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INTERSECTION THEORY ON

DELIGNE-MUMFORD COMPACTIFICATIONS

[after Witten and Kontsevich]

by Eduard LOOIJENGA

Seminaire BOURBAKI

45eme année, 1992-93, n° 768

Mars 1993

A MATHEMATICIAN’S APOLOGY

Physicists have developed two approaches to quantum gravity in dimension
two. One involves an a priori ill-defined integral over all conformal structures
on a surface which after a suitable renormalization procedure produces a well-
defined integral over moduli spaces of curves. In another they consider a weighted
average over piecewise flat metrics on that surface and take a suitable limit of
such expressions. The belief that these two approaches yield the same answer led
Witten to make a number of conjectures about the intersection numbers of certain
natural classes that live on the moduli space of stable pointed curves. One of these
conjectures has been rigourously proved by Kontsevich.

In this talk I will mainly focus on Kontsevich’ proof and on some results that
are immediately related to it. For lack of competence I have not discussed the
physical part of the story and as a result, this account is a rather one-sided one.
This is regrettable, since developments of the last decade have taught geometers
that the imagery and intuition that comes with quantum field theory is a powerful
heuristic tool for their field, too. (I leave it to the reader to speculate whether
an algebraic geometer would have ever come up with the Witten conjecture.) An
overview which does the physical background more justice is the one by Dijkgraaf
[3]. That paper also contains a more complete list of references.

I thank the participants of the Geyer-Harder Arbeitsgemeinschaft April 1993
for their remarks on an earlier version of this manuscript.



1. THE WITTEN CONJECTURE

Let us agree that an n-pointed curve is a complex projective curve with n
given ordered distinct points on its smooth part. The isomorphism classes of
smooth n-pointed curves of genus g are naturally parametrized by a variety 
* of dimension 3g - 3 + n, assuming, as we always will, that n ~ 3 if g = 0, and

An n-pointed curve (E; xl, ... , xn) is said to be stable if is has only
simple crossings as singularities and has finite automorphism group. (The last
condition is equivalent to: the normalization of every irreducible component of

genus zero must contain at least three distinct points that map to a singular point
or to an Xi.) According to Deligne-Mumford-Knudsen, a projective completion
.11~I9 of is obtained by including the isomorphism classes of stable n-pointed
curves of arithmetic genus g. This completion is in a natural way an orbifold, i.e.,
is locally in a natural way the quotient of a smooth space by a finite group. By
taking the cotangent space at the i-th point we obtain a line bundle Li (in the
orbifold sense) over ,M9 (i =1, ... , n). Denote its first (rational) Chern class by Tz.
For every sequence (dl, ... , dn) of nonnegative integers we have a "characteristic
number"

Since we are in an orbifold setting, this is a rational number, not necessarily an inte-

ger. By a theorem of Arakelov 03C4d103C4d2 ... . 03C4dn~g is always > 0. Of course it vanishes
when Ei 3g - 3 + n. One may interpret these numbers as follows: the topo-

logical vector bundle underlying has a classifying map BU. Knowing
the image of the fundamental class is equivalent to knowing the (Td1 Td2 ... 

Witten [22] conjectured a formula for these characteristic numbers, which he
expressed in terms of the generating function

The conjecture is easier to state if we pass to the variables Tl, T2, ..., where ti =

(2i + l)!!T2z+i (recall that (2i + 1)!! = (2i + 1)(2i -1) ~ ~ ~ .3.1). We denote the

* Some authors denote this variety by Mg,n. Our notation is in agreement with the

topologist’s use of r; for the corresponding mapping class group (whereas I7g,n refers to
a different-but closely related-group).



resulting expression by F(Ti, T2, ...). Thus F is independent of the T2i’S. Witten’s
conjecture-now a theorem of Kontsevich-says:

Theorem 1 [16] The expansion exp(F) E (~[[Tl, T2, T3, ...]] is the r-function for
the KdV hierarchy whose initial value (all times zero) is + 2~.

A more informative statement is given in theorem 10. We shall recall the
definition of a T-function in section 5. Such functions have already turned up in
the theory of Riemann surfaces through the Krichever construction, but thus far
no relation between the two appearances has been found.

Preceding the proof of this conjecture, Kontsevich had obtained an explicit
expansion of exp(.F). To state it, choose a positive integer N, let 1iN be the space
of hermitian N x N-matrices, and let A = diag(Àl’..., A N) E xN be positive def-
inite. Then tr (AX2) defines a positive definite inner product on and there is

a unique Gaussian probability measure on HN of the form d  exp tr(20141 2 X2),
where dfL is a Haar measure.

Theorem 2 [15] If we substitute Tk = itr ((-A)-~), then exp(F) is the asymp-
totic expansion at A = diag(oo,..., oo) of

Since for k =1, ... , N, the expressions ktr (Ak) are formally independent, and
since we may choose N as large as we want, this equality completely determines
F. As we will see in section 5, it is quite natural for a T-function to make a
substitution as above. We therefore make it a rule to set for any automorphism
X of a finite dimensional vector space,

(These are called the Miwa coordinates.)
There is yet another characterization, more suited for the purpose of com-

puting the coefficients of exp(F), which says that F satisfies certain differential



equations. Define Ln, n > -1 by

One verifies that they satisfy the relations ~Ln, Lm] = (n - So their

linear span is a Lie algebra, and Ln - -zn+id/dz establishes an isomorphism of
this Lie algebra with the Lie algebra of algebraic vector fields on the affine line.

Theorem 3 [4],[6] The function F is annihilated by the operators 

The observation that L-i and Lo kill F was made by Witten; as we will see
below this has a simple algebro-geometric origin. The annihilation by L-i is called
the string equation. Dijkgraaf and the Verlindes [4], and independently, Fukama-
Kawai-Nakayama [6], showed that the annihilation by the other Lk’s is a formal
consequence of the string equation and the property that exp(F) is aT-function.
Subsequently other variants of their proof have appeared; the proof that we will
sketch in section 6 is basically that of Kac-Schwartz [13].

If we write out these differential equations, we find recursive relations among
the coefficients of F which determine F up to scalar factor. So this property of F

is useful for doing explicit calculations.

The numbers (Tdl Td2 ... Tdn)g can be expressed by means of the "tautological"
classes on To see this, we first observe that there is a morphism

which forgets the last point [14]. (Here denotes the disjoint union of the

.11~(9, k > s.) To be concrete, notice that if (~; xl, ... , is a stable pointed
curve, then so is (E; ~1, ... , ~n) unless the irreducible component C containing

is a smooth rational curve which contains exactly two special points other
than i.e., C meets the other components in 1 (resp. 2) points and contains



precisely one (resp. no) Xi =I xn+1. In either case collapsing C to a point yields
a stable n-pointed curve of the same arithmetic genus. This pointed curve then

represents the image of (E; xl, ... , xn+1) under 7r. The inverse procedure shows us
that over the morphism 7r comes with n sections xl, ... , ,xn; this restriction
can be regarded as the universal n-pointed genus g-curve (again, in an orbifold
sense).

Let K be the first Chern class of the relative dualizing sheaf of 1r, so that

Ta = xi K on M~ig. The integration of 03C4d1103C4d22 ... Tn"+1 over 9 can first be
carried out over the fibres of 7r, and then over ,M9. A somewhat delicate (but not
really difficult) computation gives the following equality of rational cohomology
classes on 

In fact, one can show with induction on n that if we integrate 03C4d1103C4d22 ... 
along the fibres of 7r~’~ : ~~ 2014~ the resulting class on 7~ is a polynomial
in the tautological classes "’i := ~r* (K~+1 ) ~,II~( . It should be worthwhile to exhibit
this polynomial and to express theorem 2 accordingly.

If we take dn+l = 0 resp. 1 in ( 1 ) we get

These give rise to relations that express the fact that F is annihilated by the
differential operators L-i and Lo. Since the Lie algebra spanned by the is

generated by L-i and L2, theorem 3 would follow if one could somehow directly
show that L2 (F) = 0.

2. A CELLULAR DECOMPOSITION

A ribbon graph is a finite graph without isolated vertices such that for every
vertex a cyclic order on its set of outgoing edges is given. This cyclic structure is



often depicted by a general projection of the graph in an oriented plane such that
the cyclic structure is induced by the orientation of the plane. If we take a regular
neighborhood of the image and then separate it near the self-intersections we
obtain an oriented surface which contains the graph as a deformation retract and
has the property that the cyclic structure at the vertices comes from the orientation
of the surface. If the graph is connected, then the classification of surfaces implies
that the surface will be homeomorphic to a closed oriented surface of a certain
genus minus a finite number of points. Each of the removed points determines a
circular oriented graph Z made up of oriented edges of r and a graph map Z -~ r.
We call the pair (Z, Z -~ r) a boundary cycle of the ribbon graph. Each oriented
edge of r becomes after orientation part of a unique boundary cycle.

It is worthwhile to proceed more formally. Given a ribbon graph r, let

A = A(r) denote the set of oriented edges of r. This set has two distinguished
automorphisms cro, the first sends the oriented edge a leaving the vertex p
to its successor (with respect to the cyclic ordering on the set of oriented edges
leaving p) and the second is the involution that reverses orientation. (Conversely,
a finite set A coming with an automorphism ~o and a fixed point free involution
cri defines a ribbon graph.) Put cr2 := (~lQO)-1, and denote the set of orbits of cr,
in A by ri. Then for i = 0,1, 2, r bijectively labels the set of vertices of r, resp.
the set of edges of r, resp. the set of boundary cycles of r. If (Zi - r)iEr2 is the
set of boundary cycles, then we define the space F(r) as what we get by attaching
the cylinders Zi x R~o to r via the attaching map Zi x ~0} ^~ r. This is a

piecewise-linear oriented surface which contains r as a deformation retract.

A metric on r is simply a map 1 which assigns to every edge a positive real
number ls. Such a metric induces a metric in every boundary cycle Zi. If we

give Zi x R~o the product metric, then F(r) becomes a metric space. This

metric is Riemannian except at the vertices of r. But it is easily seen that the

underlying conformal structure extends over F(r) (uniquely), and so turns F(r)
into a Riemann surface. By examining this structure on a halfcylinder we see

immediately that as a Riemann surface, F(r) is isomorphic to a compact Riemann
surface minus a finite set of points.

Let gn denote the set of isomorphism classes of connected ribbon graphs of
genus g with n numbered boundary cycles and with the property that every vertex
has degree > 3. The formula for the euler characteristic 2 - 2g - n = [



and the inequality imply that this is a finite set. Let denote

the set of isomorphism classes of the same objects endowed with metrics. We have
a decomposition

The set has a natural topology. It is locally compact Hausdorff, and if
(r, I) is a metrized graph, s E Fi a non-loop, and I(t) the metric which differs from
I in that it assigns the value tls to s, then letting t go to zero makes go to

the metrized graph obtained from (r, I) by collapsing the edge s. (In fact, these
properties characterize the topology.) As a space, M;,comb has the structure of a
topological orbifold.

The codimension of the "orbicell" e(r) in is 3). In
particular, the cells of top dimension are labeled by the graphs r whose vertices all
have degree 3. The dual of such a r in the closed surface F(r) is a triangulation
of F(r) with n vertices. So these cells are also labeled by the isomorphism classes
of triangulations of a closed oriented genus g surface with n vertices.

Let Pi : R>o assign to a (r, l) the length of the i-th boundary
cycle. This is a piecewise linear function. The earlier discussion furnishes a map
~~,comb ~ ~9, Combining these defines a map

Theorem 5 The map h is a homeomorphism of orbifolds.

The proof of this theorem is based on results of Jenkins and Strebel [20] on the
trajectory structure of a quadratic differential. Whereas these results date back
to the sixties (see also [10]), the observation that they lead to a stratication of
Teichmuller space (because they imply the existence of the inverse of h) was only
made around 1981, and was the result of an interaction between mainly Harer,
Mumford and Thurston. (It appeared in [9] as Theorem 1.3.) Penner later gave
an alternate approach based on hyperbolic geometry and introduced the ribbon
graph description of the cells [18].

There is a natural extension defined in a similar
manner as ,/~/(9~comb~ only now we allow more edges to have zero length, but we



insist that the length of each boundary cycle remains positive. To be more precise,
let for e{r) be the space of Aut (r)-orbits in the space of 1 : ri -~ R>o
with the property that each boundary cycle has positive length. Then is

the space obtained by glueing these orbit spaces together via the maps induced by
collapsing edges of zero length. It is a locally compact Hausdorff space that comes
with a projection p : This projection is proper and has the

structure of a cellular bundle. A description of the points of is implicit
in the following theorem (which is stated in [16] without proof).

Theorem 6 [16] The inverse of the homeomorphism of theorem 5 extends to
an identification mapping x Two n-pointed stable curves

together with a fixed p E R~o map to the same element if and only if
there exists a homeomorphism between them that takes the i-th point to the i-th
point, and is complex-analytic on every irreducible component that contains one
of the ( n ) distinguished points.

In the above description the U(1)-bundle associated to the line bundle ,Ci is
easy to give: the fibre over (r, l) is given by the i-th boundary cycle. This allows
Kontsevich to give a an explicit representative of its first Chern class as a piecewise
smooth form cvi. Its restriction to the cell e(r) is given as follows: number the
edges of the i-th boundary cycle of r in a cyclic oriented order so ... , sk-i and let

e(r) - R>o be the length of Sj so that Pi = Ej lj . Then the restriction of Wi
to the cell e(r) will be

It is easily seen that this form only depends on f, and that induces on a cell

e(r’) in the closure of e(r) the form 
Consider the piecewise smooth 2-form

The restriction of H to any fibre of p~e(r) is a nondegenerate symplectic form with
constant coefficients. Thus we obtain an orientation of the fibres of ple(r) and
hence also of e(r) itself. We give e(r) this orientation.



Suppose that m = (ml, m2, ...) is a sequence of nonnegative integers which
are zero for almost all k. Let r be a connected ribbon graph with n boundary
cycles with the property that its number of degree 1 vertices is zero if 1 even or 1

and equal to mk if 1 = 2k + 1 > 3. Then clearly

The collection of such r defines a chain on with closed support. The

following lemma is not difficult to prove.

Lemma is a cycle in degree ~ ~~ +1) with closed support.

So defines via h a class with closed support on x R~o. This

corresponds to a class Z9 (m) on ,11~19 in a degree which is n units smaller. Its

Poincare dual defines a cohomology class on of degree 2 ~k mk(J~ -1). In

this way we produce in a given degree as many elements as we get as pull-backs
of monomials of the Mumford-Miller-Morita classes. Kontsevich conjectures that
the former are linear combinations of the latter. In particular, the single classes
in degree 2 should be proportional, and this has been verified by Penner.

Using these cycles we may form

and a corresponding generating function



Let F E T2,... ; s1, s2,...]] be the expansion obtained by making the sub-
stitution ti = (2i + 1)!!T2i+1’ It reduces to Witten’s generating function F if we
put 81 = 1 and si = 0 for i > 1, for clearly

where the sign is the degree of of h, and by comparing the signs of the coeffi-
cients on both sides, we see that in fact the plus sign holds. Kontsevich proved a
corresponding result for F, thus generalizing theorem 2:

Theorem 7 [16] We have

This will be proved in section 4.

Remark. Grothendieck [7] has made the amazing observation that there is a
natural action of the Galois group Gal (Q/Q) on the set of isomorphism classes of
ribbon graphs. It is defined as follows. Given a ribbon graph f, then triangulate
F(r) by regarding F(r) as obtained from r by putting a cone (in the simplicial
category) over each boundary cycle. If we metrize r by assigning to each edge
unit length, then we get a distinguished complex structure on F(r) and its com-
pactification F(r) (and hence also a distinguished element of the orbicell e(r) if r
is connected). Denote the corresponding Riemann surfaces by X(r) resp. X(r).
Let I C P1(R) the closed interval containing 0 whose end points are oo and 1.

There is a unique holomorphic map fr : X(r) -~ P~ which maps the vertices of
r to 0, the midpoints of the edges of r to 1, the points of X(r) - X(r) to oo
and the interior of every triangle conformally onto the complement of I. Notice

that (i) f r is unramified over p1 - {o,1, oo~ and (ii) that every point over 1 E pl
has ramification index 2. The connected components of f r 1 (P1- I) are naturally
indexed by the elements of A(r) and via this labeling the permutations c~o resp. 7i
simply correspond to the monodromy of the covering along a simple loop around 0

resp. 1; in particular the group generated by these two elements can be identified
with the monodromy group of fr.



Conversely, any covering of P~ with properties (i) and (ii) is thus obtained
and the isomorphism type of the corresponding ribbon graph is unique. Since

.P1- {0,1, oo} is a normal Q-scheme, the Galois group Gal(Q/Q) "acts" on the

profinite completion of its fundamental group via outer automorphisms. This

induces an action of Gal (Q/Q) on the set of isomorphism classes of the coverings
of P~ unramified over {0, l, oo}. It is easily seen that the set of isomorphism
classes of coverings of P~ satisfying (ii) is stable under this action and so we obtain
in fact an action of Gal (Q/Q) on the set of isomorphism classes of ribbon graphs.
It turns out to be quite difficult to make this action explicit [19].

3. KONTSEVICH’ MAIN IDENTITY

The form H introduced in the previous section is closed relative p and its

pull-back under the map h represents the smooth family of classes So

integration of exp(Q) over the fibres of is the function on R~o
defined by

where d must be half the degree of Zg (m). We apply to both sides the Laplace
transform dpl... dpn exp(- ~i (~1$ > 0). The right-hand side becomes

The Laplace transform of the left-hand side of (3) gets a contribution I(r) for
each open cell e(r) in .M9 (m). It is easy to see from the definition of H(F) that

A dyn A Od(r) has constant coefficients. So this is a constant times the
natural measure on e(r) defined by its coordinates ls, s E r1. A rather intricate
computation shows that this constant is equal to 22d+1-9. Given an edge s of r,



then each orientation of s makes it part of a boundary cycle; if these have number
i and i’, let as := Z (ai + ai~). Thus

Using the identities 2d = ~rl~ - n, 2 - 2g = ~ro~ - + n and the formulas (2)
we get the following beautiful identity:

where on the right the sum is over the open cells of .A~l9 (m). This equality implies
the remarkable fact that the right-hand side is a polynomial in the variables 

We now wish to vary g, n and m. For this, we fix a positive integer N,
and express the above equality in variables ~1, ... , AN as follows. For every

map i : { 1, ... , n} --> ~ l, ... , N~ write down the above equality with variables

~i(1), ... , ~i(n), and sum over all such maps i. On the right-hand side this will
then an amount to a sum over connected ribbon graphs of genus g with n num-
bered boundary cycles together with a map from the set of boundary cycles to

~1, ... , N}. To this last datum we shall refer by saying that the ribbon graph is
N-colored. If we do not care about the numbering of the boundary cycles, then

we must divide by n !. Summation over g and n then gives



where the sum is over all isomorphism classes of connected N-colored ribbon graphs
whose vertices have odd degree > 3, and denotes the number of vertices of

r of degree L

All other properties of F and F will be proved via this identity. Notice that

since T1, ... , TN are formally independent expressions, this theorem enables us to

compute the coefficients of F inductively.

4. A HERMITIAN ONE-MATRIX MODEL

Let E be a euclidean space of dimension d. Then there is a unique Gaussian

probability measure d E on E of the form x), where d  is a Haar

measure. If f is a function on E which is integrable with respect to this measure,
then we write ( f ) for J f Wick’s lemma gives the value of ( f y in case f is a

product of linear forms.

Let q : Hom (E, C) x Hom (E, C) - C be the C-bilinear extension of the
inner product on the dual of E.

Wick’s lemma Given a collection E Hom(E,C)}aEA, where A is a finite

set, then

where the sum is taken over all pairings P on A.

(A pairing on A is a partition of A in two-element subsets.) So if IAI is odd,
then ~a) = 0. For the (elementary) proof, we refer to [1].

We shall apply this to the case where the underlying vector space is the space
of hermitian endomorphisms of CN. The matrix coefficients Xi,j make up a

C-basis of Hom (HN, C) and satisfy X;,j = The inner product on HN shall

depend on a positive diagonal matrix A = diag(al, ... , aN) in xN and is given
by tr (AX2). The equality tr (AX2) = = shows that

this form is positive definite. We also find that



With the help of Wick’s lemma we are going to compute

as a formal expansion in the First notice that

where the sum is over all maps a from the cyclic group Z/k to N. (An underlined
positive integer stands for the set of positive integers smaller or equal to it.)

More generally, an expression of the form tr (X 2)d2 ~ ... tr (X can

be written out as a sum of monomials in the X;,j’s naturally labeled by the set of
maps § : Uf=ldk x Z/k - N. To be precise, put A := Uf=ldk x Z/k and denote
the automorphism of A that sends (i, j ) to (i, j + 1) by Qo . Given § : A - N, let
~a := where a E A. Then the expression at issue is the sum (over ~)
of the monomials 03A0a~A 03C6a.

According to Wick’s lemma

where the sum runs over all pairings P on A. A pairing P on A is the same thing
as a fixed point free involution on A, and as we explained in section 2, it therefore
determines with Co a ribbon graph r(P) whose set of oriented edges is bijectively
labeled by the elements of A. Notice that this graph has exactly dk vertices of

degree k. Formula (6) shows that the general term of the right-hand side of (7)
can be nonzero only if the following condition is fulfilled: if P pairs a and a’,
then ~(a) = f/Juo(a’) and ~(a/) = the value then being the reciprocal of
the average of a~(a~ and a~(a~) . In terms of the ribbon graph, this means that

f/J factors through an N-coloring 03C6 of its boundary cycles and thus defines an N-
colored ribbon graph r(P, ~). Any N-colored ribbon graph with dk vertices of
degree k is so obtained.

How often do we get the same colored ribbon graph? To answer this, consider
the group G of permutations of the index set A that commute with cro. It can be

identified with the direct product of semi-direct products



In particular, it has order This group acts on in an obvious way on

the set of pairs (P, (fi) as above. It is easy to see that two pairs define isomorphic
colored ribbon graphs iff they are in the same G-orbit of (P, ~). Moreover, the
G-stabilizer of (P, can be identified with the automorphism group of r(P, 
Applying this to the expansion

where the sum is over all isomorphism classes of N-colored ribbon graphs and

vrtk(r) is the number of vertices of r of degree k. If we limit the summation in

the right-hand side to connected graphs, then we get the logarithm of the left-hand
side.

The last clause follows in a straightforward manner from the first. The expan-
sion converges if we take the uk’s purely imaginary and almost all zero. Combining
this theorem with 8 proves theorem 7.

Matrix models were introduced in physics by ’t Hooft. Bessis-Itzykson-Zuber
[1] gave it a simple mathematical treatment. The matrix model discussed here (due
to Kontsevich) generalizes their work (these authors took A = 1).

5. THE KdV AND GELFAND-DIKII HIERARCHIES

This section will very briefly review some aspects of the KdV hierarchies. A
nice introduction to the subject is the paper by Segal=Wilson [21]. (But in this
paper the definition of the relevant Grassmannian differs from the one used here

in that these authors impose an L2-condition.) Fix an integer p > 2 and consider
a general monic differential operator of order p



in a single variable x with smooth coefficients ui (a stands for differentiation).
Conjugating L with respect to the multiplication by a suitable function makes
the coefficient ui disappear; we shall therefore assume that this is already the
case. We ask ourselves which monic differential operators Pk of order k have the
property that [Pk, L~ is of order  p - 2. This is easily answered in terms of
pseudo-differential operators: First find a pseudo-differential operator K of the
form 1 + such that L = Then Q := is a p-th
root of L which has the form Write Q~ as a sum of a differential
operator (Q~)+ and a pseudo differential operator (Qk)- of order  -1. In the

equality

the left-hand side is a differential operator and the right-hand side has order  p-2.
Hence Pk := (Qk)+ solves our problem. Notice that if k is a multiple of p, then
Pk = so that ~Pk, L~ = 0. The p-th Gelfand-Dikii hierarchy is the system of
differental equations

(For p = 2 this is also called the Korteweg-de Vries hierarchy.) Here we ask for
solutions Ui = ~i(x; Tl, T2, ...), i = 1 , ... , p - 2. Each member of the system
should be thought of as a vector field on the (infinite-dimensional) affine space of
monic differential operators of order p without We can only hope for a
solution of the above system if these vector fields commute, but this turns out to
be the case. It is clear that a solution L(T) of (8) will not depend on the variables
Tkp, k = 1,2,.... Since P1 = 9, the flow defined by the Ti-variable is given by
translation x H x + Tl. So we may write ui = + Tl, T2, ...).

There is beautiful geometric method, initiated by M. Sato, which converts
this into a system of commuting vector fields on an infinite Grassmannian that
comes at least formally already in integrated form. In one direction (which we will
not describe) one attaches to L a space V(L) of eigenfunctions on the spectrum
of L which is invariant under multiplication by the function a~.

In the opposite direction one proceeds as follows. Consider complex-linear
subspaces V of the algebra of Laurent expansions in A"B C((a-1)), which admit
a basis (fk)o such that for k sufficiently large the expansion of f k ends with ak



(or equivalently, such that the projection V - C[A] which omits the polar part
be Fredholm of zero index). The collection of these subspaces is called the Sato
Grassmannian. Let us denote it by Gr and let Gr° be the set of V E Gr with the

property that V supplements a-lC~~a-1~~, or equivalently, that V admits a basis
( f ~) ~ ° (a "standard basis" ) such that the expansion of f k ends with Àk for all k;
it is the "big cell" of Gr. We will see in a moment that the complement Gr - Gr°
is very much like a divisor in Gr.

For T = (Tl, T2, T3, ...), let M(T) be the operator in C((~1-1)) given by
multiplication by This operator is defined whenever M(T) E
C(À -1 »; this is so when M(T) is the expansion atooofa rational function. This
defines in a formal sense an action of CN on C«À-1)); it is this action we were
alluding to. The passage from this formal action to a solution of the Gelfand-Dikii

hierarachy is somewhat indirect.
Let us first define the T-fuction of a V E Gr°. If ( f ~)~ 1 is a standard basis

of V E Gr°, then clearly, is a basis of M(-T)(V). One defines
Tv(T) as the determinant of the C[A]-parts of with respect to the

basis of C[Aj; as the notation indicates this is independent of the choice of
a basis. Of course, Tv is here not defined as a function, but as a formal expansion
in T (and even that is not immediately clear). Notice that the constant term of
TV equals 1. Saying that M(-T)(V) ~ Gr,° is equivalent to Tv(T) = 0 (when this
makes sense). The function Tv is characterized by the following property:

Lemma For A = (Ai,..., we have

The case N = 1 is Lemma 5.15 of [21] and the proof of the general assertion
is outlined in [16].

One associates to Tv in a canonical way a formal family of formal pseudo
differential operators Q(T) with Q(T)+ = 0 and such that for all k,

If V is stable under multiplication by AP, then this property is preserved under
the flow, L := QP is a formal differential operator, and L(T) satisfies (8). Both
Tv(T) and L(T)) will be independent of Tp, T2p, ....



The coefficients of L can be expressed explicitly in terms of T. For instance,
if p = 2, then

In general one has the formula

(The residue of a pseudo differential operator is simply the coefficient of a-1.) For
k =1, ... ,p -1, Res (Qk) is of the form plus a differential polynomial in
the  k, so that the coefficients of L can be computed inductively from this.

6. A CONSTRUCTION OF T-FUNCTIONS

We shall describe a rather general procedure for constructing T-functions. It

is’ due to Kontsevich and leads to a proof that the expression in theorem 2 defines
a T-function. Let be given u, v E R[x]. Then the integral

converges in the sense that the integral over (-n, n~ has a finite limit as n -
oo). An alternative way to give this integral a meaning is to move the path of
integration in the complex domain according to the method of steepest descend;
the corresponding integral will then converge absolutely. It is in this sense that

similar integrals appearing here are to be understood. An N-variable analogue of
a is

Remarkably, this integral can be reduced to an expression involving only a and its
derivatives. To see this, we make the substitution Y = where U is unitary
and y = diag(yl, ..., yN). The corresponding jacobian is dUdy ~(y)2, where dU



is a Haar measure on UN. An ancient formula due to Harish-Chandra [8] states
that

where const stands (here as well as below) for an expression which only depends
on N and

is the Vandermonde determinant. Feeding this into the integral gives

If we develop the determinants, the variables separate and the right-hand side
becomes

This makes A(-x) resemble a matricial T-function. (To be one, the expansion of
ak in should begin with 



(Moving the line of integration over a positive distance in the upper half plane will
make the integral converge absolutely.) This the classical Airy function. It clearly
satisfies the differential equation a"(x) = xa(x) and we have

It can be written (for x real and positive) as

where f has an asymptotic expansion at +00 of the form

with 0. (NB: This expansion has no positive radius of convergence.)
A simple estimate shows that in the integral defining A(x) the domain of inte-

gration may be replaced by + when x > 0. If we make the substitution

Y H 2-1 3 Y + and take x := 21 3 A, where now A = diag(Ai,... aN) > 0, we
find

The integral on the left can be expressed in terms of exp F(-T(A)), with Tk(A) =
itr (A-~). Following theorem 2,

The denominator appearing on the right hand is the Gaussian integral associated
to the quadratic form + + 03A3i 03BBiX2ii, and so proportional to

The formulas (11)-(15) imply that



with ck a nonzero constant that we are still free to choose. Notice that zo(a) is pro-
portional to f (2-1.13). In particular, its asymptotic expansion at oo is in C[[À-3]]
and has nonzero constant term. We choose co such that its constant term equals
1 and we set z(a) := zo(À). Let us now identify a simple recursive relationship
between the functions z~. The pull-back of d/dx under x = ca2 is the vector field

From this we readily deduce that the Airy equation amounts to the

property that a(2-3 a~) is annihilated by the operator (~"’id/da)2 - ~12. So if we
put

then is proportional to and D2(z) - This allows us to take

:= and ~2A?+i(~) := À2k(Dz)(À). Notice that the asymptotic ex-

pansion of zk at oo is of the form A~ plus lower powers of A. Since F has no

constant term, a comparison of the constant terms in both sides of (16) reveals
that the constant in (16) must be 1. In particular we have for N = 1:

This proves most of

Theorem 10 The function exp F is the T-function for the C[03BB2]-submodule of
C((.~-1)) generated by z and Dz, where z is given by (18) and

The corresponding KdV hierarchy has initial value a2 + 2x.
For the last property we first observe that (To ... To) is equal to 1 if there are

three factors (the contribution from the three-pointed Riemann sphere) and zero
else. This implies that F(Tl, 0, 0, ...) = s Ti . Now apply formula (9).



If we put Dk:= 2 a2~+2D, k > -1, then it is easily verified that 
(l - So their linear span is a Lie algebra ,C isomorphic to the Lie algebra
of algebraic vector fields of the affine line. This Lie algebra acts on the Sato
Grassmannian, and on the space of T functions. This action can be made explicit
by means of the boson-fermion correspondence (see [12]). It turns out that this

transforms ,C into the linear span of the The fact that each element of ,C

maps V properly into itself (with zero determinant), implies that the Lk’s must
kill its T-function exp(F), which proves theorem 3. (This argument is due to
Kac-Schwartz [13].)

The method described in this section for producing T-functions has been dis-
covered by Kontsevich. Theorem 10 as stated here can be found in Itzykson-Zuber
[11].

7. FURTHER RESULTS AND CONJECTURES

After Kontsevich had proved theorem 2, Witten conjectured that the deriva-
tives of exp(F) should admit a similar description. That conjecture has been

recently proved by Di Franceso-Itzykson-Zuber and reads as follows:

Theorem 11 [5] There is a Q-linear isomorphism

and the degree ofQp is the order of P.

Their proof is algebraic.

Witten [24], [25] has also proposed a generalization of his conjecture which
relates Gelfand-Dikii hierarchies of order p > 2 with intersection theory on certain
Galois coverings of Deligne-Mumford compactifications.

Start with integers k1,... kn E {0,1, ... , p - 2} and an integer g > 0 such
that 2g - 2 - Ei ki is divisible by p. Let (~; xl, ... , xn) be a pointed curve of



genus g. Then the line bundle w~(- ~ is divisible in Pic(E) by p. Up
to isomorphism there are p29 pth roots of this line bundle and they are simply
transitively permuted by an action of Hl(E; Zip). Let T be one such root. If

T has no nonzero sections (which is often the case), then by Riemann-Roch,
V := @ w) will be a vector space of dimension

If we only fix the isomorphism class of T, then V is unique up to scalar multipli-
cation by a p-th root of unity, and so the orbit space V := is unique up to
unique isomorphism. We shall regard V as a vector space in the orbifold sense.

We now vary (E ; xl, ... , xn; T). Let M’ denote the moduli space of n-pointed
genus g curves (E; xl, ... , equipped with an isomorphism class of a pth root of

This is a covering over M; of degree p29. The orbivector spaces
V define an orbivector bundle V of rank d over a Zariski open part of M’. Let 
be the normalization of M’ over Mo. Index theory suggests a way of extending
its euler class to a class defined on [25]. Let us denote the direct image of this
class on by

By bringing these euler classes into the game we produce many more characteristic
numbers: put

and form the generating function

We pass to the variables Ti by means of the substitution

The resulting expression Fp is independent of Tm if m is a multiple of p. It can be
verified that F2 = F, and so the truth of the following conjecture will generalize
theorem 1:



Conjecture (Witten) The expansion exp(Fp) is the T-function of the Gelfand-
Dikii hierarchy whose initial value is 0P + p~.

This means that if we define inductively Uk(X + Tl, T2, T3 ...) by formula (10)
(k = 2, ... p), then the corresponding operator L(T) satisfies the Gelfand-Dikii
equations (8). Witten has shown that Fp satisfies a string equation. He also

analyzed the situation for g = 0. Kontsevich noticed that one can write down
the matricial T-function associated to the operator 0P + px in a form generalizing
theorem 2. In addition, one can specify differential operators analogous to the
Ln’s, that annihilate this T-function, see [3].

Penner [18] reinterpreted the Harer-Zagier calculation of the orbifold euler
characteristic of ,M9 in terms of a matrix model. Although this matrix model
is not of the type considered here, it may be thought of as the matrix model
corresponding to the case p = -1. (Kontsevich gives in an appendix to [16] a
short proof of this formula.)

Let us finally mention that the expression Fp is related to the Lie algebra
Ap-i (so that the original conjecture is related to Al). One expects that for every
simple Lie algebra there is a Witten expansion whose exponential is a T-function
of the KP-hierarchy.
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