

g - End(T) and C(z) ® g -~ C(z) 0 End(T) are also denoted by p. One associates to
(T, p) the differential module (C(z) 0 T, 8) with 9(~) == -p(A(z))t for all t E T. The

corresponding differential equation is y’ = p(A(z))y. In this way one obtains a functor of
Tannakian categories ReprG --+ Diffc(z). We claim that every (C(~) 0 T, 9), as above, lies
in fact in ~~M}}.

Indeed, consider {~V}}, the full subcategory of ReprG generated by V (the defini-
tion is similar to the definition of { ~ M } } ) . It is known that {{V}} = ReprD (see



[De-M]). The representation V ® ~ ~ ~ 0 V 0 V* ® ~ ~ ~ 0 V* is mapped to the differen-
tial module M ® ~ ~ ~ ® M ® M* ® ~ ~ ~ ® M*. Let V2 c Vl be G-invariant subspaces of
V ® ~ ~ ~ ® V ® V * ® ~ ~ ~ ® V * . Then V2 and Vl are invariant under the action of g. Since

A(z) E C(z) 0 g, one has that C(z) 0 V2 and C(z) are (differential) submodules of
M ® ~ ~ ~ 0 M 0 M* g) - - - 0 M*. It follows that the differential module (C(z) 0 8)
lies in {{M}}. This proves the claim.

The next step is to make the differential Galois group L of M and the equivalence
{ { M } } ~ ReprL as concrete as we can.

9.3. Differential modules over 0

Fix some c E C and let 0 denote the localization of C[z] at (z - c). A differential
module (N, 8) over 0 is a finitely generated O-module equipped with a C-linear map 8
satisfying 8( f n) = f’n + f8(n) for all f E 0 and n E N. It is an exercise to show that

N has no torsion elements. It follows that N is a free, finitely generated 0-module. Let
Diffo denote the category of the differential modules over 0. The functor N 
induces an equivalence of Diffo with a full subcategory of Diffc(z). It is easily seen that
this full subcategory has as objects the differential modules over C(z) which are regular
at z = c.

Let 0 = C[[z - c]] denote the completion of 0. For any differential module N over 0 of
rank n, one writes N for 0 0 N. We note that N is a differential module over 0 and that
N is in fact a trivial differential module. The space ker(8, N) is a vector space over C of
dimension n, which will be called Solc(N), the solution space of N over C[[z-c]] (and also
over C((z - c))). The canonical map --~ N/(z - c)N = N/(z - c)N is an isomor-
phism. Let Vectc denote the Tannakian category of the finite dimensional vector spaces
over C. The above construction N H N/(z - c)N is a fibre functor of Diffo - Vectc.
For a fixed object M of Diff o one can consider the restriction w : { { M } } ~ Vectc,
which is again a fibre functor. The differential Galois group L of M is defined in
[De-M] as By definition L acts on w(N) for every object N of {{M}}. Thus
we find a functor {{M}} 2014~ ReprL, which is an equivalence of Tannakian categories. The
composition {{M}} -~ Vectc (where the last arrow is the forgetful functor) is
the same as c~. (We note that the above remains valid if we replace 0 by any localization
of C[z].)

9.4. Some observations

(9.4.1) Let G again be an algebraic subgroup of GL(V), let A(z) E C(z) ® g be cho-
sen. Suppose that the matrix A(z) has no poles at z = c. Then we have functors of
Tannakian categories ReprG -+ {{M}} and {{M}} -~ ReprL. The last functor is made
by considering M as differential module over 0. The composition of the two functors



maps a representation (W, p) of G to a representation of L on 0/(z - c)0 0 W which is
canonically isomorphic to W. It follows that L is an algebraic subgroup of G.

(9.4.2) Suppose that L is a proper subgroup of G, then there exists a representation
(W, p) of G and a line W C W such that L stabilizes W and G does not. The dif-
ferential module (C(z) 0 W, 8) has as image in ReprL the space W with its L-action.
The L-invariant subspace W corresponds with a one-dimensional (differential) submod-
ule C(z)w C C(z) 0 W. After multiplication of w by an element in C(z), we may suppose
that w E C[z] ® W and that the coordinates of w with respect to a basis of W have g.c.d.
1. Let us write £ for the differentiation on C(z) 0 W, given by = f’a for f E C(z)
and a E W. Then one finds the equation

(9.4.3) The idea for the rest of the proof is to make a choice for A(z) which contra-
dicts the equation for w above. For a given proper algebraic subgroup H of G one can
produce a suitable A(z) which contradicts the statement that L lies in a conjugate of
H. In general however one has to consider infinitely many (conjugacy classes) of proper
algebraic subgroups of G. This will probably not lead to a construction of the matrix
A(z). In the sequel we will make two restrictions, namely A(z) is a polynomial matrix
(i.e., A(z) E C[z] ® g) and that G is connected and semi-simple. As we will see the first
restriction implies that the differential Galois group is a connected algebraic subgroup of
G. The second restriction implies that G has finitely many conjugacy classes of maximal
proper connected subgroups.

(9.4.4) The differential Galois group M of the differential equation y’ = (Ao + Alz +
... + where Ao,..., Am E End(W) and W is a finite dimensional vector space
over C, is connected.

Indeed, let E denote the Picard-Vessiot ring. Put M°= the component of the identity of
M and consider F = This is a finite Galois extension F of C(z) with Galois group

The extension C(z) C F can be ramified only above the singular points of the
differential equation. The only singular point of the differential equation is oo. It follows
that C(z) = F and by Galois correspondence M = M°.

(9.4.5) A faithful representation p : G’ -~ GL(W), in other words a faithful G-module
W, will be called a Chevalley module if:

(a) G leaves no line in W invariant.

(b) Any proper connected closed subgroup of G has an invariant line.
We will postpone the proof that a connected semi-simple G has a Chevalley module.



9.5. The choices for Ao and ~4i in g C End(V)

The connected semi-simple group G is given as an algebraic subgroup G C GL(V),
where V is a finite dimensional vector space over C. We recall that G is semi-simple if
and only if its Lie algebra g is semi-simple.

For the construction of the equation we will need the root space decomposition of g. This
decomposition reads (see [J] and = h ® (®ag ), where h is a Cartan subalgebra
and the one dimensional spaces g = C Xa are the eigenspaces for the adjoint action of h
on g corresponding to the non-zero roots a : /~ 2014~ C. More precisely, the adjoint action
of h on h is zero and for any 0 one has [h, = for all h E h.

We fix a Chevalley module p : G -~ GL(W). The induced (injective) morphism of Lie
algebras g - End(W) is also denoted by p. The action of h on W gives a decomposition
of W = into eigenspaces for a collection of linear maps ~i : h -~ C. (The (3’s are
called the weights of the representation. )

For Ao one chooses Xa. For Alone chooses an element in h satisfying conditions
(a), (b) and (c) below.

(a) The are distinct and different from 0 (for the non-zero roots a of g).
(b) The ,Q(A1) are distinct and different from 0 (for the non-zero weights ~i of the rep-

resentation)
It is clear that ~4i with these properties exists. Choose such an We want Ai to satisfy
the more technical condition:

(c) If the integer m is an eigenvalue of the operator on W,
then m = 0.

If Ai does not yet satisfy this last condition then a suitable multiple with c E C*,
satisfies all three conditions.

Claim: Let Ao, Al C End(V) be chosen as above, then the action of the differential
Galois group of y’ _ (Ao + Alz)y on the solution space can be identified with G C GL(V).

Three equations

Then equation (9.4.2) reads now (dz - (p(Ao) + p(A1)z))w = cw with c E C(z). Clearly
c E C[z] and by comparing the degrees one finds that the degree of c is at most 1. More
explicitly, one has

with all w~ E 0 and co,ci E C. Comparing the coefficients of 
one obtains the relations



The eigenspaces for the action of p(Al) on W will be denoted by Wb with b = 
the corresponding eigenvalue of p(Al). Any element d e W is written as w = ~b db,
with db E Wb. The relation (Al, = implies that C 

This implies that Ao has the property p(Ao)(Wd) C 
We analyze now the three equations. The first equation can only be solved with

wm G 0 and d = -cl. The second equation, which can be read as 

-p(Ao)(wm) + (-p(~4i) - imposes co = 0. Indeed, the two right hand side terms
-p(Ao)(wm) and (-p(A1) - c1)wm-1 have no component in the eigenspace Wd for p(Al)
to which wm belongs. Further

for some vd E Wd.
The third equation can be read as

A necessary condition for this equation to have a solution is that the left hand side

has 0 as component in Wd. The component in Wd of the left hand side is easily calculated
to be

Since this is zero, m is an eigenvalue of the operator It follows

from our assumption on ~4i that m = 0.
This leaves us with the equation [d dz - (p(Ao) + = c1zw and w E W. Since

dzw = 0, one finds that Cw is invariant under p(Ao) and The Lie algebra g is

generated by Ao and Thus Cw is invariant under g and under G. Our assumptions
on the G-module W imply that w = 0. The proof of theorem 9.1 is completed by a proof
of the existence of a Chevalley module.

Lemma 9.6 (Mitschi and Singer [M-S3]).- Every connected semi-simple linear algebraic
group has a Chevalley module.

Proof.- Let the connected semi-simple closed subgroup G C GL(V) be given. Chevalley’s
theorem (see [H]) states that for any proper algebraic subgroup M there is a G-module
E and a line L ~ E such that M is the stabilizer of that line. Since G is semi-simple,
E is a direct sum of irreducible modules. The projection of L to one of these irreducible



components is again a line. Thus we find that M stabilizes a line in some irreducible

G-module E of dimension greater than one. Any subgroup of G, conjugated to M, sta-
bilizes also a line in E. Dynkin’s theorem [D] implies that there are only finitely many
conjugacy classes of maximal connected proper algebraic subgroups of G. One chooses
an irreducible G-module Wi, i = 1,..., m for each class and one chooses an irreducible
faithful module Wo. Then W = Wo ® ~ ~ ~ (B Wm has the required properties.

Examples 9.7. Chevalley modules for SL(2) and SL(3).- (1) The standard action of
SL(2, C) on C2 is a Chevalley module.

(2) The standard action of SL(3, C) on C3 will be called V. The induced representation
on

is a Chevalley module. Here A2 V is the second exterior power and V 0s V is the sec-
ond symmetric power. Indeed, let M be a maximal proper connected subgroup of SL(3).
Then M leaves a line in V invariant or leaves a plane in V invariant or M is conjugated
with PSL(2) C SL(3). In the second case M leaves a line in A 2V invariant and in the
third case M leaves a line in V 0s V invariant. Further SL(3) leaves no line in W invariant.

10. OTHER FORMULATIONS

Ramis’ first formulation of the inverse problem for the differential field C(~z~) was the
following theorem.

Theorem 10.1.- A linear algebraic group G over C is a differential Galois group over
C(~z}) if and only if G has a local Galois structure.

For the rather complicated definition of a local Galois structure (T, a, N) we refer to
[Rl]. The next proposition simplifies matters.

Proposition 10.2 (Mitschi and Singer [M-S3]).- Let G be a linear algebraic group over
an algebraically closed field of characteristic D. Let Ru = Ru (G) denote the unipotent
radical o f G and let G° be the component of the identity of G. The following statements
are equivalent:

(1) G has a local Galois structure.
(2) (a) G/G° is cyclic, (b) the dimension of G°) is  1, and (c) the action of

G/G° on conjugation, is trivial.

Let again G be a linear algebraic group over an algebraically closed field of characteristic
0. A further investigation of Ramis leads to the definition of the linear algebraic group



S(G) = G/G°, which is the semi-direct product of and GIGo,
with respect to the action (by conjugation) of GIGo on Ru /(Ru, GO).
One easily sees that condition (2) in the last proposition is equivalent to S(G) is topolog-
ically (for the Zariski topology) generated by one element.
The connection with the linear algebraic group V(G) := G/L(G) (L(G) is defined in

section 3) is the following.

Proposition 10.3 (Ramis [R2]).- There is an isomorphism
S(G) - V(G)/(v{G)°, v(G)°).

Proo f .- (1) We start by proving that a reductive group M has the property L(M) = M°.
We recall that in characteristic 0, reductive for a linear algebraic group is equivalent
to the complete reducibility of any finite dimensional representation. It follows at once

that N := M/L(M) is also reductive. Thus the unipotent radical of N is trivial. By
construction N° has a trivial maximal torus and is therefore unipotent and equal to the

unipotent radical of N. Thus N° = 1. Since L(M) is connected, the statement follows.
(2) Let G be a connected linear algebraic group and Ru its unipotent radical. Then G is

the semi-direct Ru, ~ M, where M is some reductive subgroup of G, called a Levi subgroup
or Levi-factor (see [H] p. 184). We note that a maximal torus of M is also a maximal
torus of G. Let Tl : G = Ru . M --> V (G) := G/L(G) denote the canonical map. Since

L(M) = M, the kernel of Tl is the smallest normal subgroup of G containing M. The
kernel of the natural map T2 : G = R~, ~ M --~ V (G)/(V (G), V (G)) is the smallest normal
subgroup containing M and (G, G). This is the same as the smallest normal subgroup
containing M and (Ru, G), since G = Ru . M. Thus the map T2 induces an isomorphism
R~/(R~, G) -~ V {G)/(V (G), V (G)). "

(3) Let G be any linear algebraic group. We consider V(G) := G/L(G) and S’(G) :=

V (G)/{V (G)°, V(G)O). The component of the identity S’(G)O is easily identified with

S’(GO) and according to (2) isomorphic to the unipotent group G°). Further

S’(G)IS’(G)O is canonically isomorphic to GIGo. Using that S’(G)° is unipotent, one
can construct a left inverse for the surjective homomorphism 5~(6’) 2014~ G/G° (see lemma

10.4). Thus S’(G) is isomorphic to the semi-direct product of and G/G°,
given by the action of GIGo on Ru/(Ru, GO), defined by conjugation. Therefore S(G) and

S’(G) are isomorphic.

Finally we will need a lemma, which is probably well known.

Lemma 10.4.- Let H be a linear algebraic group such that H° is unipotent. Then

(a) H is a semi-direct product of H° and H/H°.
(b) H and H°) have the same minimal number of topological (for the Zariski

topology) generators.



Proof.- (a) Define the closed normal subgroups Hk of H by H8 = H° and =

for k > 0. Since H° is a unipotent group Hk = {1} for large k. Let l(H)
denote the smallest integer m ~ 0 such that Hk = { 1 ~ for all m > k. By induction
on we will prove the existence of a homomorphism s : such that

H --~ HI HO is the identity. For 1 (H) = 0 the statement is trivial. Suppose
that = n > 1. There is a map s : such that s is a left inverse

of 7:f -~ HI HO and is a homomorphism. Consider the map

f : HI HO x H°, given by f(a, b) = The group H° is isomorphic
to a finite dimensional vector space over the base field. The group HI HO acts on this
vector space by conjugation and f is a 2-cocycle for this H/H°-module. Since the base

field is supposed to have characteristic 0, this 2-cocycle is trivial. Thus for a suitable map
r : Hn, the map a s(a)r(a) is a homomorphism. This proves the induction
step.

(b) It suffices to show the following:
"Let al, ..., an E H be such that their images in HI (HO, H°) are topological generators,
then al, ... , an are topological generators of H itself" .
We will prove the above statement by induction on l (H). The cases l(H) = 0,1 are
trivial. Suppose 1 (H) = n > 1 and let M denote the closed subgroup of H generated by
al, ... , an. The induction hypothesis implies that the natural homomorphism M --~ 
is surjective. It suffices to show that M D Hn. Take a E H°, b E and consider the

element aba-lb-l E Hn. One can write a = miA, b = m2B with m2 E M and A, B E
Hn. Since Hn lies in the center of H°, one has = =

m1m2m-11m-12 E M.

Conclusions : The groups S(G), V (G) := G/L(G) and V (G)/(V (G)°, V (G)°) have the
same minimal number of topological generators. The theorems 3.1 and 3.4 can therefore
also be formulated with S(G) or V (G)/(V (G)°, V (G)O) instead of G I L( G). Moreover the
invariant d(G) in theorem 3.7 coincides with the minimal number of topological genera-
tors of G I L( G).
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