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QUANTUM INTEGRABLE SYSTEMS

by Michael SEMENOV-TIAN-SHANSKY
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1. INTRODUCTION

A quantum mechanical system is a triple consisting of an associative al-
gebra with involution A called the algebra of observables, its irreducible
*-representation 7r in a Hilbert space 1l and a distinguished self-adjoint ob-
servable H called the Hamiltonian. Typical question to study is the spectrum
and the eigenvectors of Quantum mechanical systems usually appear
with their classical counterparts. By definition, a classical mechanical system
is again specified by its algebra of observables Ad which is a commutative as-
sociative algebra equipped with a Poisson bracket (i.e. a Lie bracket which is
a biderivation with respect to the associative algebra structure), and a Hamil-
tonian H E The spectrum of is a Poisson manifold M (whenever its
definition makes sense), and Hilbert space representations are now replaced by
restriction of functions to Poisson submanifolds (in particular, to the symplec-
tic leaves) of M . A classical system is called integrable if the commutant of
the Hamiltonian in Ad contains an abelian algebra of maximal possible rank.
(A technical definition is provided by the well known Liouville theorem.)

It is much less clear what should be called a quantum integrable system.
To a certain extent the answer remains pragmatic: one can say it’s the sort of
systems which are studied by the experts in quantum integrability! Of course,
numerous exactly solvable quantum mechanical models were studied in Quan-
tum Mechanics from its early days. Starting with the works of H. Bethe, L.
Hulthen, L. Onsager, E. Lieb an entire universe of exactly solvable models
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of Quantum Statistical Physics has been gradually discovered, these develop-
ments coming to a culminating point in the works of R. Baxter [B]. On the
other hand, and quite independently of that, there was in the late 60’s and
in the 70’s a major breakthrough in the study of classical integrable systems
which led to creation of the Classical Inverse Scattering Method. (It is virtu-
ally impossible to give here a summary of this development which was started
by the famous papers of M. Kruskal et al [GGKM] and P. Lax [L]. A good in-
troduction close to the ideas of QISM may be found in [FT2].) A synthesis of
these two independent trends was achieved in the Quantum Inverse Scattering
Method (QISM) proposed in the late 70’s by L. D. Faddeev, E. K. Sklyanin,
and L. A. Takhtajan [STF] [Fl] [F2]. The underlying algebraic struc-
tures which were implicit in QISM have proved to be extremely interesting;
among other things, this has led to the discovery of q-deformed affine algebras
and to the general theory of quantum groups [D]. The language of Quantum
Groups naturally incorporates several important aspects of QISM; however,
some of its more elaborate parts (in particular, the algebraic Bethe ansatz and
its generalizations which are used to study the spectra and the eigenfunctions
of quantum Hamiltonians) are still not too widely known and in fact, still

require much work for their proper understanding.

The origins of QISM lie in the study of concrete examples; it is designed
as a working machine which produces quantum systems together with their
spectra, the quantum integrals of motion, and their joint eigenvectors. In the
same spirit, Classical Inverse Scattering Method (along with its ramifications)
is a similar tool to produce examples of classical integrable systems together
with their solutions. Despite the great diversity of these examples, the under-
lying construction (both in classical and in quantum cases) is fairly uniform.
The first key observation is that integrable systems always have an ample hid-
den symmetry. (Fixing this symmetry provides some rough classification of
associated examples. A nontrivial class of examples is related to loop algebras
or, more generally, to their q-deformations. This is the class of examples I
shall consider below.) Two other key points are the role of (classical or quan-
tum) R-matrices and of the Casimir elements which give rise to the integrals
of motion. This picture brings together all main ingredients of the theory
(classical and quantum R-matrices, Lax operators, factorization problems);



it appears in several different guises which depend on the type of examples
in question. The simplest (so called linear) case corresponds to classical sys-
tems which are modelled on coadjoint orbits of Lie algebras; a slightly more
complicated group of examples are classical systems modelled on Poisson Lie
groups or their Poisson submanifolds. In the quantum setting the difference
between these two cases is deeper: while in the former case the hidden sym-
metry algebra remains the same, quantization of the latter requires the full
machinery of Quantum Groups. Still, for loop algebras the quantum counter-
part of the main construction is nontrivial even in the linear case; the point
is that the universal enveloping algebra of a loop algebra has a trivial center
which reappears only after central extension at the critical value of the central
charge. Thus to tackle with the quantum case one needs the full machinery of
representation theory of loop algebras. (By contrast, in the classical case one
mainly deals with the evaluation representations which allow to reduce the
solution of the equations of motion to a problem in algebraic geometry.) The
corresponding construction for an important particular model ( the Gaudin
mode~ is a recent result of B. Feigin, E. Frenkel and N. Reshetikhin 
remarkably, it allows to include into the Lie-algebraic picture the generalized
Bethe ansatz and provides natural links with Conformal Field Theory. A sim-
ilar treatment of quantum models related to q-deformed affine algebras is also
possible, although the results in this case are still incomplete. (One should
warn that much of the ’experimental material’ on Quantum Integrability still
resists general explanations. I’d like to mention in this respect deep results of
E. K. Sklyanin [S2] relating Bethe ansatz to the separation of variables.)
To fix up the ideas I shall first discuss the classical case.

2. CLASSICAL CASE

The key idea used to study classical integrable systems is to bring them into
Lax form. Let (A, M, H) be a classical mechanical system. Let M - M
be the associated flow on M (defined at least locally). Suppose that g is a Lie
algebra. A mapping L : J1~1 --> g is called a Lax representation of (A, A4 , H)
if the following conditions are satisfied:



(i) The flow 0t factorizes over g, i.e. there exists a (local) flow Ft : g -~ g
such that the following diagram is commutative.

(ii) The quotient flow Ft on g is isospectral, i.e. it is tangent to adjoint
orbits in g.

Clearly, x o LEA for any affine coordinate x on g; thus we may regard
L as an element of g 0 A; the Poisson bracket on A extends to g 0A by
linearity. Property (ii) means that there exists an element M E such

that ~{H, L~ _ (L, M~.
Let ( p, V) be a (finite-dimensional) linear representation of g. Then Lv =

p 0 id(L) E EndV 0 A is a matrix valued function on M; the coefficients of
its characteristic polynomial P(a) = det(Lv - A) are integrals of the motion.
One may replace in the above definition a Lie algebra g with a Lie group

G; in that case isospectrality means that the flow preserves conjugacy classes
in G.

There is no general way to find a Lax representation for a given system (even
if it is known to be completely integrable). However, there is a systematic

way to produce examples of such representations.
The following basic construction (summarized in Theorem 1 below) goes

back to Kostant [K] and Adler [A] in some crucial cases. Recall first of all
that the symmetric algebra S(g) of any Lie algebra g is equipped with a
natural Poisson bracket which extends the Lie bracket on g (it is sometimes
called the Lie-Poisson bracket of g) ; its center coincides with the sub algebra
I = S(g)g of adg-invariants in S(g) (called Casimir elements). The elements
of I thus generate trivial dynamics in S(g) . However, one may still use Casimir
elements to produce nontrivial equations of motion if the Poisson structure on

S(g) is properly modified. The formal definition is as follows. Let r E Endg
be a linear operator ( classical r-matrix) satisfying the modified classical Yang-



Baxter identity

Then (1) implies that (2) is a Lie bracket; let gr be the corresponding Lie

algebra (with the same underlying linear space). Put r~ = 2(r ~ id); by (1),
rt : gr - g are Lie algebra homomorphisms. Extend them to Poisson algebra
morphisms S(gr) - S(g) (denoted by the same letters). These morphisms
also agree with the standard Hopf structure on S(g) , S(gr) . Define the action

where Ax = ~ x~l~ ~ ~~2~ is the coproduct and a - a’ is the antipode map.

Theorem 1 (i) S (g) is a free graded S(gr)-module generated by 1 E S (g) .
(ii) Let i :S (g) - S (gr) be the induced isomorphism of graded linear spaces;
its restriction to I = S(g)g is a morphism of Poisson algebras. (iii) Assume,
moreover, that g is equipped with a nondegenerate invariant bilinear form ; the
induced mapping g~ - g defines a Lax representation for all Hamiltonians

H = i(H), H E °

The most common examples of classical r-matrices are associated with
Manin triples. By definition, it is a triple (a, b, c) consisting of a Lie algebra
c equipped with a nondegenerate invariant inner product and two isotropic
Lie subalgebras a, b c c such that c = a+b as a linear space. Let Pa, Pb
be the projection operators associated with this decomposition; the operator
r is skew and satisfies (1); moreover, the Lie algebra cr splits into
two parts, cr ci a e9 b. Let us choose A = S(a) as our algebra of observables.
The inner product on c sets up the isotropic subspaces a, b into duality; let
L E b 0 a C b 0 S(a) be the associated canonical element; alternatively,



we may regard L as an embedding a* 2014~ b. Let P : S(c) - S(a) be the
projection onto S(a) in the decomposition

Corollary 1 (i) The restriction of P to the subalgebra I = of Casimir
elements is a Poisson algebra homomorphism. (ii) L defines a La~ represen-
tation for all Hamiltonian equations of motion defined by the Hamiltonians
H = P(H) , H E I. (iii ) The corresponding Hamiltonian flows on b c c

preserve intersections of coadjoint orbits of a with the adjoint orbits of c.

One sometimes calls L universal Lax operator; restricting the mapping L :
a* - b to various Poisson submanifolds in a* we get Lax representations for

particular systems.
Theorem 1 may be applied to finite dimensional semisimple Lie algebras [K].

However, its really important applications are connected with loop algebras,
which possess sufhciently many Casimirs. As a matter of example, let us
describe the so called generalized Gaudin model (its quantum counterpart
was originally proposed in [G] ); the associated Manin triple is related to

the Mittag-Leflier problem on CPI. Later on we shall also discuss quantum
Gaudin model.

Let g be a complex simple Lie algebra. Fix a finite set D = ..., c

C C CPl and let g(D) be the algebra of rational functions on CPl with
values in g which vanish at infinity and are regular outside D . Let gzs =

g Q9 C((z - z2)) be the localization of g(D) at zi E D. Put gD = ~zi~Dgzi.
There is a natural embedding g(D) ~ gD given by the Laurent expansion.
Put gj: = g Q9 C [[z - Zi]], gD = gza. Then

as a linear space. Fix an inner product on g and extend it to gD by setting

Both subspaces g(D), gD are isotropic with respect to the inner product (5)
which sets them into duality. Thus (gD, gb, g(D~~ is a Manin triple. The lin-
ear space g(D) may be regarded as a g+D-module with respect to the coadjoint



representation. The action of gt preserves the natural (Z+)N-filtration on
g(D) by the order of poles. In particular, rational functions with simple poles
form an invariant subspace g(D)i C g(D). Let gt+ C gt be the subalgebra
consisting of formal series without constant terms. Put g~ _ g)+;
clearly, gD+ is an ideal in gt and its action in g(D)i is trivial. The quotient
algebra is isomorphic to gN = e9z,e Dg. The inner product (5) sets the linear
spaces g(D)1, gN in duality. Let L(z) E g(D)1 ® gN be the canonical element;
we shall regard L(z) as a matrix-valued rational function with coefficients in
gN C Let be an orthonormal basis in g. Fix a faithful linear

representation (p, V) of g; it extends canonically to a representation (p, V(z))
of the Lie algebra g(z) = g 0 C ( z ) in the space V(z) = V 0 Cxx ( z ) . Put

Matrix coefficients of Lv(z) generate the algebra of observables The

Poisson bracket relations in this algebra have a nice expression in ’tensor
form’, the brackets of the matrix coefficients of Lv forming a matrix in
EndV @ EndV with coefficients in C(u, v) @ S(gN); it is explicitly given by
the following formula (which was suggested for the first time by Sklyanin [Sl]
and was the starting point of the whole theory):

where rv(u, v) is the rational r-matrix,

Notice that rv(u, v) is essentially the Cauchy kernel solving the Mittag-Lefher
problem on CPl with which we started.

Corollary 1 may now be specialized in the following way which shows that
spectral invariants of the Lax operator L(z) may be regarded as ’radial parts’
of the Casimir elements.

Clearly, we have gD = g(D)+gN +g1J+ and hence

Let y : S(gN) be the projection map associated with this decompo-
sition.



Proposition 1 The restriction of ~y to the subalgebra S(gD)gD of Casimir
elements is a morphism o f Poisson algebras; under the natural pairing S(gN ) x

C induced by the inner product (5) the restricted Casimirs coincide
with the spectral invariants of L(z).

One should take some caution, as Casimir elements do not lie in the sym-
metric algebra S(gD) itself but rather in its appropriate local completion;
however, their projections to are well defined. The mapping ~y is an

analogue of the Harish-Chandra homomorphism; its definition may be ex-

tended to the quantum case as well.

Corollary 2 Spectral invariants of L(z) are in involution with respect to the
standard Lie-Poisson bracket on gN; L(z) defines a La~ representation for any
of these invariants (regarded as a Hamiltonian on (gN)* ^~ gN,.

The generalized Gaudin Hamiltonians are, by definition, the quadratic
Hamiltonians contained in this family; one may take, e.g.

(Physically, they describe, e.g., bilinear interaction of several ’magnetic mo-
menta’.)

Corollary 2 does not mention the ’global’ Lie algebra gD (and may in fact
be proved by elementary means). However, of the three Lie algebras involved
it is probably the most important one, as it is responsible for the dynamics.
It is this ’global’ Lie algebra that may be called the hidden symmetry algebra.
The characteristic equation det(Lv(z) - A) = 0 associates to the Lax oper-

ator L ( z ) an affine algebraic curve (more precisely, we get a family of curves
parametrized by the values of commuting Hamiltonians); this switches on the
powerful algebraic-geometric machinery and makes the complete integrability
of the generalized Gaudin Hamiltonians almost immediate.

Remarks. 1. In the exposition above we kept the divisor D fixed. A more
invariant way is of course to use adelic language. Thus one may replace the

algebra gD with the global algebra gA defined over the ring A of adeles of

C ( z ); fixing a divisor amounts to fixing a Poisson subspace inside the Lie

algebra g(z) of rational functions (which is canonically identified with the



dual space of the subalgebra The use of adelic freedom allowing to add
new points to the divisor is essential in the treatment of the quantum Gaudin
model.

2. Further generalizations consist in replacing rational r-matrix with more
complicated ones. One is of course tempted to repeat the construction above
replacing CPt with an arbitrary algebraic curve. There are obvious obstruc-
tions which come from the Mittag-LefHer theorem for curves: the subalgebra
g(C) of rational functions on the curve C does not admit a complement in gA
which is again a Lie subalgebra; for elliptic curves (and g = this prob-
lem may be cured [BD] by considering quasiperiodic functions on C, and in
this way we recover elliptic r-matrices which were originally the first example
of classical r-matrices ever considered! ([Sl])

3. Another, and much more important extension of this picture, is to ob-
serve that the Poisson bracket defined on g(z) is a linearization of a quadratic
Poisson bracket defined on the group G(z) (we choose a group G with the Lie
algebra g and regard G(z) as an affine algebraic group defined over C ( z ) ) .
Fixing again a faithful representation of G we may define this Poisson bracket
on the affine ring of G(z) by the following formula ]

where we regard the matrix coefficients of Lv(u) as generators of the affine
ring Aaff of G(z). The bracket (9) known as the Sklyanin bracket is multi-
plicative, i.e. the coproduct A : is a morphism of Poisson
algebras. In other words, the group G(z) equipped with the bracket (9) is a
Poisson-Lie group. Rational functions with prescribed divisor of poles form a
finite-dimensional Poisson submanifold in G(z); generic Poisson submanifolds
correspond to functions with simple poles which should now be written in
multiplicative form

Spectral invariants of ’Lax matrices’ of this type again generate completely
integrable Lax equations. It may be shown (although it is less evident than
before) that these spectral invariants are restrictions to G(z) of formal Casimir



elements associated with the global group GA. So virtually all elements of
the ’linear’ picture admit a generalization to the quadratic case.

Multiplicativity of the Sklyanin bracket has still another asset, for it matches
perfectly with the kinematics of lattice systems in statistical mechanics. It is
natural to assume that the phase space of a multiparticle system associated
with a one-dimensional lattice F = Z/NZ is the product MN = M x ... x M
of one-particle spaces. Let M = G(z) be the Poisson-Lie group of the pre-
vious example. The product m : G(z) x ... x G ( z ) --~ G(z) is a Poisson map
(it is called monodromy map in the present context); it allows to pullback in-
tegrable Hamiltonians on G(z) to The pull-backed Hamiltonians still
remain integrable; this may be regarded as the main content of the Inverse

Scattering Method (in this slightly simplified setting). Multi-pole Lax ma-
trices (10) naturally arise as monodromy matrices associated with single-pole
matrices on the lattice. The study of Lax systems on the lattice thus breaks

naturally into two parts: (a ) Solve the Lax equation for the monodromy. (b )
Lift the solutions back to G(z)N. The second stage (by no means trivial) is
the inverse problem sensu strictu.

3. QUANTUM CASE. THE GAUDIN MODEL

Speaking informally, quantization consists in replacing Poisson bracket rela-
tions with commutation relations in an associative algebra. The standard way
to quantize the algebraAd = S(a) is to replace it with the universal envelop-
ing algebra U(a). whenever there is a nice correspondence between coadjoint
orbits and representations, we may also quantize particular systems obtained

by specialization of S(a) to these orbits. A much more delicate problem is to
construct commuting quantum Hamiltonians and to determine their spectra.

Let us consider again the Gaudin model. Here the algebra of observables

is simply Let VÀ be a finite-dimensional highest weight representation
of g with dominant integral highest weight A. Let A = (Ai, ...AN) be the set
of such weights; put Vx = The space Vx is a natural Hilbert space
associated with the Gaudin model; so the ’kineniatical’ part of quantization

problem in this case is fairly simple. Let us fix also an auxiliary representation

( p, V). By analogy with the classical case we may introduce the quantum La~



operator

the definition remains exactly the same, but now we embed gN into the uni-
versal enveloping algebra U(gN) instead of symmetric algebra S(gN). The
commutation relations for Lv(z) have the form

where the l.h.s. is now a matrix of true commutators. The key point in (12)
is the interplay of comm utation relations in the quantum algebra and

the auxiliary matrix algebra EndV(z). Formula (12) was the starting point
of QISM (as applied to models with linear commutation relations). Put

using (12) it is easy to check that S(u) form a commutative family of Hamil-
tonians (called Gaudin Hamiltonians) in U (gN) [J]. An important property
of this commuting family is that it possesses at least one ’obvious’ eigenvector
I 0 > E H, the tensor product of highest weight vectors in it is usually
called the vacuum vector. One of the key ideas of QISM is to construct
other eigenvectors by applying to the vacuum creation operators which are
themselves rational functions of z. This construction is called algebraic Bethe
ansatz. Assume that g = sl(2) and let ~F, F, H~ be its standard basis. Put

where F(i) acts as F in the i-th copy of sl(2) and as id on other places. The
Bethe vector is, by definition,

The Lax matrix (11) applied to ] wl, w2, ...wm > becomes triangular; this

yields after a short computation



and sm(u) is a rational function,

(The constant cY depends on the choice of V.) If all fj vanish, W2, ...wm >

is an eigenvector of S(u) with the eigenvalue sm(u); equations

are called the Bethe ansatz equations. (Notice that (17) is precisely the con-
dition that sm(u) is nonsingular at u = 

For general simple Lie algebras the study of spectra of the Gaudin Hamil-
tonians becomes rather complicated; one way to solve this problem is to treat
it inductively by choosing in g a sequence of embedded Lie subalgebras of
lower rank and applying the algebraic Bethe ansatz to these subalgebras. An
alternative idea is to interprete the Hamiltonians as radial parts of (infinite
dimensional) Casimir operator of the ’global’ Lie algebra gD. One observes,
first of all, that Theorem 1 and Corollary 1 remain valid formally in quantum
case; one has just to replace in their formulation symmetric algebras with
the corresponding universal enveloping algebras (cf. [K]). More precisely,
let g, gr be as in Theorem 1, let U(g), U(gr) be the corresponding universal
enveloping algebras. Let Z C U(g) be the center of U(g). Extend the homo-
morphisms r~ : gr - g to the universal enveloping algebras and define the
action !7(g) 2014~ U(g) by the same formulae (3) as before.

Theorem 2 (i) U(g) is a f ree filtered U (gr) -module generated by 1 E U(g).
(ii ) Let i:U(g) --~ U(gr) be the induced isomorphism of filtered linear spaces;
its restriction to Z C U(g) is an algebra homomorphism.

Corollary 3 Let (a, b, c) be a Manin triple, U(a), U(b), U(c) the correspond-
ing universal enveloping algebras. Let P : U(c) - U(a) be the projection map
associated with the decomposition U(c) =U(a) E~ U(c)b; the restriction of P
to the center of U(c) is an algebra homomorphism.



It is impossible to apply these theorems immediately in the affine case,
since the center of U(gD) is trivial. However, the situation can be amended
by first passing to the central extension of U(gD) and then considering the
quotient algebra Uk(gD) = U (gD ) / (c - k). It is known that for the critical
value of the central charge k = -h~ (here hV is the dual Coxeter number of
g) the (appropriately completed) algebra possesses an ample center

(for each ’local’ factor in it is isomorphic to the
classical W-algebra associated with the Langlands dual of g [FeiFr]). More-
over, the Gaudin Hamiltonians are radial parts of the appropriate Casimir

operators. Let us describe this construction (due to B.Feigin, E.Frenkel and
N.Reshetikhin [FeiFrR]) more precisely.

Let the Lie algebras gD, gjy, g(D) be as above. It will be convenient
to add one more point ~u~ to the divisor D and to attach to it the trivial
representation Yo of g. Thus we write D’ = D U ~u~ , etc. Let (;J be the

2-cocycle on g~ defined by

Let gD’ = gD, e9 Cc be the central extension of gD’ defined by this cocycle.
Note that since the restriction of w to the subalgebra g(D’) C gD’ is zero,
the algebra g(D’) is canonically embedded into gD~ . Put glY = Cc.

Fix a highest weight representation V(a,o) _ ®z;EDYa; ® vo of the Lie algebra
g1J,/gt/ as above and let be the associated representation of

g~, on which the center Cc acts by multiplication by k E Z. Let be the

induced representation of gD~,

There is a canonical embedding m--> 1 ~ v. Let (V$)* be the dual
of Va, Ha C (V~)* the subspace of g(D’)-invariants. Decomposition (4)
immediately implies that Ha is canonically isomorphic to V~. Let H c H).0V).
be the canonical element; it defines a natural mapping 
(In Conformal Field Theory (cp~~ are usually called correlation functions.)
For any x E let E EndV03BB be the linear operator defined by the
composition mapping v ~ (x(l 0 E VÀ.



Now suppose that k = -h~ ; let T be the canonical element which cor-
responds to the inner product (5) in g((z)). Fix an auxiliary linear repre-
sentation (p, V) of g; it extends naturally to a representation of g((z) ) in
V((z)) = V ® C((z)). Put formally Tv(z) = (id ~ p)T (although Tv(z) does
not belong to U(gz @ EndV((z)), it still makes sense as a formal series in z
infinite in both directions). Let Jv(z) = trv : Ty(z)2 : be the corresponding
Sugawara current (here :: means usual normal ordering with respect to decom-
position into positive and negative powers of z). For the critical value of the
central charge all coefficients of Jv(z) are central in Let
us embed (g(z))) into U -hV (gDr) sending it to the extra place ~u} ~ D’
to which we attached the trivial representation of g.

Proposition 2 S(u) = coincides with the Gaudin Hamiltonian.

Remark. Besides quadratic Hamiltonians associated with the Sugawara
current there are also higher commuting Hamiltonians which may be obtained
using the methods of [FeiFr].

This construction (if a bit tedious) presents several advantages. One is

conceptual, as we could unravel the role of Casimir elements for the study of
(one class of) quantum integrable models. Moreover, we identified the Hilbert
space of the models in question with the space of CFT correlators at the criti-
cal value of the central charge (this value corresponds to the semiclassical limit
in CFT). The technical advantage is that now the study of spectra and con-
struction of the Bethe creation operators may be lifted to the ’big’ space. This
is the main content of the recent paper of Feigin, E.Frenkel, and Reshetikhin
[FeiFrR]. An important ingredient of their construction is the use of ’adelic’
freedom: one may attach extra factors to the big space (these factors corre-
spond to the poles of the creation operators) without affecting the reduced
space. It appears to be more convenient technically to deal with Wakimoto
modules instead of Verma modules for each ’local’ factor in and

to replace the finite dimensional representation Vx = with the corre-

sponding Verma module Ma. (The generalized Bethe equations appear to be
universal and Bethe vectors in Ya are projections of Bethe vectors in To

parametrize a Bethe vector choose first a set ..., wm~, w~ E C, and assign
to each wj a set of simple roots ai. 1N , one for each copy of g in gN. Let Ff;



be the corresponding Chevalley generator of g acting nontrivially in the i-th

copy of g. The straightforward generalization of the Bethe creation operator
(14) to the higher rank case is ([BF])

The problem with (20) is that these operators no longer commute with each
other. However, their counterparts in the big representation space (acting each
in its own local factor attached to wj E C) are already decoupled; acting on
the vacuum they create singular vectors of imaginary weight. The conditions
which assure it are precisely the generalized Bethe equations which read

Bethe vectors in the reduced space are computed as correlation functions
which correspond to the tensor product of these singular vectors.

Another important point is the connection with the Knizhnik-Zamolodchikov
equations. Recall that this is a system of equations satisfied by the correla-
tion functions for an arbitrary value of the central charge; the critical value
c = -h~ corresponds to the semiclassical limit for the KZ system (small pa-
rameter before the derivatives). The outcome of this is two-fold: first, the
Bethe vectors for the Gaudin model appear naturally in the semiclassical
asymptotics of the solutions of the KZ system [RV]. Moreover, the exact in-
tegral representation of the solutions (for any value of the central charge) also
involves the Bethe vectors [FeiFrR].

4. QUANTUM INTEGRABLE SYSTEMS AND QUANTUM
GROUPS

For an expert in Quantum Integrability the Gaudin model is certainly sort of
a limiting special case. The real thing starts with the quantization of quadratic
Poisson bracket relations (9). This is a much more complicated problem which
eventually requires the whole machinery of Quantum Groups (and has led to



their discovery). The substitute for the Poisson bracket relations is the famous
relation

where R(u) is the quantum R-matrix satisfying the quantum Yang-Baxter
identity

To bring a quantum mechanical system into Lax form one has to arrange
quantum observables into a Lax matrix L(u) (which is a rational function of
u) and to find an appropriate R-matrix satisfying (22), (23). First examples
of quantum Lax operators were constructed by error and trial method; in
combination with the Bethe ansatz technique this has led to explicit solution
of important problems [STF] [FT1] [F2y. The algebraic concept which
brings order to the subject is that of quasitriangular Hopf algebra [D]. The
main examples of quasirtiangular Hopf algebras arise as q-deformations of
universal enveloping algebras associated with Manin triples. Remarkably, the
general pattern represented by Theorems 1, 2 survives q-deformation.

Remark. In the context of Quantum Integrability the term ’Quantum
Groups’ now in current use is slightly misleading; as a matter of fact, the de-
formation parameter q has nothing to do with the Planck’s constant h which
distinguishes quantum systems from the classical ones; we have seen already
that certain quantum integrable systems (e.g the Gaudin magnets) are related
to ordinary Lie algebras. The real reason to deal with the q-deformed case is
that the Hopf structure which is inherent to the quasitriangular Hopf algebras
is adapted to the kinematics of multiparticle systems (see below).

Definition 1 Let A be a Hop! algebra with coproduct 0 and antipode S; let
A’ be the opposite coproduct in A. A is called quasitriangular if

for all x E A and for some distinguished invertible element A (uni-
versal R-matrix) and, moreover,



(I use standard tensor notation to denote different copies of spaces concerned. )
Identities (25) imply that R satisfies the Yang-Baxter identity

Let A° be the dual Hopf algebra equipped with the opposite coproduct (in
other words, its coproduct is dual to the opposite product in A). Put R+ =
R, R- = ~(R-1 ) (here a is the permutation map in A ® A, a(x ® y) = y ® x)
and define the mappings R~ : A° --~ A : f - ( f 0 id, R~~ ; by (25) R~ are
Hopf algebra homomorphisms. Define the action A° 0 A - A by

A is called f actorizable if A is a free A0-module generated by 1 E A. (Let
us denote the corresponding linear isomorphism A° --~ A by F for future
reference.) It is easy to see that Theorem 2 remains valid for factorizable

Hopf algebras. There is a more interesting way to state this theorem which
brings to light the role of quantum Lax operators and the parallels with the
classical case. Main applications of this theorem are connected with quantized
loop algebras; the two important classes are quantum affine Lie algebras and
the Yangians [D]. For concreteness I shall consider only the first class; the
case of the Yangians requires more effort, as there is still no good realization
of their doubles (see, however, [Sm] ). Accurate formulation will require some
extra notation.

Let g be a simple Lie algebra. Let g be the corresponding extended affine
Lie algebra containing both the central element c and the conjugate scaling
element d. Let A = Uq(g) be the corresponding quantum affine algebra.Fix a
finite dimensional representation (V, pv) of Uq(g);for z E C* let be the

representation of A given by pv(z) (a) = p(zdaz-d. Let A° be the dual of A
with the opposite coproduct. Let R be the universal R-matrix of A.
Take A° as the algebra of observables. Let L E A be the canonical

element. Let = 

pw(z))R. We may call LY(z) E Endv ® A° the universal quantum Lax
operator (with auxiliary space V). Fix a finite-dimensional representation 7r
of A°; one can show that (id ® 7r) Lv(z) is rational in z. (Moreover, Tarasov



[T] showed how to use this dependence on z to completely classify finite-
dimensional representations of A°.) Property (24) immediately implies that

Moreover, satisfies the Yang-Baxter identity (23).
Let H be the Cartan subgroup of G. Fix h E H and put = 

then Elements are usually called (twisted)
transfer matrices.

Remark. Twisting the transfer matrix by h E H is of course possible in
the classical case or for the Gaudin model as well; for Uq(g), however, there
is a natural twist (which comes from the square of the antipode), and so it is
worth introducing the generic twist from the very beginning. For h = 1 
is the simplest ’spectral invariant’ of the quantum Lax operator L~(v).

It is convenient to extend A by adjoining to it group-like elements which
correspond to the extended Cartan subalgebra h = h e9 Cd in g. Let jFf =
H x C* be the corresponding "extended Cartan subgroup" in A generated by
elements h = gB A E h, t = qkd. Let H x A - A be its natural action on A
by right translations, H x A° -~ A° the contragredient action. The algebra
A = Uq(g) is factorizable; let F : be the isomorphism induced by the
action (27); for s E hl put FS = F o s. It is natural to compute the image of
the universal Lax operator Lv(z) E EndY(z) ® A° under the ’factorization
mapping’ (id 0 FS) ; this image is a formal series in z which is infinite in both
directions, but its coefficients are well defined elements in Endv ® A. Put

it is easy to see that

moreover, if s = h-1t, where h c H and t = qkd, we have also



Put tv = = clearly, we have Let

U be any highest weight A-module of the critical level k = Let 2p be
the sum of positive roots of g.

Theorem 3 (i) [RS] Suppose that s = q-pq-hVd. Then all coefficients ofto(z)
are central in U. (ii) For any h E H we have = 

Thus the duality between Hamiltonians and Casimir operators holds for
quantum afhne algebras as well. This allows to anticipate connections between
the generalized Bethe ansatz, representation theory of quantum affine algebras
at the critical level and the q-KZ equation [FrR], [Sm]. The results bearing
on these connections are already abundant [DE] , [TV] , although they are still
not in their final form.

As already noticed in the classical context, the Hopf structure on A° is
perfectly suited to the study of lattice systems. Let ~~N} : A° --~ 
be the iterated coproduct map. (i)N AD may be interpreted as the algebra of
observables associated with a multiparticle system. Put 15(z) = 
Laurent coefficients of provide a commutative family of Hamiltonians in
(i)N AD. Let in : ~N A0 be the natural embedding, in : x H 1 ® ... ® x ®
... 0 1; put Lv = (id 0 in) Lv. Then

Formula (30) has a natural interpretation in terms of lattice systems: Lv
may be regarded as ’local’ Lax operators attached to the points of a periodic
lattice r = Z/NZ; commuting Hamiltonians for the big system arise from
the monodromy matrix Mv = n Lv associated with the lattice. Finally, the
twist h E H defines a quasiperiodic boundary condition on the lattice. The
study of the lattice system again breaks into two parts: (a) Find the joint
spectrum of iv(z). (b) Reconstruct the Heisenberg operators corresponding to
’local’ observables and compute their correlation functions. This is the Quan-
tum Inverse Problem (profound results on it are due to F.Smirnov (Sm~.)
Remarks. 1. The realization of the Casimirs described in Theorem 3 is a

result of a relatively long development started by Faddeev, Reshetikhin and



Takhtajan [FRT] ; they introduced the concept of ’universal Lax operator’ and
used the commutation relations for (29) to give an alternative definition of
quasitriangular Hopf algebras corresponding to classical simple Lie algebras
and to describe their center.

2. One may have the impression from the discussion above (and espe-
cially after reading Drinfeld’s report [D]) that Hopf structure is a sine qua
non condition for the study of integrable systems. This is not exactly the
case. The properties of D~N~ : A° --~ imply that quantum observables
corresponding to different copies of A° commute with each other. There are
many physically interesting examples when it is not true. An extension of the
outlined formalism which drops out this restriction is possible. Interesting
nontrivial examples were found recently by Faddeev and Volkov [FV1.

Let us finally return once again to the construction of quantum eigenstates
described in Section 3 for the sl(2) Gaudin model. One important point of
this construction is the existence of a vacuum, or a reference state (in the re-
alization using Casimir operators at the critical level this vacuum is the image
of the highest weight vector). There are many physically interesting models
where there is no such vacuum vector, and the Bethe ansatz technique does
not apply immediately. These problems certainly represent a major challenge
from the point of view of representation theory. Remarkably, the direct meth-
ods of QISM still work in this situation. Sklyanin [S2] proposed an advanced
version of the Bethe ansatz (the functional Bethe ansatz) which is equivalent
to a separation of variables for the commuting quantum Hamiltonians; this
technique is still mainly confined to the rank one case, but even so it presents
striking parallels with the classical separation of variables based on the Jacobi
inversion problem for abelian integrals (cf. also [Kuz], [HW]).

I would like to thank L. D. Faddeev, N. Yu. Reshetikhin, and E. K. Sklyanin
for many valuable advices during the preparation of this report; special thanks
are due to M. Flato for his criticism of the draft text.
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