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AFFINE HECKE ALGEBRAS AND ORTHOGONAL POLYNOMIALS

by I.G. MACDONALD

Séminaire BOURBAKI

47eme annee, 1994-95, n° 797

Mars 1995

INTRODUCTION

Orthogonal polynomials in one variable have a long history, going back at least
to the 18th century, and a vast literature. The orthogonal polynomials of my title,
however, are polynomials in several variables, and are of more recent vintage. They
may be regarded as extrapolations and generalizations of Weyl’s formula for the
characters of a compact Lie group, and the combinatorial infrastructure of such a

group (root system, Weyl group) correspondingly plays a preponderant role. At

the present time it appears that an appropriate framework for the study of these

polynomials is provided by the notion of an affine root system. To each affine root
system of rank r, reduced or not, there corresponds a family (in fact, two families)
of orthogonal polynomials in r variables. However, in an effort to keep things as
simple as possible, we shall in this account restrict ourselves to one type of affine
root systems (see (2.1) below).

1. ORTHOGONAL POLYNOMIALS

Let R be an irreducible reduced root system. For the most part we shall adhere
to Bourbaki’s notation [B]. Thus we shall denote by :

R+ the set of positive roots relative to a fixed basis of R,
P the weight lattice of R,
P+ the cone of dominant weights,
Q the root lattice of R,

Q+ the cone spanned by the positive roots,
Wo the Weyl group of R.



We have Q C P (but Q+ ~ P+), and P/Q is a finite group. Let m be the
smallest positive even integer such that mP C Q, let q be an indeterminate and let

Let A = K[P] be the group algebra of P over K. For each A E P, let e~ denote
the corresponding element of A (so that e~ e~ = e~+~, (ea)-1 = e-a, and e° is the
identity element of A). The Weyl group Wo acts on P, hence on A : w(eÀ) = ewa.
Let Ao = denote the subalgebra of Wo-invariants.

Since each Wo-orbit in P meets P+ exactly once, it follows that the orbit-sums

where A E P+ and W003BB is the Wo-orbit of A, form a K-basis of Ao.

We shall now define a scalar product on A. If f E A, say f = ~~ f a e~, with
coefficients fx G K, let

and let (= fo) denote the constant term of f. Now let k be a non-negative
integer and define, for f, g G A

This scalar product is symmetric and non-degenerate.

On P+ we have a partial order defined by

With this explained, we can state the following existence theorem [M4] :

THEOREM 1.5.- There exists a unique K-basis (Pa ) aE p+ of Ao such that



with coefficients aaw rational functions of q and qk,

At this stage we shall say nothing about the proof of 1.5 (see § 6 below). We
shall only remark that since the ordering (1.4) is not a total ordering (unless the rank
of R is 1), the existence of the PÀ satisfying a) and b) is not immediately obvious.
Indeed, we can determine PÀ uniquely to satisfy a) and

and this would imply b) when either A >  or A  but not when A and  are

incomparable.

In particular, when k = 0 (so that Ak = 1), Pa reduces to the orbit-sum ma,
and when k = 1, the polynomial Pa is given by Weyl’s character formula. In the

limiting case q -~ 1, the Pa are the "Jacobi polynomials" of Heckman and Opdam
([H], [HO], [01], [02]).

THEOREM 1.6 ~C1~.- We have

for all A G P+, where the coroot and

This formula was conjectured in [M4] and verified there in various particular
cases. In the limiting case q --~ 1, it was proved for all root systems R by Opdam
[03], and in full generality by Cherednik [Cl].

Finally, observe that when A = 0 (so that Px = 1), the formula (1.6) gives the
constant term of This was the subject of earlier conjectures [M3], which at the
time of Cherednik’s paper had been settled affirmatively for all R with the exception
of E6, E7 and Eg.

2. THE AFFINE ROOT SYSTEM AND EXTENDED AFFINE WEYL GROUP

As before, let R be a reduced irreducible root system, spanning a real vector
space E of dimension r, and let (x, y) be a positive definite scalar product on E



invariant under the Weyl group Wo of R. For each a E R, let

is the dual root system. Let Q~ denote the root lattice and P~ the weight lattice of
R" .

We shall regard each a E R as a linear function on E : (a, x) for x E E.
Also let 6 denote the constant function 1 on E. Then

is the affine root system associated with R. The elements of S are affine-linear

functions on E, called affine roots.
For each a E S, let Ha denote the affine hyperplane on which a vanishes,and let

sa denote the orthogonal reflection in this hyperplane. The affine Weyl group Ws is
the group of affine isometries of E generated by these reflections. For each a E R,
the mapping sa o Sa+8 takes . x E E to X + so that

is translation by It follows that Ws contains a subgroup of translations isomor-

phic to Q" , and we have

(semi-direct product).
The extended affine Weyl group is

It acts on E as a discrete group of isometries, and hence by transposition on functions
on E. As such, it permutes the affine roots a G S.

Let 0:1,... , ar be a set of simple roots (or basis) of R, let R+ (resp. R-) be
the set of positive (resp. negative) roots determined by this basis, and let cp E R+
be the highest root. Correspondingly, the affine roots ao, al, , ~ ~ ~ , ar, where



form a set of simple roots for S. Let

so that C is an open r-simplex bounded by the hyperplanes Hai (0  i  r). Then
Ws is generated by the reflections Si (0  i  r), subject to the relations

whenever i ~ j and si sj has finite order mij in Ws, there being mij terms on either
side of (2.5). In other words, Ws is a Coxeter group on the generators si .

The connected components of E - UaES Ha are open simplexes, each congruent
to C; and each such component is of the form wC for a unique w E Ws .

An affine root a E S is positive (resp. negative) relative to C if a(x) > 0 (resp.
a(x)  0) for all x E C. Let S+ (resp. S-) denote the set of positive (resp. negative)
affine roots. Then 9’ = -S+, and S = S+ U S-. Explicitly, we have

where X is the characteristic function of R- (i.e. = 0 if a E R+, and = 1

We now define a length function on the extended group W : if w E W, let

the number of positive affine roots made negative by w. Equivalently, f( w) is the
number of hyperplanes Ha separating C from wC. From (2.3), any element of W
is uniquely of the form wT(A), where w E Wo and A E P", and it follows from the
description (2.6) of S+ that

where as above x is the characteristic function of R- .

Now W, unlike Ws, is in general not a Coxeter group (unless P" = Q~) and
may contain elements 7~ 1 of length zero. Let



The elements of 0 stabilize the simplex C, and hence permute the simple affine roots

ao, ~ ~ ~ , ar. For each w G W, there exists a unique w’ G Ws such that wC = w’C,
and hence w factorizes uniquely as w = w’v with w’ G Ws and v G S~. Consequently
we have

(semidirect product). From (2.2), (2.3) and (2.10), it follows 

Pv hence is a finite abelian group.

We regard each weight  G P, like each root a G R, as a linear function on

E : ~C(x) _ for x E E. If w E W, then w,u is an affine-linear function on

E : (~/~)(~) = (,u, Suppose that w = vT(a), where v E Wo and ~r E Pv.

Then we have

3. THE BRAID GROUP

The braid group B of W is the group with generators T(w), w E W, and
relations

whenever f( vw) = 2(v) + ~(w). We shall denote T( Si) = by Ti (0  i  r),
and (w E SZ) simply by w. Then B is generated by To , ... , Tr and S2 subject to

the following relations :

a) the counterparts of (2.5), namely the braid relations

with mij terms on either side ;

b) the relations

for cv E H, where = a~ ,



Let A be a dominant weight for R~, and define

where as before T(A) is translation by A. From (2.8) and (3.1) it follows that

if A, are both dominant. If now A is any element of P~, we can 
with ~c, v E P~ both dominant, and we define

In view of (3.4), this definition is unambiguous. The elements E pv, form a
commutative subgroup of B, isomorphic to P~ .

Proof : i) Suppose first that A is dominant, and let w = si T(a) = si. From

(2.8) we have f(w) = f(T(À)) + 1 and hence Ti yÀ = T(w) = Y~ Ti. If now A is not

dominant, we can write A == ~ 2014 ~ with ~., v both dominant and (~,, (v, a:i) = 0.

ii) Again suppose first that A is dominant, and let p = 2(T(.~)). Then ~r = .~

is dominant and = 0. Let w = = si We have, using (2.8),
~(~r) = 2p - 2, f( w) = 2p - 1, P(T(~) Si) = p - 1. Hence

giving Y03BB = Ti Ysi03BB Ti as required. Finally, if a is not dominant, we can write
A = ~c - v with v both dominant, (/~, = 1, ~v, = 0.

4. THE AFFINE HECKE ALGEBRA

As in § 1, let K = and let t = q- 2 , where k is a non-negative integer.
The Hecke algebra H of W is the quotient of the group algebra K[B] of the braid



group by the ideal generated by the elements (Ti - t)(Ti + t-1) (0  i  r). For
each w E W, we denote the image of T(w) in H by the same symbol T(w). It is

well-known (but requires proof, see e.g. [B], ch. IV, §2, Ex. 23) that the T(w)
form a K-basis of H. Thus H is generated by Ti (0  i  r) and S2 subject to the
relations (3.2), (3.3) and

The following formula, due to Lusztig [L], is fundamental for what follows.

4.2. Let A e 1  z  r. Then

Proof : If this is true for A and for a simple calculation shows that it is true

for A + /~ and -A. Hence we may assume that A is a fundamental weight, so that

(A, = 0 or 1. If (A, ai) = 0, then (4.2) reduces to (3.6) i), and if (~, ai) = l, it

follows from (3.6) ii) and (4.1).

Remark : Since A - where p = (A, ai) E Z, it follows that the right-hand
side in (4.2) is a polynomial in the Y’s.

From (3.7) and (4.2) it follows (cf. [L]) that

4.3. The elements T(w)Y~ (resp. the elements Y~T(w)), where w E Wo and
A E P", form a K-basis of H.

Let A~ = be the group algebra of P~ over K. For each f E AV, say

and let A v (Y) denote the subalgebra of H generated by the Ya, ~ E P~. From (4.3)
we have A" (Y) ^-_’ AV and

where Ho is the Hecke algebra of the finite Weyl group Wo, generated by T1,... , Tr
subject to the braid relations (3.2) (with 0) and the Hecke relations (4.1) (with



Let Ao = be the subalgebra of Wo-invariants of A~ .

4.5. The centre of H is 

Proof : It follows from (4.2) that if f E AV is Wo-invariant, then f(Y) commutes
with Tl, ~ ~ ~ , Tr and hence by (4.3) lies in the centre of H. The reverse inclusion may
be proved by a specialization argument (let q -~ 1).

If a = a + n8 G S, we define

(i.e. we define es to be q-1). Likewise, if  e P and w e W, where w = as

in (2.11), we have

The following proposition, due to Cherednik ~C1~, is a key result.

4.6.- The Hecke algebra H acts on A = as follows :

Moreover, this representation is faithful.
We shall sketch a proof. If V is any Ho-module, we can form the induced

H-module :

by (4.4). Suppose in particular that V is 1-dimensional and that Tiv = tv for v E V,
1  i  r. From (4.7) the induced module may be identified with A v, and by (4.2)
the action of TZ (1  i  r) on A~ is given by :

where A E P~ . The operators T2 defined by (4.8) therefore define a representation
of Ho on A v, and it is not difficult to show that this representation is faithful. Now
Ho depends only on t and the Weyl group Wo, not on the root system R~. We
may therefore replace R~ by R and A v by A, and the basis a1, ~ ~ ~ ar of R~ by



the opposite basis -al, ~ ~ ~ , -ar of R. This gives us the operators Ti of (4.6) for
1 ~ i  r, and they will by our construction automatically satisfy the braid relations

(3.2) and Hecke relations (4.1). But then, if we define To as in (4.6), all the relations
(4.2) and (4.3) will be satisfied, and we have a representation of H on A.

4.9. Let f E Then f (Y) maps Ao into Ao.

This follows without difficulty from 4.5 and 4.6.

From 4.6 we have an action of A~ = K[PV] on A = K[P] , with e~ (A E P~)
acting as Y~’. Except in simple cases it appears not to be possible to make this
action explicit, i. e. we cannot calculate explicitly. However, it is possible to
calculate the "leading term" of in a sense now to be described, and it will

appear that this will be sufficient for our purposes.

For this purpose we shall define a partial ordering on the weight lattice P which

extends that defined by (1.4). If A E P, let A+ denote the unique dominant weight
in the Wo-orbit of A, and define (A, ~c E P)

4.10. A > /~ if and only if either i) A+ > ~+, or ii) A+ = ~u+, and ~u - ~ G Q+.

Thus, in a given Wo-orbit, the antidominant weight is highest.
Next, for ~c G P, let

where e(x) = 1 if x > 0 and 6-(~) = -1 0; and let

Then we have

4.13. 

where by lower terms is meant a linear combination of the exponentials ev such that



5. CHEREDNIK’S SCALAR PRODUCT

The symmetric scalar product f,g~k on A defined in § 1 is not suitable in the
present context. With k a non-negative integer as before, let

Explicitly (see (2.6)) S(k) consists of the affine roots a = a + (n + x(a))6 for a E R
and n = 0,1, ~ ~ ~ , k - 1. Now define

and if f E A, say f == L fa e~ with coefficients fa E K, let

where h is the image of under the automorphism q q-1 of K. Thus we have
= e-a for all a E S. We now define

for e A, where as in § 1 the square brackets denote the constant term. This

scalar product (due to Cherednik) is non-degenerate and hermitian (relative to the
involution q ~ ?~ of ~), because the product (5.1) defining Ck contains an even
number of terms, and therefore Ck = Ck .

The advantage of this scalar product is contained in the following proposition
[C1] :

5.3.- Let w e W. Then the adjoint ofT(w) for the scalar product (5.2) is 
i. e. we have

for all f , g E A. In particular, the adjoint of Y~ (a E is Y-~‘, and the adjoint
of u(Y), where u E A v, is u(Y).

Proof : It is enough to show that the adjoint of Ti (resp. W E 0) is T-1i (resp.
w-1), and this is verified directly from the definitions.

Finally, when restricted to Ao = the scalar product (5.2) is closely related
to the symmetric scalar product (1.2). Namely :



5.4.- For all Ao we have

where g~ _ (g)^’, and c~ depends only on k (and not on f, g).

Proof : From the definitions of Ck and Ak it follows that

where N = Card(R+). Now (5.4) follows from the identity [M2]

where W0(qk) is the Poincaré polynomial ( loc. cit. ) of Wo.

(Explicitly, Ck = Wo(qk).)

Then the same identity (5.5) can be used to prove

5.7.- For all f, g E Ao we have

6. ORTHOGONAL POLYNOMIALS AGAIN

If f E say f =03A3 f03BB e03BB, and  E P, we define

thus regarding f as a K-valued function on P.

As already remarked in §1, the polynomials PÀ E Ao , where A E P+, are
uniquely determined by the two conditions :



i) Pa = lower terms,

ii) (Pa, = 0 for ~C E P+, ~,  .~.

(We can replace (Pa, by (Pa, in it) by virtue of (5.4).)

Now let f E Ao and consider f (Y) where J-L E P+. Since

for the ordering (4.10), where wo is the longest element of Wo, it follows from (4.13)
and the definition (6.1) that

Now is Wo-symmetric, by (4.9), and since = + kp), we
have = + kp). ° Hence

By (5.3) the adjoint of f (Y) is f (Y). Hence if ~, E P+, ~,  A, we have

which is zero by (6.2) and the definition of PÀ. It follows that f (Y) Px is a scalar
multiple of Pa, namely (by (6.2) again)

for all f E Thus the PÀ diagonalize the action of Ao on Ao, and it follows from
(6.3) that they are pairwise orthogonal :



by (6.3) and (5.3). Since A ~ we can choose f E Ao so that f (~+kp) ~ 
Hence (Pa, = 0 and therefore also (Pa, Pw)k = 0 by (5.4). This proves (1.5).

Next, for each A E P, there is a unique element Ex E A satisfying the two
conditions :

i) Ex = e~+ lower terms,
ii) = 0 for all J-L  A.

If f E A v, it follows from (5.3) that

which is zero if ~,  A, by (4.13). Hence f (Y) Ex is a scalar multiple of Ea, namely
(by (4.13) again)

Thus the Ex diagonalize the action of A~ on A, and the same argument as in

(6.4) shows that they are pairwise orthogonal :

One shows next that if A E P is such that A 7~ Si A, then Ti Ex is a linear

combination of Ex and with coefficients that can be explicitly computed.
From this and (6.5), it follows that for each A G P+, the K-subspace of A

spanned by the E~, ~ G Wo A, is stable under the action of H.

Consider now the operators

on A, where f(w) is the length of w G Wo. We have



for 1  i  r. From (6.7) it follows that U+ f is Wo-symmetric for all f E A (but
U- f is not Wo-skew, unless q = 1). In particular, if A E P+, then U+Ex is a scalar
multiple of PÀ (because it has the same defining properties). Hence PÀ E ~4(A), say

and the coefficients E K can be calculated explicitly : in fact

Next define, again for A E P+,

If A is not regular (i.e. if (A, = 0 for some i), then Qa = 0. We have Qa E ~4(A),
say

and as in the case of Pa, the coefficients can be calculated explicitly. In this

way (Pa, Pa)k and (Qa, can each be expressed in terms of (Ea, Ea)~, and we
obtain (A dominant and regular) :

where as before N = card(R+).

7. CALCULATION OF 

We shall now prove the scalar product formula (1.6) by induction on k, the case
k = 0 (or k = 1) being trivial. The formula (6.9) is one of the two ingredients in the
proof, and we shall now briefly sketch the other one. From now on we shall write

and QÀ,k in place of PÀ and to stress the dependence on the parameter k.

As in § 5, let



Then it follows from the definition (4.6) of T2 that

for f E A. We use this formula to prove

Proof : Suppose that (Ti +t-1) f = 0, 1  i  r. Then (7.1) shows that g = f
is killed by each Ti - t, hence is Wo-symmetric. Hence if wo is the longest element
of Wo we have f = f ), i. e.

Now 7rk and are coprime. Hence 7rk divides f in A, i. e. we have g E Ao
and hence f E ~r~ Ao. Conversely, if f - ~r~ g with g E Ao, (7.1) shows that
(Ti+t-1) f =0.

7.3. Let A E P be dominant and regular (so that ~ - p E P+). Then we have

Proof : It follows from (6.8) that (Ti + t-1) = 0 for 1  i  r, and hence by
(7.2) that for some g E Ao. Consideration of the leading terms of 
and 7rk shows that g is of the form

Now if  E P+, the highest exponential that occurs in 03C0k m  is and

since is a linear combination of the w E Wo, it follows that

for all ~c  ~ - p in P+, and this in turn implies (using 5.7)

From (1) and (2) it follows that g is a scalar multiple of and the scalar

is determined from the coefficient of 



From (7.3) and (5.7) we obtain

Together with (6.9) this gives

from which (1.6) follows by induction on k.

Finally, once (Pa, is known, it is straightforward to calculate for

any A E P. Let us write

for all s E Z. With this notation we have

for all A C P, where (as in (4.11)) = 1 for x > 0, and = 20141 for x ~ 0.

8. CONCLUDING REMARKS

The proof of the scalar product formula (1.6) sketched here is somewhat different
from that of Cherednik. It was inspired by recent work of Opdam [04], who defined
the non-symmetric orthogonal polynomials Ex in the limiting case q --~ 1 and worked
out their properties, and suggested that analogous things should exist for arbitrary
q.

Cherednik’s proof exploited what he calls the "double affine Hecke algebra",
which (as an algebra of linear operators on A) is generated by H and operators XÀ
(A E P), where Xa is multiplication by e~. In this algebra there is a symmetry as
between the X’s and the Y’s, and very recently [C2] Cherednik has made use of this
to confirm two other conjectures of the author relating to the polynomials Pa.

In this account we have restricted ourselves to affine root systems ot the type
S(R) (2.1) and a single parameter k, in an attempt to avoid drowning both author
and reader in a sea of technicalities. The general picture is that one can attach to any
affine root system S, reduced or not, a family of symmetric orthogonal polynomials



PB, and another family of non-symmetric orthogonal polynomials Ea. These depend
(apart from q) on as many parameters k as there are orbits in S under the affine
Weyl group Ws. For an irreducible S, the maximum number of orbits is 5, and is
attained by the (non-reduced) affine root systems denoted by CV Cn (n > 2) in the
tables at the end of [Ml]. Correspondingly, we have orthogonal polynomials Pa,
Ex depending on q and five parameters ki. These Pa are precisely the polynomials
defined by Koornwinder in [K], which are therefore amenable to the Hecke algebra
techniques described here. In particular, Koornwinder’s conjecture for the value of

(PB, Pa} can be shown to be correct.
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