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THE MUMFORD-SHAH CONJECTURE

IN IMAGE PROCESSING

by Jean-Michel MOREL

Séminaire BOURBAKI

48eme annee, 1995-96, n° 813
Février 1996

0. INTRODUCTION

Natural, digital and perceptual images

When one looks directly at scenes from the natural or the human world, or at any
image (painting, photograph, drawing,...) representing such scenes, it is impossible
to avoid seeing in them structures, which in many cases can be identified with real

objects. These objects can be somehow concrete, as in photographs where we see
trees, roads, windows, people, etc., or abstract perceptual structures, as the ones
which appear in abstract paintings and can only be described in geometrical terms.
However, we know that the "visual information" arriving at our retina, far from being
structured, is a purely local information, for which a good model is given by digital
images.

From the mathematical (and engineering) viewpoint, digital images simply are
functions g(x), where x is a point of the image domain (the plane, a rectangle, ...)
and g(x) is a real number representing the "brightness" or "grey level" of the image
at point x. This is the unstructured datum with which engineers have to deal in

image analysis, robotics, etc. And it also is somehow the basic datum which arrives
at our retina. The question is: How do we pass from the unstructured digital image
to the structured perceptual one ? One of the attempts to formalize this question is
the so called segmentation problem. Segmenting a digital image means finding (by a
numerical algorithm) its homogeneous regions and its edges, or boundaries. Of course,
the homogeneous regions are supposed to correspond to meaningful parts of objects
in the real world, and the edges to their apparent contours. More than a thousand
algorithms have been proposed for segmenting images or detecting "edges". It is of



course impossible (and unnecessary) to review them all. We refer to the first part of
the book [MoS3] for a classification of these algorithms and their translation from a
discrete into a continuous framework (more adapted to the mathematical analysis) : It
is shown therein that most segmentation algorithms try to minimize, by several very
different procedures, one and the same segmentation energy. This energy measures

how smooth the regions are, how faithful the "analyzed image" to the original image
and the obtained "edges" to the image discontinuities are.

If we keep the three more meaningful terms of the functional, we obtain the
Mumford-Shah energy. Thus the Mumford-Shah variational model, although initially
proposed as one model among other ones, happens to somehow be the general
model of image segmentation, and all the other ones are variants, or algorithms
tending to minimize these variants. The Mumford-Shah model defines the segmen-
tation problem as a joint smoothingjedge detection problem: given an image g(x),
one seeks simultaneously a "piecewise smoothed image" u(x) with a set K of abrupt
discontinuities, the "edges" of g. Then the "best" segmentation of a given image is
obtained by minimizing the functional

The first term imposes that u is smooth outside the edges, the second that
the piecewise smooth image u(x) indeed approximates g(x) and the third that the

discontinuity set K has minimal length (and therefore in particular is as smooth as

possible). The model is minimal in the sense that removing one of the above three
terms would lead to a trivial solution. Needless to tell it: such a simple functional

cannot give a good account of the geometric intricacy of most natural images, nor

of our perception of them. What is expected from algorithms minimizing such a

functional is a sketchy, cartoon-like version of the image, and these algorithms will

give perceptually good results when the processed images somehow match this a

priori model: contrasted images with objects presenting piecewise smooth surfaces.

The success of algorithms minimizing the Mumford-Shah functional can be, however,

impressive (see the enclosed figure, due to an algorithm by A. Chambolle [Cham].)



Top right, the original image (GRECO). Bottom right, the
reconstructed datum u. Left, a superposition of the recon-
structed datum u and the edge set I( (in white).

This figure shows a low-energy Mumford and Shah segmentation. Various methods exist

to reach such low-energy states. The method used here by Antonin Chambolle [Chaml,2] is a
hybrid method: first the two-dimensional part of the energy is minimised (this results in the
minimisation of a convex functional). Then the main edges are detected by a standard method
(extrema of gradient). This set of edges Ai 1 being fixed, the two-dimensional energy is once

again minimised on n B Ai, leading to the detection of a set of finer edges, Ii 2, etc. On this

image, there are 50 such iterations.



The Mumford-Shah conjecture

In this conference, we deal with the mathematical consistency of the Mumford-
Shah model. Let us mention that the Mumford-Shah functional derives from a discrete

energy proposed by Geman and Geman [GG]. In this discrete framework, coming from
a Markov random field model, no questions about the geometry of minimizers can be
raised: Existence of minimizers is an obvious compactness theorem in finite dimension.
The decision had to be taken to translate it into a continuous framework where the

image is a function instead of being a matrix. This is a noticeable progress. In

particular, we can then ask whether segmentations exist which minimize the Mumford-
Shah energy, and are the boundaries thus obtained smooth ? Mumford and Shah

[MumSl] conjectured the existence of minimal segmentations made of a finite set of
C1,1 embedded curves. In addition, they predict the following local behaviour for the
possible endpoints and crossing of the curves.

1) Curves can only meet in a propeller-like configuration, that is, three curves
meet at their endpoints and make a 120° angle with each other.

2) "Crack tips", or free endpoints, where K locally looks like a half line and
(taking this half line to be the real positive one) u is written in polar coordinates as

This last possibility is well-known in the theory of fracturation of elastic media ([Kn],
[BM]), but remains quite puzzling : so far, we do not know whether the two preceding
configurations really are minimizers of the Mumford-Shah energy. (By the way, in
the following we shall spell "MS energy" or "MS conjecture" in order to gain some

space.) We shall give an account of how Bonnet [Bo] proves that a crack tip is a global
minimizer of the Mumford-Shah functional if we restrict ourselves to perturbations
preserving the connectedness of K.



Analogues of the MS conjecture have been stated in higher dimension by E. De

Giorgi [DeGi0], who aimed at modelling mixed energies arising in the physics of liquid
crystals. Unfortunately, there is, to our knowledge and in contrast with dimension

2, no exact statement of how the singularities of the set K should look like. Now,
the functional has some interest, particularly in dimension N = 3, for (e.g.) medical
images, and we shall therefore set in dimension N,

where HN-1 denotes the (N - 1)-dimensional Hausdorff measure.

So far, the MS conjecture has not been proved and only partial but meaningful
enough results are at hand. The problem has proved a difficult problem for the present
mathematical technique because of the subtle interaction of the two-dimensional term

(in u) and the one-dimensional term ?-~1(K). The same difficulty arises when one
wishes to define a computer program minimizing the energy and the mathematical

analysis somehow clarifies the numerical debate.

Edge sets and rectifiable sets

The first mathematical task is to correctly define the functional E(u, K). Indeed,
we cannot a priori impose that an edge set K minimizing E is made of a finite set
of curves: This precisely is what has to be proved. That situation is classical in

mathematical analysis and is dealt with by enlarging the "search space", that is, in
our case, by looking for a solution in a wider class of sets with finite length than just
finite sets of curves. This is done by defining the "length" of K as its one-dimensional
Hausdorff measure, ~ll (K), which is the most natural way of extending the concept
of length to non-smooth sets.

We call (N - I)-rectifiable any set with finite (N - I)-Hausdorff measure which
is contained in a countable family of (N - 1 )-dimensional Cl surfaces except for a
HN-1-negligible set. Clearly, if the MS conjecture is true, the "edge sets" sought
for in image processing must be 1-rectifiable, so that an extended and weakened
version of the MS conjecture states that the minimizers of E are rectifiable. From the

computational viewpoint, quantified estimates are highly desirable, because if (e.g.)
C1 minimizers are available but are too much ragged in many components, this will
in fact contradict the spirit of the conjecture, if not its letter. We shall list what is
known about the regularity of minimal segmentations.



1. WHAT HAS BEEN PROVED ABOUT THE MUMFORD-SHAH

CONJECTURE

In the statements which follow, the considered constants only depend (unless
otherwise stated) on 0 and IIgl/oo. All of the stated results will be given for a mini-
mizing set K defined up to a 1{N -I-negligible set. It is easily proved that the value
of E is not altered when we add or remove such a set from K.

e Rectifiability in arbitrary dimension N (Ambrosio [Ambl, 2, 3,4]) : u is a BV
function and K is the (rectifiable) discontinuity set of u.

e Uni f orm Lower density bound, N = 2, ( "Elimination property", Dal Maso,M.,
Solimini [DalMMS1, 2], generalized in arbitrary dimension in [CaLe, CaLel]) :
There exists a constant c such that for any disk D(x, r) centered on K,

e Closedness. K is a closed set (true in arbitrary dimension N). De Giorgi, Car-

riero, Leaci [DeGiCL]. This property can be viewed as a consequence of the lower

density bound.

. Concentration property, N = 2 (Dal Maso, M., Solimini [DalMMS1, 2]). There
exists for any c > 0 a constant such that every disk D(x, R) centered on K
contains a subdisk D(y, r) with

e Uni f orm projection property, N = 2 (Dibos, Koepfler [DibK, Dib, There

exists a constant ci such that for every square S = S (x, r) centered on K,

denoting by pi and p2 the orthogonal projections onto the sides of S,

. Uniform Rectifiability Property, N = 2 (David-Semmes For every ~ > 0

there exists a > 0 such that inside each disk D(x, R) centered on K there is a

curve, satisfying

This property is extended to arbitrary dimensions in [DaSe2].



. Quantified arcs, N = 2, (David There exists a constant c such that

any disk D(x, r) centered on K contains a subdisk D(x, p) with p > cr and

D(x, p) n K is a el,a curve.

. Proo f of the MS conjecture when the number of connected components of K is

constrained (Bonnet, ~Bo~ ) : All isolated connected components of K satisfy the

MS conjecture. In addition, K is C1°1 except at an exceptional set with zero

Hausdorff length.

e Regularity almost everywhere in arbitrary dimension (Ambrosio-Pallara [AP],
Ambrosio-Fusco-Pallara [AFP]) : Minimizers are except at an exceptional
set with zero 1-lN-l measure.

Notice that each one of the mentionned properties (except the two last ones)

implies the preceding ones, so that (e.g.) the uniform rectifiability property implies

the uniform projection, the uniform concentration and the uniform density bounds.

The uniform projection property implies the rectifiability by a founding result of

Besicovitch (see [MoS3]).

Two words about our strategy of exposition. Of course, we won’t be able to

do justice in 15 pages to some 400 pages of thick and concise proofs with very little

overlap. So we selected a series of fast arguments able to convey the conviction

that the above statements are true. We shall start with the Ambrosio-De Giorgi

approach, which takes advantage of the well-known rectifiability of the discontinuity
set of BV functions to manage a short-cut to the rectifiability of K. Then we shall

concentrate on the two-dimensional case and give the most salient arguments for all

of the announced results in dimension 2. For the uniform properties, we have used

the line of presentation of [MoS3]. We shall directly give the main arguments leading
to the David-Semmes uniform rectifiability property, since it implies all the preceding
ones. We extract arguments towards the regularity from Bonnet [Bo] rather than
David [Da]. Indeed, the Bonnet techniques yield a little less but are easier to explain
in a few sentences. Regarding the last mentionned regularity results by Ambrosio,
Fusco and Pallara in arbitrary dimension, we dedicate them much less space than

they really deserve, since they bring into the discussion valuable new arguments (as
e.g. the remarkable "Tilt Lemma" in [AP], adapted from Brakke [Br]). Now, as

a consolation for the reader, many of the techniques therein are a combination of

quantified estimates in the same line as what we shall prove in dimension 2 and blow-

up techniques similar to what we extract from Bonnet [Bo]. So the next few pages

will provide anyway some training for readers of [AP-AFP].



Some reduction of the problem

Since we start with the mathematical arguments, it will be convenient to give a

slightly simplified framework for working with the MS functional. First, it is always
assumed that the image is bounded, say 1. By an obvious troncature argu-

ment, this also implies that if u is a minimizer of the MS functional, then 1.

When we talk about u (resp K) as a minimizer of the MS functional E(u, K), this
of course means that u is obtained as the first item of a pair (u, K) minimizing the
functional (resp. K is the second item of a minimizing pair).

Next, we shall forget about 0, or, to be at ease, assume most of the time that

n = IRN. This will avoid us the tedious work of adapting interior estimates to the

boundary but raises some incertitude about the functional E(u, K), which may well
be infinite when we integrate over the full space ! i This is fixed by defining global
minimizers of E. We say that (u, K) globally minimizes E if no change which alters

(u, K) inside a ball B and leaves it unchanged outside can decrease the MS energy
restricted to B.

As a last and more surprising simplification, we shall assume that g = 0. Indeed,

we have already fixed that u and g are uniformly bounded. Since our only concern

is the regularity of K, we are dealing with very local phenomena. If we look at fine

scales, that is, consider the energy E (e.g. in dimension 2) inside a disk D = D(x, r)
with r - 0, we easily see that the term g)2  47rr2 is the "parent pauvre" of

the functional. Indeed, whenever x is centered at a point of interest, that is, on K,

the term K) scales (generically) as 2r. As for the first term, JD IDuI2,
we can invoke classical estimates near the boundary to say that it can scale like r2

only when K is quite flat in a neighborhood of x. In fact, it is actually proved in

[AF] that if it scales faster that r, then K is smooth at x. Thus, what we state is a

posteriori true. So the reader is invited to believe that in all of the work on the MS

conjecture, including the estimates to come, the (u - g)2 term has never the leading
part.

2. BV SPACES AND THE MUMFORD-SHAH FUNCTIONAL

We call space of functions with bounded variation, the set of integrable

functions whose distributional gradient Du is a bounded measure, i.e.  oo.

Let us recall some elements about the structure of BBV functions. If u is BV, we

consider the set K(u) of points at which u is essentially discontinuous. Then K(u)



is rectifiable, that is, contained in a countable family of C~ (N - 1)-dimensional
manifolds, except for a set with zero measure. As a consequence, a normal v

exists almost everywhere. In addition, at most points of K(u), the function u has
essential limits on both sides of K which we denote by u+ and u-. Then the gradient
of u can be split into three parts

where : Du is the distributional gradient, Vu is the part of Du which is absolutely
continuous with respect to the Lebesgue measure (and therefore is integrable). C(u)
is the so called Cantorian part of Du. In order to let this structure be of use for

the Mumford-Shah conjecture, it is enough to get rid of the Cantorian part : Indeed,
it is obvious that if K is rectifiable and has finite 1tN -1 Hausdorff measure, and

if u E Hl(f2 B K), then u is in BV. Conversely, De Giorgi [DeGiAm, DeGi0] has
defined what he calls "Special functions with Bounded Variation" (SBV-functions),
functions of BV for which C(u) = 0. SBV is proposed as the right "search space" for

finding minimizers of the MS functional. This proposition is justified by the following
theorem.

THEOREM 1 Thm 2.1]).- Let un E be a sequence of functions
such that -C  Un  C and

Then, there exists a subsequence (still denoted by un ) converging almost everywhere
to a function u E In addition, V’un converges weakly in L2(S~) to ~u and
E(u)  lim infn~~ E( Un)’

Sketch of Proof.- Let us start with the case of dimension N = 1. In that case,

K(un) simply is a set of points and its cardinality. Since the assumption
asserts that this cardinality is uniformly bounded, we can extract a subsequence such
that K(un) converges in the Hausdorff distance to a finite set of points K. It is then
easily checked by compactness in H1 that un converges strongly in to some

fonction u and Vun converges weakly in to Vu. Thus the discontinuity set
of u is contained in K and by Fatou’s lemma we get the last assertion of the theorem.

A "sclicing theorem" for SBV functions ([Amb2, Prop. 3]) permits to reduce
the N-dimensional case to the one-dimensional. Let us denote by ei,..., ei, .., eN the



canonical euclidian basis of IRN and by 7r the hyperplane orthogonal to ei. For every
x E 7ri, we consider the restriction ux(t) = u(x + tei) to the line parallel to ei and
passing by x. Let us assume for simplicity that ON = ~0,1~N. Then it is not difficult to
prove that a function u E satisfies u E if and only if its restriction

Ux E for almost every x E In addition, the N - I-dimensional area

of a rectifiable set K is easily recovered from the cardinalities of its slices by using
the reconstruction formula

where is the N -I-dimensional Lebesgue measure and v the normal to K. From

this and Fatou’s lemma, one deduces that ~lN-1(K(u))  
and the same for the Sobolev norm of un, so that E(u) appears to be lower discon-
tinuous.

3. PROOF OF THE UNIFORM RECTIFIABILITY

We shall now give sketches of the main arguments which can be used for giving

shape to the conjecture. We restrict ourselves to the case of dimension 2. Let us begin
with a formula which relates the optimality of a minimizing segmentation (u, K) to

the shape of K. In what follows, we denote the first term of the MS functional by

ENERGY JUMP LEMMA [Kn].2014 Let K be a rectifiable subset of 03A9. Let u minimize
and v be the minimum of the MS energy associated with an empty segmentation,
= f~ Denote by an the derivative of v in the direction normal to K.

Then

As a consequence, if (u, K) is an optimal segmentation, then

Sketch of proof.- This theorem is an obvious consequence of the Green formula,

together with the consideration that an is zero on K and 8Q and v is continuous so



that v+ - v- = 0 on K. The use of Green formula when the boundary of a domain
is rectifiable is justified in [DalMMS2]. The last announced inequality is obtained
because v is no successful competitor to u.

All regularity results for the MS conjecture start with more or less sophisticated
excision arguments. Let us begin with the most basic one.

EXCISION LEMMA.- If (u, K(u)) minimizes E, then for every disk D = D(x, r),

Proof. If this inequality is false, we can build a competitor (v, (K B D) U aD), with
v = u outside D, v = 0 inside D. In other terms, we add to K a circle, which

permits to put to zero the MS energy inside the disk, and we obtain a lower energy,

contradicting the minimality of (u, K).

We shall now see how to obtain information on the geometric behaviour of K
with the simple use of both preceding lemmas. The next lemma states roughly that
each part of K must be large enough (or close enough to another part) in order to
survive. When 0 = IR2, this also implies that K is unbounded.

ELIMINATION LEMMA [DaIMMSl,2].- There is a constant M > 0 such that for
any disk D(x, R) contained in S~, if R > Mr and (D(x, R) ~ D(x, r)) n K = 0, then
K n D(x, r) = ~.



In this lemma and in the remainder of this conference, we denote by C any
constant which only depends on the image domain St. The Elimination Lemma reads
in the theory of fracturation of homogeneous elastic media as "a fracture cannot be
too small". If the model is correct, then the fracturation process must be sudden, at
least at its beginning ([Kn]).

Sketch of proof.- Let r ~ p  R be a radius to be adequately fixed. By the Energy
Jump Lemma, we know that xl (K)  ~ ~c- ) an ~, where v is a continuous
function such that v = u outside D(x, p) and v minimizes I (v) inside D(x, p). Let us
estimate both (u+ - u- ) and on K. By Maximum Principle, we have

for every disk 8D(x, r’) containing K. Now, using the EXCISION LEMMA, we
have IDul2 ::; 41rr and we can therefore select some r  r’  2r such that

C. By integrating along this circle and using Holder inequality, we
obtain that for y E K,

Let us now proceed to estimate the other term of the ENERGY JUMP LEMMA,
that is, an (y) ~ for y E K. By the same argument which yields r’, we can find p such
that -~  p  R and C. Since v = u on 8D(x,p), the same estimate
is valid for the tangential derivative of v on 8D(x, p). By standard estimates on the
Poisson kernel, we then have C(p - IXI)-2 1 for any point y inside D(x, p).
Thus, for y using R > Mr, we get

Summarizing the obtained inequalities, we see that for y E K,

Integrating this inequality over KnD(x, r) and using the ENERGY JUMP LEMMA,
we finally obtain



which implies ~1 (D(x, r)) = 0 if M is large enough.

It is worth noticing that the preceding argument can be sharpened so as to

yield more and more uniform density estimates on the geometry of K. The uniform

projection property, the concentration property and the uniform rectifiability property
can be obtained in the same line (see [MoS3] for a unified presentation). Let us give a
sketch of proof for the uniform rectifiability property, which anyway implies all of the
other ones. We begin with a lemma which we obtain by sharpening the arguments of

the previous proof.

SMALL OSCILLATION COVERING LEMMA.- There is a function C(v) > 0 such
that whenever we can find a covering of K n D(x, R) by simply connected open sets
cvi, i E I such that aco2 does not meet K, the c~2 are not redundant in the sense that

and the oscillation of u on awi is uniformly controlled,

then C(v)R implies n D(x, 2 )) = 0.

Sketch of proof.- Of course, we must think of v as rather large and C(v), which
measures how "thin" the covering is, as a small enough constant. We shall take a

simplifying assumption, which is inessential but without which the proof which follows



would be significantly longer : We assume that all of the are at a distance to
8D(R) larger than cR for some small fixed constant c. In reality, "most" of the points
in a disk are far from its boundary so that this simplifying assumption can be removed,
or rather replaced, by a mean value argument on R. Under this slightly stronger
assumption, we shall actually prove more, that is D(x, R)) = 0 when C(v)
is small enough. The ENERGY JUMP LEMMA and a straightforward adaptation of
the bounds on u+ - u- and an computed in the proof of the ELIMINATION LEMMA
yield

Thus, if C(v) is small enough, we see that 1{,l(K n D(x, R)) = 0.
Of course, the statement of the SMALL OSCILLATION COVERING LEMMA

must be reversed, and it tells us that if K n D(x, 2 ) ~ 0, then no small oscillation
covering can be built. This essentially means that, in a quantifiable way, K is not too
much spread out. Let us take an example.

DEFINITION (QUANTIFIED NONCONNECTEDNESS).- We say that K satifies
the quantified nonconnectedness property in a disk D(x, R) in correspondence of two
constants a > 0 and ~ > 0 if for every disk D(y, r) c D(x, R) with r > aR and
for every rectifiable curve 03B3 connecting the circles 8D(y, 2 ) and 8D(y, r), one has
xl (1’ ~ K) >_ ~r.

We wish now to explain why the quantified nonconnectedness implies the exis-
tence of a small oscillation covering. This is the main argument in [DaSel], based on
an elegant use of the coarea formula.



LEMMA Assume that K satisfies the quantified nonconnectedness property
in a disk D(x, R). Then for every y E K and r > aR, there exists a simply connected
open set w such that ~ 03C9 ~ D(y, r), whose boundary 8w does not meet K and
satisfies

Sketch of proof.- We define a geodesic distance 8(x) in the closed disk D = D(y, r)
as the infimum of the values of ?~1 (~y ~ K) extended to all the rectifiable curves

contained in D and connecting 8D to x. Obviously, 8 is a Lipschitz function, is zero
on aD and satisfies by assumption ~(:r) > cr if x E D(y, ~). By the coarea formula,
considering the slicing of the disk made by the isolevel sets b-1 (t), we can assert that
for every integrable function f > 0 on the disk,

Applying this to f = IDul and noting that by Holder inequality and the EXCISION
LEMMA, we get

So by a mean value argument, we see that for most of the t E [0, cr] we have, for a
large enough constant C,



In the same way, since D)  Cr, we can select, by the coarea formula again,
t among the preceding ones such that

Proof of the quantified rectifiability property.- We have now all ingredients
to prove the David-Semmes result. We first notice that if K does not satisfy the
quantified rectifiability property, then we can find c > 0 such that for every a > 0,
there is a disk D(x, R) centered on K which satisfies the Quantified Nonconnectedness
Property. Then the previous David-Semmes Lemma asserts that we can surround
every x in K n D (R) by a set w(x) whose perimeter is proportional to § and therefore
to QgR. In addition, on the boundary of w( x) the oscillation of u is controlled by a
constant v = f . Using a Besicovich covering lemma, it is easy to extract from the
covering x E K n D(R)~ a nonredundant covering (cvi), i E I in the sense of the
Small Oscillation Covering Lemma. Since a can be arbitrarily small for fixed e, we see
that the perimeters of the of order can be chosen to be arbitrarily small with
respect to R. So we conclude by the SMALL OSCILLATION COVERING LEMMA
that D(x, 2 ) ~ K is empty, which contradicts the assumption that it is centered on
K.

4. CLASSIFICATION OF CONNECTED GLOBAL MINIMIZERS

We now give the elements of the Bonnet proof that all isolated connected compo-
nents of K indeed answer the Mumford-Shah conjecture. From now on, we call global
minimizers of the MS functional pairs (u, K) whose energy cannot be decreased by
any modification inside a disk which preserves the connected components of K

outside the disk. This is a less restrictive notion of global minimizer than the one
introduced at the beginning of this conference. The central new estimate in [Bo] is

the following monotonicity formula, inspired from [ACF].

MONOTONICITY FORMULA ((Bo~).- Let (u, K) be a global minimizer of E and
set cp( r) = If K is connected, then r  ~~r~ is a nondecreasing

function of r. If ‘~~r~ is constant, then in some polar coordinates (r, 8) we have



and K is the half axis {O = 0~. In addition, we have either C = 0 or fl,
which corresponds to = 0 or ‘°r -1.

The proof, which we omit, combines the ENERGY JUMP LEMMA and a tricky
combination of elementary inequalities. The value of the constant C is given in [Kn]
and is computed by doing a first variation in E when we propagate the "crack tip"
in a straight line.

CLASSIFICATION THEOREM ([Bo]).- If (u, K) is a global minimizer (for per-
turbations preserving connectedness) such that K is connected, then is either

identically equal to 0 or to 1 and (u, K) is one of the following:
(i) K is empty and u is constant.

(ii) K is a straight line defining two half-planes and u is constant on each half-
plane.

(iii) K is the union of three half lines with angle 3 and u is constant on each
sector.

(iv) (Crack tip. ) In a polar set of coordinates, u(r,8) = Cr1 2cos03B8 2 and K is the

half axis 0 = 0. In addition, = fl.
Sketch of proof.- Let us first define a blow-up technique. We set

The real function is piecewise constant on the complementary of K. It is chosen
in order to keep ue bounded as c - oo. Then it is easily proved that a subsequence
of Kg) converges to a global minimizer uo , Ko of E. More precisely, Ko in

the Hausdorff metric, Ug - uo strongly in Hloc(lR2 B Ko). This is easily obtained as a
consequence of the Concentration Property stated in the introduction, which implies
that the Hausdorff length is lower semicontinuous when restricted to minimizers of

E. The main argument is to show that is constant for a properly chosen origin,

which is obtained by studying the limits or o ~°~r~ . We define a "blow-down"
by

where l -~ +00. We know that a blow-up subsequence converges to a global mini-
mizer (uo, Ko) and, by the same argument, a blow-in sequence converges to a global



minimizer It is immediately deduced that, setting = D(r)|Du0 |2
and = D(r)|Du~ |2,

By the MONOTONICITY FORMULA LEMMA, we know then that limr-o and

take either the value 0 or the value l. We only have two cases to consider

Case 1 : We have ‘°~r~ = 0. By the monotonicity formula we then
have 0. Thus u is a constant in any connected component of 1R2 B K and K
appears to be a simple minimizer of ?~1 (K) under the connectedness contraint. It

is well-known, and anyway easy to show, (see [MumS2] for all details) that then K
satisfies one of the situations (i), (ii) or (iii) of the theorem.

Case 2 : We have =1. Then if also limr~o =1, we conclude,

again by the MONOTONICITY FORMULA LEMMA, that we are in the case (iv) of

the theorem. Then it only remains to rule out the case where limr--+oo ‘~rr~ = 1 and
‘~~r~ = 0. This is done by proving by contradicition that there exists a point

xo such that if we perform a blow-down with xo as origin, then limr-o ~~r~ =1. We
shall not detail this argument, which uses "cut and paste" arguments on K and of

course the connectedness.

In order to complete this review, we would have liked to explain how further

regularity on the edge set is obtained. Let us just point out that the process leading
to regularity proofs is heuristically contained in the formula given in [MumS2],

where it is assumed that K locally is a C2 embedded curve, curv(K) denotes the

curvature of K, u+ and u- the limits of u on both sides of K. The formula is

easily obtained by taking the first variation of E when we perturb K sidewise. From

this formula, it is easily deduced that if u is smooth enough on the complementary
of K, then so is K and conversely. The problem is : how to start the bootstrap

argument ? Weak versions of the formula must be found to this effect. A first

possibility, developped in David [Da] is to first find a quantified "close-the-holes"

argument which shows that at almost points, K is an embedded curve. Once this is

obtained, the bootstrap starts by proving that K must if fact be a chord arc curve.

Then estimates on Du are obtained by conformal mapping on both sides of K. In



the works of Ambrosio-Pallara, Ambrosio-Fusco-Pallara and Bonnet, the "close the

holes" argument is obtained by a blow-up argument.

CONCLUSION

Although much evidence in favour of the MS conjecture has been gathered, it is
not clear how far we are from a conclusive argument. Let us give a small list of still

puzzling problems. The first one, raised in [MumS2], also of interest for fracturation
theory, is the question of whether a crack tip is a global minimizer (without connect-
edness constraint). In some extent, the Bonnet arguments seem to indicate that this

problem is of the same level of difficulty as the conjecture itself.
Mumford and Shah [MumS2] conjecture that some crack tips might be Cl, but

not Cl at their endpoint. They give an example apparently supporting this view. If
this happens to be true, we shall deduce that the analogy between the segmentation
problem and fracturation theory only is very superficial : because this will imply that
the MS energy is not adequate for the modelling of quasi static crack propagation

( ~Kn~ ) .
Let us finally note that the higher dimension functional is wanting precise con-

jectures about the shape of K, in particular for the shape of possible "cracks".
Me must apologize not to have reviewed works on variants of the MS functional.

Of much interest for applications in image processing is the case where we enforce
u to be piecewise constant on each connected components : see [MumS2], [MoS2,3]
for a proof of the MS conjecture in this particular case and [MaTa] for existence

and regularity results in higher dimensions. [BZ] proposes variants of the MS func-
tional which improve its performance in image analysis and an interesting work on
its mathematical properties is [CaLT].
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