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THE ETA INVARIANT

[some recent developments]

par Werner MÜLLER
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0. INTRODUCTION

0.1. The eta invariant was introduced and studied by Atiyah, Patodi and Singer
in a series of papers on spectral asymmetry [APSl], [APS2], [APS3]. In this report
we will discuss some new developments connected with the eta invariant. We will
concentrate mainly on aspects related to index theory.

The eta invariant is defined for every elliptic selfadjoint differential operator
A acting on sections of a vector bundle E over a closed manifold Y. Let À; run
over the eigenvalues of A. Then the eta function of A is defined as

wheres G C. The series is absolutely convergent in the half-plane > 

m being the order of A. By Mellin transform, it follows that

The heat equation method implies that, as t --3 0, there exists an asymptotic
expansion

where n = dim Y. Using this asymptotic expansion, it follows that the eta func-
tion admits a meromorphic continuation to the whole complex plane. It is a

S. M. F.
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nontrivial result that is always holomorphic at s = 0 [APS3], [Gil]. This
result needs global arguments because the local residue at s = 0 of may
not vanish [APS3], [Gil]. This is in contrast to the case of the zeta function

(B(s) = 03BB-sj of a positive elliptic operator B. The special value is

then called the eta invariant of the operator A. An important feature of the eta
invariant is that it is not locally computable. However, the variation is locally
computable.

0.2. The original purpose which led Atiyah, Patodi and Singer to the invention
of the eta invariant was to generalize Hirzebruch’s signature theorem to the case
of manifolds with boundary. Recall that for a closed oriented C°° manifold X
of dimension 4k Hirzebruch’s signature theorem [Hil] states that the signature
Sign(X) of the nondegenerate quadratic form on H2k(X; R), which is defined by
the cup product, is given by the formula

Here L(p1, ..., p~) is the Hirzebruch L-polynomial in the Pontrjagin classes of X
and [X] E H4k(X ; Z) is the fundamental class of X. In his study of Hilbert modular
surfaces [Hi2], Hirzebruch introduced certain topological invariants - called the
signature d e f ect - for cusp singularities of a Hilbert modular surface. Recall that
a Hilbert modular surface is the compactification of a complex surface of the form
rBH2 where H is the upper half-plane and F is a discrete subgroup of SL(2, R)2
which is commensurable with the Hilbert modular group of a real quadratic field.
For a given cusp singularity p E rBH2 one considers a neighborhood U of p. The
singularity can be resolved and in this way, one obtains a compact 4-manifold X
with smooth boundary Y. The tangent bundle TX restricted to the boundary
Y is parallelizable and therefore, can be pushed down to an SO(4)-bundle over
X/K. Let p1 E H4(X, Y ; Q) be the first Pontrjagin class of this bundle. Then the
signature defect 5(p) of p is defined as

Here Sign(X) denotes the signature of the nondegenerate quadratic form induced
by the cup product on = Im(H*(X, Y; R) - H*(X; R)). The right
hand side is independent of the particular choice of a resolution of p.



Using the explicit description of the resolution, Hirzebruch was able to com-

pute the signature defect in terms of the resolution diagram. In this way he showed
that 6(p) equals the value at s = 0 of a certain Hecke L-series L(s~ attached to the
cusp p. Hirzebruch then conjectured [Hi2] that a similar result holds for Hilbert
modular varieties of any dimension.

0.3. This conjecture was one of the primary motivations for Atiyah, Patodi and

Singer to investigate this problem in the wider context of Riemannian geometry.
Let X be a compact oriented 4k-dimensional Riemannian manifold with smooth

boundary Y. Suppose that the metric of X is a product near the boundary. Then
the differential geometric signature defect of Y is defined as

where L(pi, ..., p~~ is now the Hirzebruch L-polynomial in the Pontrjagin forms of
X and Sign(X) is the signature of the intersection form on It follows

from the Novikov additivity of the signature that the right hand side of (0.4) is
independent of the manifold X that bounds Y. One of the main results of 
shows that 6(Y) has an intrinsic definition: it equals the eta invariant of some
particular elliptic operator A on Y. Namely, let be the even part of the
differential forms on Y and let A : be defined by

Then A is essentially selfadjoint with respect to the canonical inner product in
Let ~Y(0~ denote the eta invariant associated to A. Then 6(Y) = -7yy(0)

and the generalization of the Hirzebruch signature theorem (0.2) to manifolds with
boundary, proved by Atiyah, Patodi and Singer in [APS1], can be stated as follows

The conjecture of Hirzebruch was proved independently by Atiyah, Donnely and
Singer [ADS] and the author ~Mu2~, [Mu3].
0.4 In the same way as (0.1) is a consequence of the Atiyah-Singer index theo-
rem, (0.5) is a consequence of an index theorem for first order elliptic operators



on manifolds with boundary The boundary conditions used by Atiyah,
Patodi and Singer are nonlocal and defined by the positive spectral projection of
the tangential part of the first order operator. Instead of the spectral boundary
conditions one may work with L2 conditions on manifolds obtain by enlarging
X in various ways. Cheeger [Cl] was the first to study L2-index problems on
noncompact manifolds. He considered manifolds with isolated metrically conical
singularities and derived the signature theorem in this context.

0.5. After the invention of the eta invariant by Atiyah, Patodi and Singer, many
interesting relations of the eta invariant with other fields of mathematics have
been discovered. As examples, we mention special values of certain L-series, the
holonomy of determinant line bundles of families of Dirac operators, L2-index
theorems on noncompact manifolds and Witten’s 3-manifold invariants.

1. THE ATIYAH-PATODI-SINGER INDEX THEOREM

1.1. Let X be a compact Riemannian manifold with C°° boundary Y, and suppose
that on a collar neighborhood I x Y C X of Y, the metric equals the product metric
du2 + gy. Let E, F be Hermitian vector bundles over X and let D : COO(X, E~ -~

F) be a first order elliptic differential operator. Furthermore, suppose that
on I x Y, D takes the form

where u is the inward normal coordinate, 1 : bundle isomorphism
and A : C°°(Y, is an elliptic operator which is symmetric
with respect to the inner product defined by the Hermitian metric of E and the
metric of Y. Then A has discrete spectrum consisting of real eigenvalues À of
finite multiplicity. Let P+ denote the orthogonal projection of L2(Y, onto

the subspace spanned by all eigenfunctions with eigenvalues a > 0. Then P+ is

a pseudo-differential operator. Let COO(X, E; P+ ) be the subspace of COO(X, E)
consisting of all sections p which satisfy the boundary conditions

Then the main result of [APS1] is



THEOREM 1.1. (Atiyah-Patodi-Singer) Let Dp+ : C°°(X, E; -P~) -~ C°°(X, F)
be the restriction of D. Then Dp+ is a Fredholm operator and its index is given
by

where WD( x )dx is the local index density for D and is the eta function (O.I~.

Note that W D (x) is the constant term in the local asymptotic expansion of

as t -~ 0. For A as above, the regularity of at s = 0 follows from the proof
of the index formula.

1.2. Now suppose that dim X = 4k. Let T : A*(J~) -~ A*(X) be defined by
Tp = for cp E AP(X). Then T is an involution and d + d* anti-

commutes with T. Let *±(X) denote the dil-eigenspaces of T. Then d + d*

interchanges and and hence defines by restriction an operator

which is called the signature operator. The signature operator satisfies (1.1~ with
A : A* (Y) - ~1* (Y~ being the operator given by

where § is either in and 6; == 1 or § belongs to and ~ = -1. One

may now apply (1.3) to compute the index of Ds with boundary conditions (1.2).
On the other hand, the index of D s is closely related to the signature of X. This
implies the signature formula (0.5).
1.3. The Atiyah-Patodi-Singer index theorem and, in particular, the signature
theorem (0.5) can be derived in different ways as L2-index theorem for elliptic
operators on noncompact manifolds. Let X = X U ((-oo, 0] x Y) be the complete
manifold obtained from X by gluing the negative half-cylinder (-oo, 0~ x Y to
the boundary of X. Using (1.1), we may extend the vector bundles E, F and the



differential operator D to X in the obvious way. Let D : C°°(X, E~ -~ C°°(X, ~’~
be the extended operator. Then D restricted to (-00,0] x Y is given by (1.1).
It was proved in Proposition 3.11, that KerDp+ is isomorphic to the

space of ~2-solutions of Dcp = 0 on X and KerDh is isomorphic to the space of
extended L2-solutions of D*cp = 0 on X, where extended solution means that on
(-oo, 0~ x Y, p can be written as

with § E Ker A and ~ E L2. The section § is called the limiting value of the
extended solution p. Let L(F) C Ker A be the subspace consisting of all limiting
values of D* on X. By the remark above, it follows especially that D has a
well-defined L2-index given by

and the two indeces are related by the formula

where = dim L(F). Thus the nonlocal boundary conditions on X can be
replaced by L2 conditions on X. The space L(F) of limiting values has a different
interpretation in terms of generalized eigenfunctions of A = DD* [Mu6]. Namely,
let Ao = + A2, regarded as operator in C°°((-oo, 0~ X Y, F). If we impose
Dirichlet boundary conditions, we get a selfadjoint extension Ao. Let A be the
closure of A in L2. Then exp(-tA) - is trace class for t > 0. Let

J : L2((-o0, 0~ x Y, F) C L2(X, F) be the inclusion. Then the wave operators

exist and are complete. Hence, the scattering operator S, associated to (~, 
and the corresponding scattering matrix S(À), À E R, exist [Kl]. Suppose that

> 0 is the smallest positive eigenvalue of A2. Then, for IÀI  S(À) is a
linear operator in Ker A which satisfies the functional equation S(À)S(-À) = Id.
In particular, for À = 0 we get an involution



Using generalized eigenfunctions, it follows that

i.e., the +l-eigenspace of 5’(0) coincides with the space L(F) of limiting values.
Thus, by Theorem 1.1, we obtain the following L2 index theorem

THEOREM 1.2. Let the notation be as above. Then

On the other hand, Theorem 1.2 can be proved directly without referring to The-
orem 1.1. For example, one may use the relative index theorem of [BMS] as
applied in [Mu3] in a more general setting. Another method is based on Callia’s
formula (cf. [St2]). In view of (1.5), this reproduces then Theorem 1.1. Melrose
[Me] has studied the case of asymptotically cylindrical metrics and derived the
Atiyah-Patodi-Singer index theorem within this setting.

1.4 A different approach was used by Cheeger [Cl], [C2]. In fact, he was the
first to study L2 index problems on noncompact manifolds. Cheeger considered
manifolds with isolated conical singularities. Let X be a compact manifold with
C°° boundary Y and let

be the metrical cone over Y. Let M = X U C(Y) be the manifold obtain by
gluing the bottom of the cone C(Y) to the boundary of X and equip M with
a Riemannian metric which coincides with the given metric on C(Y). This is

a manifold with an isolated metrically conical singularity. The noncompact Rie-
mannian manifold M is not complete. Therefore the Laplacian A on forms A*(M)
may have different closed extensions. In this case, ideal boundary conditions must
be introduced. This leads to a selfadjoint operator with pure discrete spectrum
consisting of eigenvalues of finite multiplicity. The space of L2 harmonic forms

~-l~2) (M) is naturally isomorphic to the middle intersection cohomology I H* (M)
of the one point compactification M = M U {p} where p is the cone tip. Let

D s : be the signature operator. Then the observation above
implies that



and application of the heat equation method gives the signature formula (0.5) (cf.
[C2], §6). This approach was extended by Bismut and Cheeger [BC1] to the case
of Dirac operators on manifolds with conical singularities. In this way Theorem

1.1 is reproduced from analysis on such spaces.

1.5. One may also consider other warped product metrics on R+ x Y. This means
that we consider R+ x Y equipped with a metric of the form du2 + f 2 (u)gy , where
f E COO(R+) is an appropriate warping factor. Call this Riemannian manifold

Cf(Y). Let M = X U Cf(Y) and equip M with a metric which agrees on 
with the given metric. For example, we may pick = e-’~. Then M becomes a

manifold with a cusp studied in [Mul]. For other examples see [Bri], [Br2], [Sti].
In all cases, the signature theorem (0.5) and, more generally, Theorem 1.1 can be
recovered from appropriate L2 index formulas for first order elliptic operators.

2. ETA INVARIANTS FOR MANIFOLDS WITH BOUNDARY

2.1. Let M = X Uy C(Y) be a manifold with an isolated conical singularity of di-
mension 4k-1. Consider the Laplacian A2 k- i on 2k-1-forms. If R) fl 0
one must introduce *-invariant ideal boundary conditions (cf. [C2]) to get a self-
adjoint extension which we also denote by This operator has pure point
spectrum and the heat operator is trace class. The eta function can then be defined

by

Cheeger [C2] has proved that has a meromorphic continuation to C
which is holomorphic at s = 0. Therefore, the eta invariant of M can

be defined as As stressed by Cheeger [C2], p.612, this may be regarded
as a definition for the eta invariant of the manifold with boundary X. In place
of a manifold with isolated conical singularities one may consider more general
pseudomanifolds and define eta invariants for such spaces in the same way.

2.2. Using eta invariants for piecewise flat manifolds, Cheeger obtained combina-
torial formulas for the Pontrjagin classes. For example, let X be a closed oriented

4k-dimensional Riemannian pseudomanifold with a piecewise flat metric. Then



the signature of X is given by

where the sum runs over the vertices of X and denotes the link of the vertex

~° [C2].

2.3. Another way to define eta invariants for manifolds with boundary is to use
the spectral boundary conditions of Atiyah, Patodi and Singer (cf. [DW]). Let X,
Y and E be as in section 1.1 and let D : COO(X, E) be an elliptic
first order operator which is formally selfadjoint with respect to the Hermitian
metric in E. Suppose that near the boundary, D takes the form (1.1). This means
that

Let P+ be the positive spectral projection with respect to A. By (2.1), y induces
a map, : Ker A - Ker A. Therefore, Ker A has a natural symplectic structure
defined by (x,y), x, y E Ker A, where (x,y) denotes the L2 inner prod-
uct. If Ker A ~ 0, let L C Ker A be a Lagrangian subspace, that is, L satisfies
L = Ker A and L) = 0. Let PL be the orthogonal projection onto L.
Put

Then we introduce boundary conditions for D by setting = 0 for smooth

sections § of E. This gives rise to a selfadjoint extension D L . It has pure discrete

spectrum consisting of real eigenvalues of finite multiplicity. The eta function of
DL can then be defined by the same formula (0.1) and it follows that is

a meromorphic function on C [DW], [Mu5]. For Dirac type operators, the eta
function is regular at s = 0 and the eta invariant of D L can therefore be defined as

~DL (0). It this clear that such eta invariants should be related to index formulas

for Dirac type operators on manifolds with corners.



3. THE HIRZEBRUCH CONJECTURE

3.1. As explained in the introduction, one of the main motivations for Atiyah,
Patodi and Singer to prove the signature theorem (0.5) for manifolds with smooth
boundary was a conjecture by Hirzebruch concerning the equality of the topological
signature defect of a cusp singularity of a Hilbert modular variety and the value
at zero of a certain Hecke L-function attached to the cusp.

Let F be a totally real number field of degree n and let CJ F be the ring
of integers of F. Then SL(2, OF) is called Hilbert modular group. It can be

identified with a discrete subgroup ro of SL(2,R)". In particular, SL(2, O F ) acts
properly discontinuously on the product H~ of n copies of the upper half-plane.
If x E F - E R, i = 1,..., n, denote the n different embeddings of F into R,

then the action of a ~ E SL(2,OF) on ( z 1, ~ . ~, z ~~ E Hn is given by

The quotient of Hn by this action of Fo is called a Hilbert modular variety.
The group Fo may have isolated fixed points which give rise to quotient singular-
ities. To avoid this problem, we may pass to a torsion free normal subgroup F C Fo
of finite index. In fact, we may take F to be a congruence subgroup. Then 
is a complex manifold which is noncompact. It can be compactified as analytic
space by adding a finite number of points called "cusps". Each cusp is a singular
point of The manifold has a finite number of ends Zi, i = 1, ..., m, which
are in one-to-one correspondence with the cusps pi. Each end Zi is diffeomorphic
to a half-cylinder [1, oo) x Y and Yi is a fibre bundle

where Tm denotes a torus of dimension m. The torus bundle (3.1) can be described
explicitly in terms of the number field F [Hi2]. There is an abelian subgroup Mi
of F of rank n and a group of totally positive units Vi acting on Mi such that

(Mi, Vi) determines the stabilizer r~ of the cusp Pi in F (cf. [Hi2]). If (M,V) is
any pair as above, then the L-function attached to (M,V) is defined as



where ~~1~ ~ ~ ~ fL(n) denotes the norm of p E M. The series (3.2) has an
analytic extension to the whole complex plane. There is some similarity with the
eta-function (0.1).

3.2. The conjecture of Hirzebruch [Hi2] can now be stated as follows: Let p be

a cusp singularity of fBHn and let (M, V) be the datas attached to p as above.
Then the following equality holds

where M* is the lattice dual to M and 6(p) is the signature defect of p which is
defined analogously to (0.3).

The proof of Hirzebruch’s conjecture given in [ADS] proceeds in two steps.
Using Fourier analysis along the fibres of the torus bundle Atiyah,
Donnelly and Singer identify the eta invariant 7yy(0) attached to the operator
(1.5) and L(0, M,V). The second step is to prove that 77Y(O) equals the signature
defect 6(p). This approach is closely related to the computation of the adiabatic
limit of the eta invariant r~Y(0} if the metric of Y is shrinked along the fibres. We
shall explain this connection in more detail in §4.

3.3. The proof of Hirzebruch’s conjecture given in ~Mu2~, [Mu3] is based on an
L2 index theorem for the signature operator Ds : The

L2 index of Ds is defined in the same way as in (1.5). Using the Selberg trace
formula, the following theorem was proved in ~Mu2~:

THEOREM 3.1. Let n = 2k and suppose that L(s, Mz, i = 1, ..., m, are
the L-series attached to the cusp singularities of as above. Then

Using Hirzebruch’s proportionality theorem, it follows that ..., pk~ - 0 in the
present case. Let x~2~(r,H~‘~ be the space of L2 harmonic forms of and let

H2k(2),±(0393BHn) be the ±1-eigenspaces of the involution T = (-1)k*. Then



On the other hand, ?-~~2~ (r,H’~ ~ is isomorphic to the middle intersection co-
homology of the compactification This implies that

and we get the following signature formula

For a Hilbert modular variety with a single cusp, this gives a proof of (3.3). In

general, one has to isolate cusps using more general manifolds with cusps of Hilbert
modular type [Mu3]. As a consequence one gets 7JY(O) = L(0,M*,V) for all
Hilbert modular cusps.

3.4. Satake [Sa] (see also [SO]) has considered generalizations of Hirzebruch’s
conjecture to cusps of other Q-rank one locally symmetric spaces. This case can
also be treated by the method described above [Mu4]. Ogata has proved some of
the generalizations by different methods [Og].

3.5. Instead of the signature operator one may consider other geometric operators
on and compute their L~ index. For example, this applies to the Dolbeault

operator. Using the corresponding index formula, one obtains formulas for the
dimension of the space of L2 harmonic forms of type (p, q). This

generalizes results of Shimizu [Sh]. In these cases, special values of L-functions
also occur as contributions of the cusps.

4. ADIABATIC LIMITS OF ETA INVARIANTS

4.1. The computation of the eta invariant for torus bundles of the form (3.1)
and the identification of this eta invariant with the value at s = 0 of some L-

series is closely related the study of "adiabatic limits" of eta invariants [BF2],
[C3]. These investigations were initiated by a formula, derived by Witten [Wl],
[W2], for the eta invariant of a mapping torus Z ~ M ~ S1 associated to a dif-

feomorphism 03C8 : Z -3 Z. The formula of Witten is connected with the study of



global anomalies in general relativity. The word adiabatic refers to the so called

adiabatic approximation used by Witten to solve the Dirac equation. This method

is applied frequently in quantum mechanics, but is not rigorous.

4.2. We shall now describe the results of [BF2]. Let Z -> ~~B be a fibration
of compact manifolds with compact connected fibre Z of even dimension n = 21.

Suppose that g, gB are Riemannian metrics on M, B respectively. Then 7r is called
a Riemannian submersion, if

where g z vanishes on the normal space of the fibres.

Let TZ C TM be the subbundle consisting of all vectors tangent to the fibres.

Suppose that T Z is oriented and has a spin structure. Let F = F+ Q) F- be the
associated spinor bundle on M. Let E be a Hermitian bundle on M, equipped
with a unitary connection For each b E B, we get a twisted Dirac operator
Db = Dt EB Db along the fibre Zb = where

This defines a family D = of twisted Dirac operators. Associated to

the family D is the determinant line bundle A over B whose fibre Ab at b E B is

canonically isomorphic to

Recall that the determinant of a finite-dimensional vector space is by definition
the top exterior power of this vector space. Generalizing a construction by Quillen
[Q], the line bundle À can be equipped with a canonical metric, called Quillen
metric, and a unitary connection ~V. The curvature of this connection is the

degree 2 term of the following differential form on B:

where RZ is the curvature tensor of the connection on TZ which is canonically
induced by the Levi-Civita connection of TM and L is the curvature tensor of E.



The integral over Z denotes integration along fibres [BF2]. Witten’s formula for
global anomalies is related to the computation of the holonomy T of the deter-
minant line bundle À over a closed loop c in B. Witten showed that in certain
cases the holonomy of the loop c could be calculated using the eta invariant of
a Dirac operator on N = ~r-1 (c~. After changing the parametrization of c and
rescaling the metric of B, one can assume that c is isometric to Thus 

is a Riemannian submersion and the metric of N takes the form

Let ~ ~ 0 and put

Let De be the twisted Dirac operator on N associated with the metric ge. Let

be the eta invariant of De. Put

and let ~~~~ be the reduction mod Z. Then we have the following holonomy theorem
of Bismut and Fried:

THEOREM 4.1. ([BF2]) As é ! 0, ~~~~ has a limit ~~~ in R/Z and the holonomy
T of À over the loop c for the connection 1 V is given by

The proof is based on the superconnection formalism.

4.3. Another proof of the holonomy theorem was given by Cheeger for the case
of the signature operator [C3]. Let N be a closed oriented Riemannian manifold
of dimension 4k - 1 and let Z -~ be a Riemannian submersion. Let

du, *u denote exterior differentiation and the Hodge *-operator, on the fibre Zu =
(u). Put



Then A(u) is selfadjoint, elliptic, and the following relations hold

As above, let A : Aev(N) be defined by

Let u be the arc length on 81 and let U be an interval. Then, over

~r-1 (U~ C N a differential form ~ E can be written + du A cv.

Thus

and, with respect to this identification, we have

Now let ~ ~ 0, and consider the metric ge on N defined by (4.1). Let Ae be the
operator (4.3) with respect to ge. Let = be the eta invariant of

(N, ge).

THEOREM 4.2. ([C3]) Suppose that Ker A(u) = 0 for all u E S’1. Then

We remark that equals i times the imaginary part of
the connection form of À.

If A(u) is not invertible for all u E sl, the theorem can be modified by
deforming the family ,A(u) to a family which is invertible for all u E s1.
The adiabatic limit of the eta invariants is then expressed by the same formula
with A(u) replaced by (u), except that equality holds only mod Z.

4.4. In particular, (4.4) may be applied to the case of a 2-torus bundle over the
circle, T2 -~ Such bundles occur as the boundary of a neighborhood of a



cusp singularity in a Hilbert modular surface. The holonomy of the 2-torus bundle
is given by a hyperbolic matrix

The matrix B defines an isomorphism of the standard torus T~ = R/Z and
N = ([0,1] x ~’2)~ N where (0,a-) - (l, B(x)), x E T2. As a linear fractional

transformation of the upper half-plane, B has two real fixed points w > w’ given
by

Then M is an abelian subgroup of rank two in the real quadratic field F = Q( 
D = (a + d)2 - 4. Let e > 1 > e’ > 0 be the eigenvalues of B and set

Then V is the group of totally positive units in the ring of integers OF which

satisfy ~M = M. Let a be the semi-circle in the upper half-plane with endpoints
w, w’ and let, be the arc on a which connects zo = (w + + i) and B(zo ).
Furthermore, let

Then Theorem 4.2, applied to the torus bundle gives the following formula

(cf. [Mu4] for more details). This is a formula which was first proved by Hecke

[He, p.415].

4.5. The case of a fibration M B with arbitrary compact base B was treated by
Bismut and Cheeger in Let Z --; M-~B be a fibration of closed oriented
manifolds with even-dimensional fibres and odd-dimensional base B. Assume that



MIB is a Riemannian submersion. Then the metric g of M satisfies (4.1). Let E
be a Hermitian vector bundle over M with unitary connection VE and curvature
LE. Let RB be the curvature of B and let be the differential form

representing the ~4-genus of B, which is defined by Chern-Weil theory.
Let DZ be the Dirac operator along fibres with coefficients in E. This means

that DZ acts fibrewise and its restriction to Zb = b E B, is the Dirac

operator on Zb twisted by 
To state the main result of [BClj, one has to introduce the Levi-Civita su-

perconnection. Let F = F- be the spinor bundle associated to the vertical

tangent bundle T Z C TM and gz. Let H°°, H~ denote the space of C°° sections
of F Q9 E, F~ Q9 E respectively. Then H°° and H~ may be regarded as spaces of
C°° sections of infinite-dimensional bundles H°° and over B where the fibres

H~~b over b E B are the C°° sections of F Q9 E, F~ Q9 E over Zb. The fibre
Hb has a natural Hermitian inner product given by

and the connection V on F 0 E induces a connection V on H°° by the prescription

where Y is the horizontal lift of Y. This connection does, in general, not pre-
serve the Hermitian structure, but an elementary modification gives a unitary
connection V. Furthermore, let T be the torsion of the connection ~*(~B~ ® DZ.
The tensor determines a 2-form c(T) E A2(T* B) 8 End(TZ) which assigns to
U, V E the Clifford multiplication by -p~’Z( ~U, V ~ ~, U, V being
horizontal lifts. Then the Levi-Civita superconnection on H°° attached to the
datas VE) is defined as

The curvature At is a second-order elliptic differential operator acting fibrewise.
It may be regarded as element in Moreover, the fibrewise
trace of (DZ + exists. Let Trs denote the fibrewise supertrace.
Then the fi-form is defined as



The convergence of this integral is proved in [BCl]. Note that 7y is an odd form
on B which, by definition, depends only on global information along the fibres, on
the metric g z, the connection V~ and on the splitting of T M into its horizontal
and vertical subbundles. Moreover, one has

where 1 = ~ dim Z and RZ is the curvature of the horizontal subbundle TZ C TM.
For e > 0, let

be the twisted Dirac operator for the metric

be the reduced eta invariant. Then one has

THEOREM 4.3. ([BCl]) As 0, has a limit in R, which is given by

where k = (1 + dim B)/2.

There are modifications of this result for dim B even and for the case where DZ
is not invertible [Da].

4.6. In [BC2], this result was used to study adiabatic limits of eta invariants
for torus bundles. Applying their result to torus bundles over tori, Bismut and

Cheeger obtained a new proof of Hirzebruch’s conjecture. Furthermore, the adia-
batic limit technique can also be used to derive the signature formula (3.4).



5. FAMILIES INDEX THEOREM FOR MANIFOLDS WITH

BOUNDARY

5.1. The fi-form occurs also in the families version of the Atiyah-Patodi-Singer
index theorem proved by Bismut and Cheeger [BC3], [BC4]. Let M B be a

Riemannian submersion of a compact manifold with boundary with even dimen-
sional fibres diffeomorphic to a fixed manifold with boundary Z. Again suppose
that the vertical tangent bundle TZ has a spin structure. Let E be a Hermitian
bundle with unitary connection V~. Furthermore, suppose that the metrics are

products near the boundary and that the connection V~ is also of product type
near the boundary. Then on each fibre Zb, b E B, we can consider the twisted
Dirac operator Dt : C°°(Za, F+ ® E) - COO(Zb, F- ® E) where are the 2-
spinor bundles. By assumption, Dt takes the form (1.1) near the boundary and
we may impose boundary conditions with respect to the spectral projection Pb .
In this way we get a family D+ of Dirac operators satisfying boundary conditions
of Atiyah-Patodi-Singer type. In order to define the index bundle for this family,
one has to take into account the spectral flow of the family of Dirac operators D8z
on the boundaries. In [BC3], Bismut and Cheeger make the following assumption:

Then there is a well-defined virtual index bundle

in the sense of Atiyah and Singer [AS].

THEOREM 5.1. ([BC4]) Let RZ be the curvature tensor of the connection
on the vertical tangent bundle T Z C TM which is induced by the Levi-Civita
connection of T M. Let LE be the curvature of E. Then one has

Here f Z means integration along fibres.
This is the family version of Theorem 1.1. If M is closed, this is precisely the local
families index theorem proved by Bismut [Bi] .



5.2. To prove Theorem 4.3, Bismut and Cheeger replace the family of manifolds
with boundary Z -> M B by the family of manifolds with conical singularities
Z’ -~ M’~B which is obtained by attaching cones fibrewise. The typical fibre is
then Z’ = Z Ua z C(9Z) and, for é > 0, C(9Z) is endowed with the metric

Let D~ be the corresponding family of twisted Dirac operators associated with
with respect to the metric (4.4). It turns out that, for sufficiently small

e > 0, the index bundle IndD"t E coincides with the index bundle Ind D+.
In a sense, this is the extension to the case of families of the results explained in
§1.

5.3. Another proof of the families index theorem for Dirac operators on manifolds
with boundary has been given by Melrose and Piazza [MP]. The general framework
for this proof is the so-called b-geometry developed by Melrose [Me]. This means
that the family of manifolds with boundary is replaced by a corresponding family
of complete manifolds with cylindrical ends. In this setting, traces have to be
regularized which leads to the b-trace formalism of Melrose. The conditions on
the boundary family can be relaxed so that only the existence of a spectral section
is required.

6. L~ INDEX THEOREMS FOR LOCALLY SYMMETRIC SPACES
OF FINITE VOLUME

6.1. In the previous sections we have seen that there is a close connection between
index theory for elliptic operators on Hilbert modular varieties, eta invariants and

special values of certain L-series. This is true in a much more wider sense if’we

study locally symmetric spaces rB G / K of finite volume and arbitrary rank. For

example, Stern [St2] has proved an L~ index theorem for the signature operator
on Hermitian locally symmetric manifolds M = rB G / K of finite volume. The

manifold M has a natural compactification as manifold with corners M. This is
the Borel-Serre compactification of M [BS]. The boundary of M has a stratification



and only the faces of maximal dimension provide a nontrivial contribution to the
index formula. It is very conceivable that these terms can be reinterpreted as
adiabatic limits of eta invariants. This will provide the link with §4 and will
also put Stern’s results into a different perspective. In subsequent papers [St3],
[St4], Stern has related the boundary contributions in his index formula to special
values of Sato-Shintani L-functions. It is, of course, very likely that a similar index
formula can be proved for twisted Dirac operators. As observed by Moscovici [Mo],
the index of special twisted Dirac operators is related to the dimension of certain

spaces of automorphic forms (see below). This explains the significance of such an
index formula.

In a subsequent paper [St3], Stern has expressed some of the contributions of
the "cusps" to the index in terms of special values of Sato-Shintani L-functions.

6.2. Let G be a real semisimple Lie group, K a maximal compact subgroup, and r
a discrete torsion-free subgroup of G such that Vol(rBG)  oo. Then X = G/K
is a Riemannian symmetric space and rB.X’ is a locally symmetric manifold of
finite volume. Let E, F be finite-dimensional unitary K-modules and E, F the
induced homogeneous vector bundles over X. These bundles can be pushed down
to bundles £ = F)1, 7 over X. Let

be a G-invariant elliptic differential operator, that is, D commutes with the action
of G. Then D descends to an elliptic operator

The operator D is called "locally invariant". Let L2 (,~’) be the spaces of
L~ sections of ~*, ,~’ respectively.

Proposition 6.1. ([Mo]) Let D : C°°(I‘1 X, 7) be a locally in-
variant elliptic differential operator. Then we have

Let D* denote the formal adjoint operator to D. Then D* is again locally invariant
and, by Proposition 6.1, we may define the L2 index of D by



The basic problem is now to prove an index formula. If fBX has real rank-

one, Barbasch and Moscovici [BM] derived an index formula for twisted Dirac
operators. Stern [St2] has studied the case where G is the group of real points of
an algebraic group defined over Q and X is Hermitian and Q-irreducible. In this

context, he derives an index formula for the signature operator with coefficients
in a flat bundle. We shall only consider the case of the trivial flat bundle. Then
we are dealing with the usual signature operator D s : To

state the index theorem, we have to recall some facts about the structure of rBx.
The structure at infinity of fBX is described by the F-conjugacy classes of rational

parabolic subgroups of G, which replace the cusps in the case of a Hilbert modular

variety. Let P be a rational parabolic subgroup of G. Then P has a Langlands
decomposition

where Np is the unipotent radical of P, L p = A pMp is the unique Levi subgroup
of P which is stable under the Cartan involution corresponding to K, A p is the

identity component of the maximal Q-split torus of the radical of L p and Mp is

reductive. Then K f1 P = K ~ Mp and F n P/F n lVp = F M is a discrete subgroup
of Mp with finite covolume. Set

Then 0393MBXM is again a locally symmetric space of finite volume and there is a
fibration

with typical fibre the compact nilmanifold r n NBN. Furthermore, each Yp can be
identified with a face of the Borel-Serre compactification FBX [BS]
(Yp = e’(P) in the notation of [BS]). The faces of maximal dimension, i.e. the

faces of codimension one in rBX correspond to the F-conjugacy classes of the

maximal rational parabolic subgroups. A parabolic subgroup P is maximal if the

torus Ap in (6.2) has dimension 1. The formula for the L2 index of the signature
operator derived by Stern [St2] is of the following nature



where L is the Hirzebruch L-polynomial and the sum is running over the F-

conjugacy classes of maximal rational parabolic subgroups. The contribution 6p
of a given maximal rational parabolic subgroup to the index formula (6.4) is as-
sociated with the fibration (6.3). The explicit description of 6p is too technical
to be recalled here. For more details we refer to [St2]. Instead we would like to

stress our point of view that in the light of §4, the term 6p should be interpreted
as adiabatic limit of eta invariants for Yp. This needs, of course, further explan-
ation, because Yp is noncompact if the Q-rank of rBX is greater than 1. The

one-parameter family of metrics on Yp which has to be considered for the adia-
batic limit is defined as follows. Since P is maximal parabolic, the torus Ap in
the Langlands decomposition (6.1) is of dimension 1. Furthermore X = P/K n P,
and we get diffeomorphisms

Now consider the metric on R+ x X M x Np which is the pull back of the invariant
metric on X. This metric can be described explicitly in terms of the invariant
metric on XM and the root space decomposition of Lie(V) (cf. [Bo]). Let gt be

the metric on Yp which is induced on the slice {t} x Yp. Let *t be the Hodge
*-operator with respect to gt and define At : Aev(yp) by

Since At. may have continuous spectrum, the eta invariant of At can not be defined

by (0.1). Instead one has to use a regularized version. One possible way to

regularize the eta invariant is to use the eta density defined by

The convergence of this integral needs justification. It can be handled using tech-

niques similar to [Mu5j. Next one has to verify that 1]At (0, y) is absolutely conver-
gent on Yp. If this is so, we may define



If Yp is compact, this number coincides with the usual eta invariant defined in

91. If this problem is settled, one may proceed and study gt) as t - oo.
We claim that the limit exists and equals bP. The answer can be expressed in
terms of the Levi-Civita superconnection in the same way as in Theorem 4.3. In

[St3] and [St4], Stern has expressed ~p in terms of special values of Sato-Shintani
L-functions. Following our approach, this should be a consequence of an extension
of [BC3] to the noncompact case. This is under consideration in joint work with
Bismut and Cheeger.

6.3.The index formula (6.4) can, in principle, be extended to twisted Dirac opera-
tors. The method of Stern, however, relies on the fact that the signature operator
defines a Fredholm operator in L2. This is were the hypothesis that X is Her-

mitian is needed. If one considers twisted Dirac operators it may occur that the

corresponding operator in LZ is not Fredholm. In this case, the index formula will
contain additional contributions from the continuous spectrum which are similar

to the trace of the scattering matrix 5’(0) occuring in (1.8). To determine these
contributions, one has to use the spectral resolution of D-D+. The continuous

part of the spectral resolution is described by Eisenstein series and the intertwin-

ing operators correspond to the scattering matrix in (1.8). For special arithmetic

groups like principal congruence subgroups of SL(n, Z) the intertwining operators
can be expressed in terms of automorphic L-functions and therefore, the contri-
bution of the continuous spectrum to the index formula is given in terms of special
values of ratios of automorphic L-functions.

6.4. Let Rr be the right regular representation of G in L2(rBG). Then L2(rBG)
decomposes into the direct sum of two invariant subspaces

where L(rBG) is the smallest invariant subspace containing all irreducible unitary
subrepresentations of Thus

where mr( 7r)  oo is the multiplicity of a given representation 7r E G in Rr and
is the representation space of 7r. Assume that rank G=rank K. Let H C K



be a compact Cartan subgroup of G. Let g, t and ~ be the Lie algebras of G,
K and H, respectively. Let 03A6 be the root system of (gC, hC), 03A6c ~ 03A6 the root

system of (tc, ~c) and $c. Fix a positive root system W C ~, and let p
be the half-sum of positive roots and pc the half-sum of positive compact roots.

Let A C i~* be the lattice which, by exponentiation, correponds to H. Recall that

A + p parametrizes the discrete series representations Gd C G. Let IL E A be the

highest weight of an irreducible K-module Ell and let ell be the corresponding
locally homogeneous vector bundle over rBx. Let

be the Dirac operators with coefficients in Ell. Moscovici [Mo] has proved that for

sufficiently regular Ker D; = 0 and

where denotes the discrete series representation of G parametrized by A E A+p.
This is one reason why it is interesting to prove an LZ index theorem for twisted

Dirac operators.

6.5. What has been said about the L~ index applies to the Lefschetz fixed point
theorem as well. Stern [St4] has derived a Lefschetz formula for Hecke operators on
Hermitian locally symmetric manifolds fBX with respect to the signature operator.
More precisely, let C(F) be the commensurator of F which consists of all a E G
such that r n 03B1039303B1-1 is of finite index in both r and Fix a E C(r) and let

..., ar) denote a set of representatives of Far. Thus rar is the disjoint union
of the cosets air. Then the Hecke operator TG(a) on corresponding to

a, is defined by

Let g be the Cartan decomposition. Using the identification of 
with one can extend as to an endomorphism
of L2 A*(fBX), which we also denote by TG(a). Then TG(a) commutes with d+d*
and the involution T on which is defined by the Hodge *-operator. Let



Ds : A4-(fBX) -+ be the signature operator. Then preserves

KerDs = H*(2),+(0393BX) and Ker D*S = H*(2),-(0393BX). Then the Lefschetz number
of TG(a) acting on the signature complex is defined to be

The Lefschetz formula proved by Stern contains a term which is the same as

in the compact case and a sum of contributions attached to the maximal rational

parabolic subgroups of G. These terms are the equivariant versions of the numbers

6p in (6.4) which, according to our interpretation, should correspond to adiabatic
limits of regularized equivariant eta invariants associated to Yp.

If one considers the Gauss-Bonnet complex in place of the signature complex,
then the Lefschetz fixed point formula for Hecke operators is simplified consider-

ably ; the eta invariants do not show up. In this case, one can also use the Arthur

trace formula to derive the Lefschetz fixed point formula [Ar]. There is also a pure
topological Lefschetz fixed point formula developed by Goresky and MacPherson

[GM]. On the other hand, as (6.6) shows, more information is gained if one con-
siders twisted Dirac operators. A corresponding Lefschetz fixed point formula will

then determine the trace of Hecke operators acting in certain spaces of automor-

phic forms.
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