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THE SEIBERG-WITTEN INVARIANTS OF

SYMPLECTIC FOUR-MANIFOLDS

[after C. H. Taubes]

by Dieter KOTSCHICK

Seminaire Bourbaki

48eme annee, 1995-96, n° 812
Fevrier 1996

Over the last ten years, the applications of gauge theory to four-dimensional differen-
tial topology and the theory of pseudo-holomorphic curves in symplectic geometry have
developed in parallel. The techniques used in the two theories were strikingly similar, but
the results were unrelated. Nevertheless, there was speculation that Donaldson’s invari-
ants constructed using the moduli spaces of anti-self-dual Yang-Mills connections should
be non-trivial for symplectic manifolds. Donaldson proved this for Kahler manifolds, but
his arguments did not seem to have a viable extension to arbitrary symplectic manifolds.
While it has been known for decades that the class of symplectic four-manifolds is

strictly larger than that of Kahler surfaces, it seemed possible until 1992 that there would
only be a few symplectic non-Kahler four-manifolds, and perhaps no simply connected
ones. This changed drastically when Gompf introduced his symplectic sum construction
and used it to show that there are slews of symplectic four-manifolds which cannot be
Kahler, including many simply connected ones, and including examples which realize
all finitely presentable groups as fundamental groups. Certain properties of Gompf’s
examples, and the partial calculations of Donaldson invariants that were carried out for
a few of them, suggested that symplectic manifolds might be the building blocks for all .

simply connected smooth four-manifolds.
These speculations set the stage for the work of Taubes that we report on. Immediately

after the introduction of the Seiberg-Witten invariants, which are close cousins of the
Donaldson invariants, Taubes [18] proved that they are non-trivial for all symplectic
four-manifolds. This implies some topological constraints which one expected to prove
using Donaldson invariants. For example, if a symplectic four-manifold splits as a smooth
connected sum, then one of the summands must have a negative definite intersection form.
But there are also geometric consequences which one did not expect from Donaldson
theory, for example the conclusion that a symplectic four-manifold admitting a metric of
positive scalar curvature must have an almost definite intersection form.

The author is grateful to all the people who have contributed to his understanding of this subject -
such as it is; particularly Peter Kronheimer, Tom Mrowka and, last but not least, Cliff Taubes.



Easy properties of the Seiberg-Witten invariants, together with this first result of

Taubes, imply strong consequences for the classification of symplectic structures. For

example, on a four-manifold with bi = 0 and b2 > 1 there are at most finitely many
homotopy classes of almost complex structures underlying symplectic structures, and in
some cases this finiteness result can be sharpened to determine exactly which almost

complex structures come from symplectic ones.
More recently, Taubes [21, 22, 23, 24] has shown that the Seiberg-Witten invariants of

symplectic four-manifolds, suitably normalized, coincide with certain Gromov invariants
defined by counting pseudo-holomorphic curves. This is an extremely surprising and far-

reaching result, the consequences of which have not yet been fully worked out. Assuming
the conjectured equivalence of the Seiberg-Witten invariants and the Donaldson invari-

ants, Taubes’s result ties up and explains the parallel developments of Yang-Mills theory
and the theory of pseudo-holomorphic curves.
We will discuss here only one part of the equivalence of the Seiberg-Witten and the

Gromov invariants, namely the fact that every non-trivial Seiberg-Witten invariant of
a symplectic four-manifold leads to the existence of a pseudo-holomorphic curve in a

specific homology class [21, 22]. This result has two kinds of consequences. On the

one hand, the topological constraints on symplectic four-manifolds can be strengthened,
and the place of symplectic manifolds in four-dimensional differential topology can be
elucidated further than was possible using Taubes’s first theorem only. For example,
we will see that many minimal symplectic four-manifolds do not admit any non-trivial
connected sum decompositions at all. On the other hand, there are consequences in

symplectic geometry, without reference to differential topology. For example, Taubes’s
existence theorem for pseudo-holomorphic curves combined with a result of Gromov [10]
shows that the symplectic structure of the complex projective plane Cp2 is essentially
unique.

1. REVIEW OF THE SEIBERG-WITTEN INVARIANTS

In this section we recall the definition of the Seiberg-Witten invariants and introduce
our notation.

Consider a smooth closed oriented 4-manifold X equipped with a Riemannian metric

g. The metric and orientation define a Hodge star operator

by setting
= (a, 

where on the right-hand-side we use the natural inner product induced by g. The *

operator is an involution on 02, and we denote by S~~ the d=l eigenspaces. Accordingly
we split each 2-form into its self-dual and anti-self-dual parts: a = a+ + a_ .



Applying this splitting to the harmonic 2-forms, we obtain a direct sum decomposition
of H2(X, R) into maximal subspaces on which the cup product is positive respectively
negative definite. The dimensions of these subspaces are denoted by bt and b2 .
The group SO(4) x admits a unique non-trivial double cover

for which the preimage of each factor is connected. In fact,

Let P be the orthonormal frame bundle of (X, g) and suppose Q is a principal C/(l) bundle
over X with w2(X) (mod 2). A Spinc structure on X with auxiliary bundle Q
is a double covering of P x Q by a principal SpinC(4)-bundle P, such that the covering
map is 03C1c-equivariant for the principal bundle actionsl.

If one varies the metric g continuously, the frame bundle changes continuously. As

the space of Riemannian metrics is path-connected and contractible, one can canonically
identify the Spin~ structures defined with respect to different metrics. The equivalence
classes of Spin~ structures on X form a principal homogeneous space SpinC(X) for the
group H2(X, 7~).

Associated with every metric g and Spin~ structure P there are bundles Vt of spinors
of positive and negative chirality. These are the U(2)-bundles associated with the pro-
jections Spin~(4) - U(2) corrsponding to the two SU(2) factors in (1). We think of the
spinor bundles as complex rank 2 vector bundles equipped with Hermitian metrics. The
determinant bundle detc (Vt ) = L is the Hermitian line bundle associated with Q.

Every connection A on Q, together with the Levi-Civita connection of P, induces a
unique connection on P. The corresponding covariant derivatives on Vt are denoted by
VA. As the bundles Vt are bundles of spinors, we can follow the covariant derivative by
Clifford multiplication to obtain the two Dirac operators

They are formal L2 adjoints of each other.
The Seiberg-Witten equations are a family of pairs of coupled equations in which the

variables are a connection A on Q and a section § of V+, and the parameter in the
equations is a self-dual 2-form 1J on X with purely imaginary values. We denote by

the bundle map induced by the action of the self-dual 2-forms by Clifford multiplication
on V+. Further, we denote by

1 Spin~ structures always exist on 4-manifolds, because the second Stiefel-Whitney class w2 (X ) always
lifts to an integral class.



the bundle map induced by the U(2)-equivariant map

The Seiberg-Witten equations are:

We shall refer to these equations as the Dirac and curvature equations respectively.
To see that the curvature equation makes sense, observe that the Lie algebra of ~7(1) is

iR, so the curvature FA of A is a purely imaginary 2-form. Its self-dual part is mapped
to the trace-less endomorphisms of V+ by p. Moreover, the natural real structure on

Endc(C2) is that of H oR C, so p~l~(~, ~) is also a purely imaginary self-dual 2-form.
A configuration (A, ~) is called reducible if (~ = 0, and is called irreducible otherwise.
The gauge group 9 = Map(X, ~7(1)) = Aut(Q) acts on pairs (A, ~) by

and on ~) E x r(v ) by

FACT l.l. - The Seiberg-Witten equations are equivariant with respect to this action.
The moduli space of solutions modulo gauge equivalence is denoted by M . It is a subvariety
of B, the space of configurations (A, ~) modulo the action of g.

FACT 1.2 ([14]). - For every fixed g and q, the moduli space M is compact.

Proof. The Weitzenböck formula2 for the Dirac operator is

where s is the scalar curvature function of g. Using this and the equations, the max-
imum principle gives a C° bound on § in terms of sand ?~, for every solution of the

Seiberg-Witten equations for (g, r~). Compactness follows from this a priori estimate

using standard arguments (Sobolev embedding and multiplication theorems, bootstrap
using the equations). D

FACT 1.3. - When considered on ~3, the Seiberg-Witten equations are elliptic.

One can thus apply the usual techniques of non-linear analysis to study M. For

example, the Sard-Smale theorem implies:

2The sign of the curvature term is wrong in [14J, and in [5]. Therefore, to get compactness,
those papers change the sign of Q(~, ~) in the curvature equation (3).



FACT 1.4. - If b2 (X) > 0, then for a generic metric g and a generic g-self-dual form
yy, the moduli space .M is either empty, or is a smooth submanifold of B*, the space of
gauge equivalence classes of irreducible configurations.

Smoothness means that M is cut out transversely by the equations. When M is non-
empty and smooth, its dimension is given by the Fredholm index of the linearized equa-
tions. This index can be calculated from the Atiyah-Singer index theorem:

FACT 1.5. - If M is non-empty and smooth, then it has dimension

where X and 03C3 denote the Euler characteristic and signature.

FACT 1.6. - If b2 (X) > 0, then for a generic metric g and a generic g-self-dual form r~,
there are only finitely many Spin~ structures for which the moduli space M is non-empty.

Proof. Suppose that for a given Spin~ structure there is a solution of the Seiberg-Witten
equation. Using the a priori estimate obtained in the proof of the compactness of the
moduli space, the Chern-Weil formula for (X~} and the assumption d(Q) > 0, one
sees that there are only finitely many choices for Cl (L) = Ci(Q). For each fixed Q, there
are only finitely many P. D

FACT 1.7. - The moduli space M is orientable, and an orientation is specified by choos-
ing a homology orientation of X, i. e., an orientation aX of the line

where H+(X, R) denotes a maximal positive definite subspace of for the cup
product.

Varying the choice of a maximal positive definite subspace does not affect the definition
of ax, as the space of maximal positive definite subspaces is connected and contractible.

Putting all these properties together we have a definition of the Seiberg-Witten in-
variants SWX,03B1X, by sending a Spinc structure to the fundamental homology class of
Mi

THEOREM 1.8. - Let X be a smooth closed oriented 4-manifold with 62 (X) > 1; and
let aX be a homology orientation. Then

is a diffeomorphism invariant of X .
More precisely, if f i X - Y is an omentation-preserving diffeomorphism, then



Proof. By Fact 1.4, for a generic choice of (g, q) the moduli space M is a smooth sub-
manifold of B* (possibly empty). As it is also compact and oriented, it has a fundamental
class. The assumption that b2hX) > 1 ensures that the space of generic pairs (g, q)
is path-connected. The parametrised moduli space of solutions for a generic path con-

necting two generic choices provides a homology between the fundamental classes of the
moduli spaces corresponding to those two choices. Thus [M] is independent of choices
and depends only on (X, ~X) and on the Spin~ structure under consideration.
To understand the diffeomorphism invariance, notice that Bx has the weak homotopy

type of a classifying space for the gauge group, which is a homotopy invariant of X. (And
is independent of the Spin~ structure.) Thus f, like every homotopy equivalence, induces
an isomorphism between Z) and 7~). The map SW commutes with f * as
stated because one can pull back to X a generic pair (g, ?~) used to calculate an invariant
of Y. This then gives the same calculation on X. 0

FACT 1.9. - The description of ,~X as a classifying space for the gauge group shows that
it is weakly homotopy equivalent to x J(X ), where J(X ) = Z) is

the Jacobean torus of X.

Fact 1.6 implies:

LEMMA 1.10. - For every smooth closed oriented 4-manifold there are at most finitely
many Spin~ structures with a non-trivial Seiberg-Witten invariant.

Here is a general vanishing theorem for the Seiberg-Witten invariants.

THEOREM 1.11 (Witten [28]). - Let X be a smooth closed oriented 4-manifold with b2 >
1. If X admits a metric of positive scalar curvature, or if it admits a smooth connected
sum decomposition X = Xl #X2 with b2 (Xi ) > 0 for both i = 1, 2, then is the

zero map.

Proof. If X admits a metric g of positive scalar curvature, then the Weitzenböck for-
mula (4) shows that all solutions to the Seiberg-Witten equations with yy = 0 must be
reducible. But s > 0 is an open condition in the space of metrics, so we may assume that

g is generic and there are no reducible solutions, cf. Fact 1.4.

The proof of the vanishing theorem for connected sums is completely analogous to, but

simpler than, the corresponding result for Donaldson invariants. See [5]. D

2. THE SEIBERG-WITTEN EQUATIONS ON AN ALMOST COMPLEX
MANIFOLD

2.1. Arbitrary almost complex manifolds

Let X be a smooth oriented 4-manifold equipped with an almost complex structure
J. We consider a J-invariant Riemannian metric g, called an almost Hermitian metric.



Define the fundamental 2-form 03C9 corresponding to J and g by

This is a J-invariant g-self-rlual form of length B/2. Any two elements of the triple
(J, g, w) determine the third one. For example, one can recover J from g and w because
for every 1-form a we have

We extend J complex linearly to TX and T*X and split these bundles into
the eigenbundles. For example, we write

and decompose every 1-form accordingly as a = + This splitting induces a
decomposition of all the complex differential forms into types, just like in the case of
complex manifolds. In particular, we obtain:

which corresponds to the real decomposition A~. = R C where K = A2~° is the
canonical bundle of the almost complex structure.

Like in the case of complex manifolds, one defines operators 8, 8 by setting 8a =
(da)p+l,q and 9a = for a form a E AP,q. In general, d =1= 8 C 9, as da can also
have components of type (p -1, q + 2) and ( p + 2, q -1 ), denoted Na and Na respectively.
The operator N is of order zero and can be identified with the Nijenhuis tensor of J; it
vanishes if and only if J is integrable. Observe that d2 = 0 does not imply 9~ = 0, unless
J is integrable. For example, on functions we have

An almost complex structure defines a homotopy class of reductions of the structure
group of TX to U(2). The map i x det: (/(2) -~ SO(4) x U(I) lifts to Spin~(4), which
implies:

FACT 2.1. - An almost complex manifold has a canonical Spinc structure with L =
= detc(TX, J) = K-1= Ao,2.

This is given concretely by setting = A 0,0 e A 0,2 and = and by defining
Clifford multiplication by a 1-form a on (a, /3) E C AO,2) by

and on 1/’ E r(A 0,1) by

Using this Spin~ structure defined by the almost complex structure as a reference, we
identify SpinC(X) = H2(X, Z) . The spinor bundles for the Spin~ structure corresponding



to E are given by Q9 E = E C (E Q9 K-1) and by Q9 E = E. Thus we write
the Seiberg-Witten invariant as a map

This map is no longer diffeomorphism invariant, because an orientation-preserving self-
diffeomorphism of X will not usually fix the given almost complex structure, or its asso-
ciated Spin~ structure. Compare Theorem 1.8.

If § is a spinor with components (a, (3) with respect to the splitting V+~ _ 0 AO,2,
then 7(~, ~) is given by

Applying p-1 and comparing this formula with the decomposition of A~_ given in (6), we
find that the curvature equation for a connection A on K-1 and a pair (a, /3) E 
is equivalent to the following two equations:

where in the first equation FA denotes the part of FA parallel to Lj, which is the same as
the (1,1) component of Fi.

Fix a connection Ao on A 0,2 and consider the connection induced on by lifting
from SO(4) x to SpinC(4), as explained in Section 1.
We obtain a connection on V+(E) = (g) E as the product of the connection induced

by Ao with some connection B on E. We often think of B as one of the variables
in the Seiberg-Witten equations, instead of thinking of the corresponding connection
A = Ao @ B2 on the determinant L = K-1 @ E2. Notice that if we take E = 0, then the
device of twisting by B is just the same as varying the connection for the canonical Spin~
structure.

In the twisted case, we again decompose § = (a, ,Q), but now the forms a and Q take
values in E. However, the formula for cr((~, ~) is still true for the bundle-valued forms.

FACT 2.2. - For A = Ao @ B2 and ~ _ (a, ,Q), the curvature equation (3) is equivalent
to the following two equations:

We will not write out the Dirac equation on an arbitrary almost complex manifold.
Notice however that, by definition, the symbol of the Dirac operator is the same as the



symbol of the Dolbeault operator + 9*), which means that the two differ only by a
term of order zero. This zero order term can be written down explicitely, see [7].

2.2. Symplectic manifolds

The fundamental two-form w of an almost Hermitian metric is always non-degenerate.
Thus, if it is also closed, then it is a symplectic form. Conversely, given a symplectic
structure on a manifold X, it determines a homotopy class of almost complex structures
J. In this homotopy class we can select a J which makes X almost Hermitian with
the metric defined by (5). We say that such an almost complex structure calibrates the
symplectic structure.

DEFINITION 2.3. - An almost Hermitian structure is called almost Kähler if dw = 0.

All the symplectic manifolds we consider are assumed to be equipped with almost
Kahler metrics.

It is important in the proof of Taubes’s theorems that on an almost Kahler manifold a
number of identities involving the natural differential operators derived from the metric
hold, just like in the case of Kahler manifolds. For example, in Weil’s book [27], the
"Kahler identities" are proved for almost Kahler manifolds, although in the more recent
literature this is not usually done. An exception is Donaldson’s article [4], which contains
the rudiments of harmonic theory on almost Kahler manifolds.

Here is a useful Weitzenbock formula familiar in the Kahler case:

LEMMA 2.4. - Let s be a smooth section of a Hermitian line bundle E over an almost
Kahler manifold X. Let B be a Hermitian connection on E, and let 8B be the 8 operator
of the almost Kahler structure coupled to B. Then

where A denotes the contraction with the fundamental 2-form co.

Proof. By the definition of a, we have



Formula (12) will be applied to a in the decomposition § = (a, ~i) discussed in the
previous subsection. We shall also need a Weitzenbock formula for /3.
On the line bundle A 0,2 there is a Hermitian connection Ai, unique up to gauge equiv-

alence, such that = a. Twisting by a Hermitian line bundle E with connection B,
we have ~A°®B = aB. On (0, 2) forms the Kahler identities give

On the other hand, we can calculate 8*8{3 like in the proof of the previous Lemma. We
obtain:

LEMMA 2.5. - Let Q be a (0,2) form with values in a Hermitian line bundle E with
connection B. Then:

We remarked in the previous subsection that the Dirac operator for the canonical 6pm"
structure of an almost Hermitian manifold differs from its Dolbeault operator only by a
term of order zero. In the almost Kahler case, this zero order term vanishes for some
choice of connection Ao on A 0,2. Again, this is familiar in the Kahler case, where Ao is the
holomorphic connection induced by the Levi-Civita connection. One can always choose
local holomorphic coordinates in which the Kahler metric is standard up to second order,
and thus the equality of the two operators must be true because it is true on flat space.

In general, the zero order operator which is the difference between the Dirac and Dol-
beault operators is a bundle homomorphism V+ -~ ~/., i.e., a section of

The deviation of the almost Kahler metric from being Kahler is measured by the torsion
where V is the connection induced on A~. by the Levi-Civita connection. As w has

constant length, Vw is orthogonal to cv, thus E A~ @ (A2,° ® A 0,2). Decomposing the
tensor product we find

where A is a U(2)-module not containing any (Notice that because X is 4-

dimensional, A3,0 = AO,3 = 0.) Now dw = 0 is equivalent to Vw having no component
which can act as a homomorphism from (A 1 Q9 C) Q9 to A O,odd. Thus, the Dolbeault
and Dirac operators for the canonical Spin~ structure are equal for a connection Ao for
which the difference is a linear function of the torsion Vw. This will still be true after

twisting by a line bundle E with connection B, because the space of homomorphisms
H om(V+, V ) is canonically the same for all Spin~ structures.
To find the connection Ao we can proceed as follows. The identification = 

A 0,2 can be made explicit by fixing a section Uo E of constant length, and then
letting the 0- and (0,2)-forms act on uo by Clifford multiplication. We fix Ao (up to gauge



equivalence) by requiring that ~A0u0 ~ 1 Q9 A 0,2. Then applying the Dirac operator
D Ao to the equation implies, because v is self-dual harmonic, that

= 0, which in turn implies, via the Leibnitz rule, that DAo (auo) = 28a. Similarly,
D Ao{3 = 28*,Q.
We have shown that the first Seiberg-Witten equation, the Dirac equation (3), can be

written as

3. TAUBES’S THEOREMS

3.1. Symplectic manifolds with bf > 1

Following Taubes, we shall calculate Seiberg-Witten invariants of symplectic 4-manifolds
using almost Kahler metrics. But first, we make a remark following Witten [28] :
FACT 3.1. - In the notation of the previous section, E).

Proof. The Seiberg-Witten equations with r~ = 0 are invariant under the involution E H
K ® E-1 using (B, aa ~) H 1 ® B-1, - Q, a).

In the Kahler case this is a manifestation of Serre duality. 0

The following theorem is a combination of theorems which first appeared in [18] and [19],
with a more complicated proof. The argument below (in different notation) was sketched
by Taubes in [20], and it is also implicit in his later paper [21]. However, our presentation
is closer to [5].
THEOREM 3.2 (Taubes). - Let X be a closed symplectic 4-manifold with b2 (X) > l,
and let K be its canonical class. Then SWX,03B1X (0) and SWX,03B1X (K) are both equal to
~l E 7~).

Moreover, if E is any class with (E) ~ 0, then

with equality if and only if E = 0 or E = K.

Proof. Using the symmetry property above, it suffices to prove SWX,03B1X (0) = ±1, and
0  E . [w] for all E with a non-trivial invariant, together with the characterisation of
equality in this case.
We consider the Seiberg-Witten equations for the canonical Spin~ structure twisted by

E, and we choose ~ such that the equations become



with r E JR a constant.

Notice that if E = 0 and r > 0, then these equations always admit a solution with B
the trivial connection, j3 = 0 and a a constant section of squared length r. The main
point of the proof of the theorem is to show that this is the only solution if ci(E). [w] = 0.

If E has a non-trivial Seiberg-Witten invariant, then for all metrics and all choices
of 77 (here: all choices of r) there must exist a solution to the equations. Let (B, a, ~3)
be a solution. Using the Weitzenbock formula (12) applied to a and taking the L2 inner
product with a, we find:

We calculate the two terms on the right-hand-side separately using the equations. Us-
ing (15), (7) and (17), the first term is:

Using (16), the second term is:

Substituting back in equation (18) and rearranging, we have

Now we express the last term on the left-hand-side in a different way using the Chern-
Weil formula:

We can also estimate the right-hand-side of equation (19) using the Peter Paul inequality:

where C > 0 is a constant which depends on the geometry of the almost Kahler metric,
but does not depend on (B, a, ,Q), or on r. Substituting back in equation ( 19), we obtain
(22)

Choosing r > 4C, we conclude that Cl (E) . [w] > 0. Moreover, if ci(E) - [w] = 0 then the
last inequality shows that Q = 0, lal2 = r and dBa = 0. This shows that B is the trivial
connection, and E = 0. All the solutions of this form are clearly gauge equivalent to one



another. For a generic r which is large enough, this solution is cut out transversely by
the Seiberg-Witten equations. Thus ~1.

This completes the proof of the theorem, because of the symmetry 3.1. 0

Thus, 0 implies E . (c~~ > 0, with equality only if E = 0. Analysing the
above argument for 0 leads, after a lot of work, to the following:

THEOREM 3.3 (Taubes [21, 22]). - Let X be a closed symplectic 4-manifold with b2 (X ) >
1, and let E E H2(X, Z) be a class with E y 0 and SWX,03B1X (E) ~ 0. Then, for the almost
complex structure associated with an almost Kähler metric on X, there is a pseudo-
holomorphic curve Poincaré dual to E.

Sketch of proof. Due to lack of space and time, we cannot hope to do justice to the proof.
We will only make a few general remarks on the structure of the argument, and indicate
how to rewrite Taubes’s proof [22] in the notation of Section 2 above.
One considers the same perturbation of the equations as in the proof of Theorem 3.2,

and makes the parameter r E R large. But now Cl (E) . [w] > 0, so the inequality (22)
does not imply Q = 0, no matter how large r is. All we get, is that

are bounded above by uniform multiples of rci (E) . [cj]. The bound on the third term

implies that, as r - oo, ~a approaches a section of E of constant length = 1. (In
the proof of Theorem 3.2, this happened for finite large r. ) However, the estimate above
is only in L2, and we know that because E is non-trivial the section a must vanish
somewhere.

Consider now the Weitzenbock formula (13). Taking the L2 inner product with (3 and
using the equations as in the proof of Theorem 3.2, we obtain:

where the term with the unknown function f corresponds to the curvature of ~4i in the
Weitzenbock formula. This function is independent of (B, a, (3) and independent of r.
Estimating the right-hand-side using the Peter Paul inequality we find:

where C’ is a constant depending on the geometry of the base manifold which is indepen-
dent of (B, a, (3) and independent of r.

Going back to the Weitzenbock formula (13), we have



where the last inequality follows from (24). Using the Dirac equation, we have

This shows that as r becomes large, a tends to become holomorphic. (Again, this hap-
pened for finite r in the proof of Theorem 3.2.) Note that in the case when (X, c~) is

Kahler, the right-hand-side of (23) vanishes, so that for r large one does find that /3
vanishes identically and a is a holomorphic section of E, whose zero-set is the desired

holomorphic curve.
In the almost Kahler situation, it seems impossible to find a finite r for which the

a component of the spinor in a solution to the Seiberg-Witten equations is necessarily
holomorphic. Therefore, Taubes [22] considers the limiting behaviour of the zero-locus
of a as r - oo and shows that the zero-locus converges, as a current, to a pseudo-
holomorphic curve. This involves delicate pointwise estimates on the solutions. The first
of these estimates can be obtained from the Weitzenbock formulae (12) and (13) without
integrating over the manifold. Then a term like (dBdBa, a) becomes + and

similarly for the equation involving ,~.
Defining u =1- r ~a~2 - ~l ~,Q~2 + ~, the two Weitzenbock formulae together show that

the positive constants Ci and C2 can be chosen in such a way that 2~~c+ > 0 (using
Peter Paul judiciously). Therefore, the "minimum principle" implies u > 0 everywhere
on X. This gives the first of a whole series of delicate pointwise estimates that go into

controlling the limit of the zero-set of a as r - oo. D

Remark 3.4. - In the statements of Theorems 3.2 and 3.3 in Taubes’s papers 19,

21, 22], more restrictive Seiberg-Witten invariants are considered than we have used here.
Taubes only considers the factor in the homology of jS*, and ignores the Jacobean

torus, compare Fact 1.9. The proofs are valid in the generality stated here because

they only use the existence of solutions for all metrics and all perturbations, without
reference to the homology class of the moduli space. However, we will see in Theorem 4.11

that, as a consequence of Theorem 3.3, the only non-trivial Seiberg-Witten invariants of

symplectic manifolds arise from zero-dimensional moduli spaces, so that our statements

are, a posteriori, no more general than Taubes’s.

3.2. The case of CP~

There are versions of Theorems 3.2 and 3.3 when the base manifold has bt = 1. We
discuss only the case when X has the rational homology the complex projective plane
Cp2.

For X with b2 (X) = 1 and b2 (X) = 0, the Seiberg-Witten equations (2) and (3) with
q = 0 define a metric-independent invariant



To see this, examine the proof of Theorem 1.8. There the assumption b2 (X) > 1 only
enters to avoid reducible solutions to the equations appearing for a generic 1-parameter
family (g, r~). For a reducible solution (A, 0) to the equations with ~ = 0, FA is an anti-
self-dual harmonic 2-form representing cl(Q). But if b2 (X) = 0, then for any metric the
only anti-self-dual harmonic form is = 0. On the other hand, Ci(Q) is an odd multiple
of the generator in H2(X, Z), in particular it is non-zero. Thus, there are no reducible
solutions to the Seiberg-Witten equations with r~ = 0. This is still true if 7y is non-zero
but small enough.
As the Fubini-Study metric has positive scalar curvature, the proof of Theorem 1.11

implies:

LEMMA 3.5. - The Seiberg-Witten invariant (25) of X = Cp2 for the 77 = 0 equations
is identically zero.

On the other hand, the argument in the proof of Theorem 3.2 goes through as before.
Namely, given a symplectic form 03C9 on cCP2, for the canonical Spinc structure and an
almost Kahler metric the Seiberg-Witten invariant calculated from the equations (15),
(16), (17) with r large, gives (Notice that the curvature of Ao is some multiple of c~,
so we can absorb the term in Fact 2.2 in the perturbation by -i 4r03C9 by changing r. )

Thus, we conclude that for some ro > 0 the equations (16) have a reducible solution,
to account for the jump in the invariant. For the reducible solution (A, 0) we have FI =

Thus, the Chern-Weil formula implies:

Therefore, the analog of Theorem 3.2 for CP2 is:

PROPOSITION 3.6 (Taubes [19]). - For every symplectic form v on ~P2 with canonical
bundle K, one has cl (K).  0.

In the same way, we find the analog of Theorem 3.3 for Cp2. Given a symplectic form
VJ on Cp2, we choose a generator H E 7~), such that is a positive multiple of
H. Then, by Proposition 3.6, is a negative multiple of H, which implies that it is
- -3H.

THEOREM 3.7 (Taubes [21, 22]). - For every symplectic form w on ~P2 and any com-
patible almost Kähler metric, the generator H E Z) is Poincaré dual to a pseudo-
holomorphic curve.

Proof. We consider the Seiberg-Witten invariants of ~P2 for the canonical Spin~ structure
twisted by H. Assume that for the equations in the proof of Theorem 3.3 there exists
a solution for all r sufficiently large. Then letting r go to infinity, the analysis in [22]
applies just as in the proof of Theorem 3.3, and one finds that H is Poincaré dual to a
pseudo-holomorphic curve.



Thus, it suffices to show that for all r sufficiently large there are solutions to the

Seiberg-Witten equations (16). To see this, observe that the homology class in H*(~3*, Z)
calculated from the moduli space is a differentiable invariant of which does not

depend on the metric or on the symplectic structure w, although here it does depend on
the parameter 7y in (3). Thus, we can calculate the invariant using the standard Kahler
form on Cp2, and then use the result to get a statement that is valid for all symplectic
forms w.

Thus, consider first the standard Kahler form. As before, if ~ is small there are no
solutions to the equations because of the Weitzenbock formula (4) and the invariant
vanishes when ~ is small, i.e. when r in (16) is near 0. See Lemma 3.5.
Now increase r. For a fixed rl there is a unique reducible solution, and for all r >

ri there is a smooth moduli space of solutions. Recall from the proof of Theorem 3.3

that, because the metric we consider is Kahler, not just almost Kahler, for large r the

Q component of the spinor of any solution vanishes identically, and the a component is
then a holomorphic section. Using this, the moduli space of solutions for r > ri can be
identified with the projective space of non-trivial holomorphic sections of the hyperplane
bundle on CP2, cf. [28], [5]. This projective space is itself a copy of CP2, which is a slice
in the (CP°° ^~ B*. Thus, for r large, the invariant is ~1 E Z) ~ Z.

Considering now an arbitrary symplectic form LJ on Cp2, we know from Proposition 3.6
that it has the same sign as the standard Kahler form. Thus letting r - oo in equa-
tion (16) leads into the same regime, no matter which we use. As the invariant for

r large is non-trivial for the Kahler form, it is non-trivial for every symplectic form w.

Thus, for every VJ and every r large enough, there are solutions to the equations (15),
(16), (17). D

Remark 3.8. - The discussion above concerning the change in the Seiberg-Witten in-
variant of CP2 as one varies ~ is really the same as the discussion in [14], [1] concerning
the change in the invariant as one varies the metric on a manifold with bt == 1 and b2 -1= 0.
Both are special cases of the general wall-crossing formula which applies whenever one
encounters a reducible solution in a family of Seiberg-Witten equations parametrised by

(9t, Qt) °

4. APPLICATIONS OF TAUBES’S THEOREMS

Taubes’s theorems discussed in the previous section have a lot of consequences for the

topology of symplectic manifolds, and for the classification of symplectic structures. At

the time of writing, such applications are emerging rapidly, so we will not try to be

exhaustive, but rather restrict ourselves to a few selected corollaries, most of which were

pointed out by Taubes himself.



4.1. Direct applications of Theorem 3.2

As was remarked in the introduction, Theorem 3.2 implies some immediate but impor-
tant constraints on the topology and geometry of symplectic 4-manifolds. Combining it
with Theorem 1.11, one concludes:

COROLLARY 4.1. - Let X be a symplectic 4-manifold with b2 (X ) > l. Then

(1) X does not admit any Riemannian metric of positive scalar curvature, and
(2) X does not admit a smooth connected sum decomposition X1#X2 with both

b2 (Xi) > 0, i = 1,2.

Example 4.2. - Let Xp,q = For all p and q, Xp,q admits a metric of positive
scalar curvature. It admits an almost complex structure if and only if p - 1 (mod 2),
and a symplectic structure if and only if p = 1.

Theorem 3.2 also strongly constrains the possible canonical classes of symplectic struc-
tures :

COROLLARY 4.3. - Let X be a smooth 4-manifold with b2 (X) > 1.

(1) If bi(X) = 0, then X admits at most finitely many homotopy classes of almost
complex structures compatible with symplectic forms.

(2) X does not admit any symplectic structure whose canonical class K E H2(X, Z)
is a non-zero torsion class. If X is symplectic, then the canonical classes of two
symplectic structures cannot diff er by a non-zero torsion class.

(3) If X admits a symplectic structure with K = 0, then all other symplectic structures
on X also satisfy K = 0.

Proof. (2) and (3) are clear from the second part of Theorem 3.2. Under the assumption
bl (X) = 0, the canonical class determines the homotopy class of an almost complex
structure up to finite ambiguity, so that (1) follows from Lemma 1.10. D

Remark 4.4. - The assumption on b2 (X ) cannot be weakend in (2). The Enriques
surface, a quotient of a K3 surface by a free holomorphic involution, is Kahler. It has

b2 = 1 and its canonical class is a non-trivial 2-torsion class. The proof of Theorem 3.2
breaks down because the Seiberg-Witten invariants of the Enriques surface depend on 7y,
cf. the discussion of the Cp2 case.

Example 4.5. - Part (3) of Corollary 4.3 applies to the K3 surfaces, to the 4-torus T4,
and to the Kodaira-Thurston manifolds [11, 26]. The latter are certain T2-bundles over
T2 with b2 = 2 and bI = 3. They are both complex and symplectic with trivial canon-
ical class. These were the first known examples of symplectic non-Kahler 4-manifolds.
Theorem 3.2 gives a complete calculation of the Seiberg-Witten invariants for all these
examples. Recently, Biquard [2] has calculated the invariants for the Kodaira-Thurston
manifolds in a different way, not using the symplectic structure.



4.2. Applications using pseudo-holomorphic curves

The existence theorems 3.3 and 3.7 for pseudo-holomorphic curves by themselves are
not immediately useful, unless one has a genericity statement to ensure that the curves
are not too singular or degenerate. On a fixed symplectic 4-manifold (X, w) one has a
choice when picking a calibrating almost complex structure, or, equivalently, a compatible
almost Kahler metric. There is a then a genericity statement for the moduli spaces of

pseudo-holomorphic curves which follows from the Sard-Smale theorem and is the analog
of Fact 1.4 for the Seiberg-Witten moduli spaces. Informally, we can paraphrase this

statement, Proposition 7.1 in [22], as follows, compare [15].
FACT 4.6. - For a generic almost Kähler metric on (X, ca) compatible with w, pseudo-
holomorphic curves in a given homology class are transverse zeroes of the Cauchy-Riemann
equations. In particular, they consist of disjoint smooth components, the only rational
curves of negative self-intersection are smooth (-1)-curues, and the only non-reduced
components (if any) are tori of self-intersection zero and rational (-1)-curves.

In Theorems 3.3 and 3.7, we can always use an almost Kahler metric which is generic
in this sense to make the pseudo-holomorphic curve Poincaré dual to E (respectively H)
smooth. Each component E of such a curve is then itself a smooth pseudo-holomorphic,
in particular symplectic, submanifold, whose genus is given by the adjunction formula

With this understood, Theorem 3.7 implies that for a generic almost Kahler metric com-

patible with an arbitrary symplectic form on Cp2, the positive generator H E Z)
is represented by a smooth pseudo-holomorphic curve of genus

where we have used Proposition 3.6 to conclude K = -3H. Then a result of Gromov [10]
implies that the symplectic structure is the standard one (up to symplectomorphism):

THEOREM 4.7 ([21, 22]). - The symplectic structure on ~P2 is unique.

Example 4.8. - It is instructive to try to apply the above argument to other manifolds
with the rational homology of Cp2. If one forms the connected sum of Cp2 with a

non-trivial rational homology sphere, the resulting manifold usually has no symplectic
structure [13]. If it does admit a symplectic structure, then the generator of the homology
cannot be represented by a pseudo-holomorphic rational curve [10].
Mumford [16] found a Kahler surface X uniformised by the complex ball which has

the Betti numbers of Cp2. For this X Theorem 3.7 applies, showing that the posi-
tive generator of the homology is represented by a pseudo-holomorphic curve. However,
Proposition 3.6 fails for X. Indeed, the Seiberg-Witten invariants defined by equations (2)
and (3) with 77 = 0 and with 77 with r large coincide, as one sees easily using the



natural Kahler-Einstein metric on X. Thus, there is no reducible solution with r > 0,
the wall in the parameter space appears for some ro  0. For the Mumford surface one
has K . [w] > 0, which forces K = 3H. Thus, the pseudo-holomorphic curve Poincare
dual to H has genus 3 by the adjunction formula (26).
Combining the first part of Theorem 3.2 with Theorem 3.3, one concludes that if X

is a symplectic 4-manifold with b2 (X) > 1 and K 0, then K is Poincaré dual to a
pseudo-holomorphic curve. From this one deduces:

COROLLARY 4.9 (Taubes [21, 22]). - If X is a minimal symplectic 4-manifold with
b2 (X) > 1, then K2 > 0, equivalently 2X(X) + 3~(X) > 0.

Recall that a symplectic 4-manifold is called minimal if it contains no symplectically
embedded 2-sphere of self-intersection -1.

Proof. If K = 0 there is nothing to prove. If K 0, consider the pseudo-holomorphic
curve Poincaré dual to K. Because of genericity and minimality, this curve has no genus
zero component of negative self-intersection. For the components E of positive genus, the
adjunction formula (26) implies 1  g(E) = 1 + 2 (E2 + K . E) = 1 + E2. Thus K2, which
is the sum of the E2 over all components, is non-negative. D

Minimality of symplectic 4-manifolds admits a purely differentiable characterisation.
This follows from the next result.

THEOREM 4.10 (Taubes [21, 22]). - Let X be a symplectic 4-manifold with b2 (X) > l.
A class E E H2(X, Z) with E2 = -1 is Poincaré dual to a smoothly embedded 2-sphere
if and only if E or -E is Poincaré dual to a symplectically embedded 2-sphere. In this

Proof. As K is a characteristic element for the intersection form of X, we can write
K = Kl + aE, with E = 0 and a an odd integer. If E is Poincaré dual to a smoothly
embedded 2-sphere, then the reflection in the hyperplane orthogonal to E is realised by a
self-diffeomorphism f of X, supported in a tubular neighbourhood of the 2-sphere. This
diffeomorphism pulls back the canonical Spin~ structure to the one twisted by aE. By
Theorem 3.3, aE is then Poincare dual to a pseudo-holomorphic curve C.
Suppose C has several components, then by Fact 4.6 the components are disjoint. As

C has negative selfintersection number, at least one of its components, Ci say, has a
negative selfintersection number. It is not hard to see that Ci is a (-1)-sphere. But
Ci is not orthogonal to E, so that the reflections in E and in Ci generate a group of
diffeomorphisms of X for which the orbit of the canonical Spinc structure is infinite. This
contradicts Lemma 1.10.

It follows that C is connected. By the adjunction formula (26) it must have genus zero,
and we must have a = ~ 1. 0



Corollary 4.9, Theorem 4.10, and the other consequences of Taubes’s theorems con-
stitute substantial steps towards a classification of symplectic 4-manifolds in the spirit
of the Kodaira classification of compact complex surfaces. Elaborating on the work of
Gromov [10], initial steps in this direction had already been taken, notably by McDuff.
However, no results approaching the strength of the above were in sight before the work
of Taubes.

Here is a consequence of Theorem 3.3 constraining further the Spin~ structures with
non-trivial Seiberg-Witten invariants on symplectic 4-manifolds with bt > 1: i

THEOREM 4.11 (Taubes [21, 22]). - If X is a symplectic 4-manifold with b2 (X) > 1,
then the only non-trivial Seiberg-Witten invariants of X arise from zero-dimensional
moduli spaces, i. e., from Spin~ structures with auxiliary line bundles L with L2 = 2x(X )+
3~(X).

Proof. A non-minimal symplectic 4-manifold smoothly splits as and it is known

that the claimed property holds for X if and only if it holds for Y. This follows from the

blowup-formula for the Seiberg-Witten invariants, see [6] or Proposition 2 of [13].
Thus it suffices to consider the case when X is minimal. By Theorem 3.3, if 0 is

a class for which the canonical Spin~ structure twisted by E has a non-trivial Seiberg-
Witten invariant, then there is a pseudo-holomorphic curve Poincaré dual to E. Consider
a component E of this curve. It can not be of genus zero and negative self-intersection
because X is assumed minimal. If > 0, then E2 + l~ ~ E >_ 0. If the self-intersection

of E is negative, this implies E ~ E = E2  _E2  K . E.

If E has non-negative self-intersection, the following adjunction inequality holds [14,
5,1]:

for all L which are determinant bundles of Spin~ structures with non-trivial Seiberg-
Witten invariants. Applying this with L = 2E - K and calculating from the ad-

junction formula (26), we conclude E ~ E  K ~ E.
We have proved E ~ E  7~ - E for all components E, regardless of their self-intersection

numbers. Summing over all E, we have E2 ~ K . E, which is equivalent to L2 = (2E -
K)2  K2 = 2X(X) + 3r(X). On the other hand, the dimension of the Seiberg-Witten
moduli space for L has to be non-negative, so L2 > 2~(X) + 3r(X) by Fact 1.5 and we
conclude L2 = 2X(X) + D

Remark 4.12. - The conclusion of Theorem 4.11 can be interpreted as saying that sym-
plectic 4-manifolds have (Seiberg-Witten) simple type.



5. TOWARDS THE DIFFEOMORPHISM CLASSIFICATION OF
FOUR-MANIFOLDS

5.1. The symplectic uniformisation conjecture

A closed smooth manifold is said to be irreducible if it admits no smooth connected sum

decomposition in which neither summand is a homotopy sphere. A natural approach to the
classification of manifolds is the search for and classification of their irreducible summands.
After Taubes’s theorems, for a while the following attractive conjecture seemed plausible:

CONJECTURE 5.1. - (1) Every simply connected smooth 4-manifold is a connected sum
of symplectic manifolds, with both the symplectic and the opposite orientations allowed3.

(2) Minimal symplectic 4-manifolds are irreducible.
(3) The symplectic structure of a minimal symplectic 4-manifold is unique up to def or-

mation equivalence and symplectomorphism.

The first part of the conjecture was motivated by an older conjecture4 to the effect that
all simply connected 4-manifolds should be connected sums of complex surfaces, equiva-
lently, of complex projective algebraic surfaces. This was disproved by Gompf-Mrowka [9].
Their counterexamples, and many later ones, have turned out to be symplectic [8], thus
suggesting the modified conjecture (1). Six months after the lecture in the Seminaire

Bourbaki, as I was revising the text for Asterisque, Z. Szabo announced counterexamples
to (1). The manifolds he constructs are irreducible with non-trivial Seiberg-Witten in-
variants which are incompatible with Theorem 3.2. Immediately after Szabo, Fintushel
and Stern announced the existence of large families of related examples.

Part (2) was conjectured by Gompf in [8]. We shall prove in Corollary 5.5 below that
as a consequence of Taubes’s results it is true (for simply connected manifolds) under
the additional assumption b2 > 1. Of course, non-minimal symplectic manifolds are
reducible because they smoothly split off Cp2, and the other summand cannot be a
homotopy sphere for cohomological reasons.

Part (3) is true for Cp2 by Theorem 4.7. The other consequences of Taubes’s work
discussed in the previous section provide evidence that (3) may hold more generally. In

higher dimensions, counterexamples to (3) are known [17], and are detected by Gromov
invariants. Taubes has shown that the Gromov invariants in dimension 4 are equivalent
to the Seiberg-Witten invariants, which are diffeomorphism invariants. One can take this
as further evidence for (3).
Remark 5.2. - Making connected sums of symplectic manifolds with non-simply con-
nected manifolds with negative definite intersection forms, one can build manifolds with
non-trivial Seiberg-Witten invariants which do not admit any symplectic structures [13].

3The 4-sphere is the empty connected sum.
4Sometimes attributed to Thom, although he has disassociated himself from it.



This is because the property of being symplectic is preserved under passage to finite

coverings, .whereas having non-trivial Seiberg-Witten invariants is not.
Some of the examples in [13] have the same Seiberg-Witten invariants as the symplectic

manifolds they were built from, whereas for others the Seiberg-Witten invariants are
not compatible with the constraints on the invariants of symplectic manifolds proved in
subsection 4.1. Recently Biquard [2] has shown that the Seiberg-Witten invariants of
properly elliptic surfaces with bi = 1 (mod 2) are (non-zero and) incompatible with the
constraints.

Remark 5.3. - It is clear that part (1) of Conjecture 5.1 fails in the non-simply connected
case, for example because of the existence of non-trivial homology spheres. If one tries

to modify the conjecture by allowing arbitrary summands with definite intersection forms
it is still false. Counterexamples include irreducible 4-manifolds with fundamental group
Z2 and indefinite intersection forms not admitting any almost complex structure [12],
and various K(Jr, 1 )s, e. g. certain hyperbolic 4-manifolds and the non-Kähler minimal

properly elliptic surfaces considered in [2].

5.2. Irreducibility of minimal symplectic 4-manifolds

THEOREM 5.4 ([12]). - Let X be a minimal symplectic 4-manifold with b2 (X ) > 1. If
Xl #X2 is a smooth connected sum decomposition, then one of the Xi is an integral

homology sphere whose fundamental group has no non-trivial finite quotient.

COROLLARY 5.5 ([12]). - Minimal symplectic 4-manifolds with b2 > 1 and with residu-
ally finite fundamental groups are irreducibLe5.

Proof of Theorem 5.4. Let X be a closed symplectic 4-manifold with b2 (X) > 1. If X

splits as a connected sum M#N, then by Proposition 1 of [13] we may assume
that N has a negative definite intersection form and that its fundamental group has no
non-trivial finite quotient. In particular Hl (N, ~) = 0. This implies that the homology
and cohomology of N are torsion-free.

Donaldson’s theorem about (non-simply connected) definite manifolds [3] implies that
the intersection form of N is diagonalizable over Z. If N is not an integral homology
sphere, let el, ... , en E H2(N, Z) be a basis with respect to which the cup product form
is the standard diagonal form. This basis is unique up to permutations and sign changes.

By Theorem 3.2 the Seiberg-Witten invariants of X are non-trivial for the natural

Spin~ structures with auxiliary line bundles Note that we can write

5 An assumption about the fundamental group should have been added on page 65 of !5j, where this is
mentioned for Kahler manifolds.



where KM E H2(M, Z) and the ai are odd integers because ef = -1 and Kx is char-
acteristic. Considering -Kx and using a family of Riemannian metrics which pinches
the neck connecting M and N down to a point, we conclude that M has a non-trivial

Seiberg-Witten invariant for a Spin~ structure with auxiliary line bundle -KM.
Now we can reverse the process and glue together solutions to the Seiberg-Witten

equation for -KM on M and reducible solutions on N for the unique Spin~ structure
with auxiliary line bundle ei - as in the proof of Proposition 2 in [13], cf. also [5],
section 5. This gives a Seiberg-Witten invariant of X which is equal (up to sign) to the
Seiberg-Witten invariant of M for -KM, which is non-zero.

This implies that L = -KM + ei - has self-intersection number = Kl because
for X all the non-trivial Seiberg-Witten invariants come from zero-dimensional moduli
spaces by Theorem 4.11. Thus, aa = f 1 for all i G {1,... , n} . Without loss of generality
we may assume a; = 1 for all i.

The line bundle L is obtained from -Kx by twisting with ei. Thus, by Theorem 3.3
the non-triviality of the Seiberg-Witten invariant of X with respect to L implies that ei
can be represented by a symplectically embedded 2-sphere in X. Thus X is not minimal.
We conclude that if X is minimal, then N must be an integral homology sphere. This

completes the proof of Theorem 5.4. D

Remark 5.6. - Gompf [8] has shown that all finitely presentable groups occur as funda-
mental groups of minimal symplectic 4-manifolds, and conjecturally all these manifolds
are irreducible. As was the case in [13], our arguments do not give an optimal result
because we cannot deal with fundamental groups without non-trivial finite quotients.
With regard to Theorem 5.4, note that there are such groups which occur as fundamental
groups of integral homology 4-spheres. Let G be the Higman 4-group, an infinite group
without non-trivial finite quotients, which has a presentation with 4 generators and 4
relations. Doing surgery on 4(S1 x S3) according to the relations produces an integral
homology sphere with fundamental group G.

Remark 5.7. - In another direction, the assumption b2 (X) > 1 can probably be removed
from Theorem 5.4 and Corollary 5.5. To do this one needs to understand how the neck-
pinching in the proof of Theorem 5.4 and the perturbations in the proofs of Theorems 3.2
and 3.3 interact with the chamber structure of the Seiberg-Witten invariants for manifolds
with bt = 1.

However, some results about the case when b2 = 1 can be deduced from the proof of
Theorem 5.4. For example, all manifolds with non-trivial finite fundamental groups are
dealt with by the following:

COROLLARY 5.8 ([12]). - Let X be a minimal symplectic 4-manifold with b2 (X) = 1
and b1 (X) = 0. If ~rl (X) is a non-trivial residually finite group, then X is irreducible.



Proof. Suppose M#N. We may assume that N has negative definite intersection
form and its fundamental group has no non-trivial finite quotient. Residual finiteness

then implies that N is simply connected, and ~rl (M) ^--’ ~rl (X). By assumption, X has
a finite cover X of degree d > 1 which is diffeomorphic to M #dN, where M is a d-fold
cover of M. The multiplicativity of the Euler characteristic and of the signature imply
~(X) > 3.
Suppose that N is not a homotopy sphere. Then, as in the proof of Theorem 5.4,

Theorem 3.3 shows that in X the generators of the second cohomology of the d copies
of N are represented by pseudo-holomorphic embedded spheres. Two such spheres have
algebraic intersection number zero with each other, and must therefore be disjoint, because
intersections of pseudo-holomorphic curves always count positively. The spheres in the
different copies are permuted by the covering group, and project to pseudo-holomorphic
embedded (-1)-spheres in X. This contradicts the minimality of X. Thus N must be a
homotopy sphere, and X is irreducible. 0

6. FINAL COMMENTS

As mentioned in the introduction, Theorem 3.3 has a converse [24] which constructs
solutions to the Seiberg-Witten equations (2) and (3) (for a suitable ?y) starting from suf-
ficiently generic pseudo-holomorphic curves. One takes standard solutions to the vortex

equation on the curve (the 2-dimensional reduction of the Seiberg-Witten equations),
and glues these into trivial solutions in the complement of a tubular neighbourhood of
the curve. This produces approximate solutions to the Seiberg-Witten equations which
are then perturbed to actual solutions using the implicit function theorem.

If one counts the pseudo-holomorphic curves appropriatly [23], and keeps track of the
associated signs [25], one finds that the Gromov invariant they define coincides with the
value of the Seiberg-Witten invariant on the Spin~ structure obtained from the canonical
one by twisting with the complex line bundle Poincaré dual to the fundamental homology
class of the curves. Taubes has explained in [23] how one has to count the curves for
this statement to be true; this counting is as announced in [21] except in the case of tori
of self-intersection zero, when additional complications arise from an obstruction to the

gluing procedure mentioned above. One has to use multi-vortices in order to overcome
the obstructions.

Finally, let us remark that a lot of the analysis in [22] is valid for smooth 4-manifolds

equipped with a non-trivial self-dual harmonic form v (with respect to a generic metric)
which does not have to be non-degenerate. Work of Taubes which is now in progress

suggests that in this case one obtains pseudo-holomorphic curves in the complement of
the vanishing locus of w which have sufficient regularity near this vanishing locus to be
useful in topological arguments. If one is very optimistic, one may hope that this will
lead to an "intrinsic" characterisation of symplectic manifolds.
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