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REPORT ON IGUSA’S LOCAL ZETA FUNCTION

BY JAN DENEF

Séminaire BOURBAKI Juin 1991

43eme annee, 1990-91, n° 741

Igusa’s local zeta functions are related to the number of solutions of congru-
ences mod pm and to exponential sums mod pm. This report is a survey on

what is known about these zeta functions. There are several conjectures and

intriguing connections with topology and singularity theory. They will be em-

phasized throughout the paper (especially sections 2 and 4). The case of curves
is well-understood and is explained in section 5 without any calculations. Much
less is known in higher dimensions, although there is by now a lot of experimen-
tal evidence (section 6) for the monodromy conjecture which relates the poles
of Igusa’s zeta functions to local monodromy. Relative invariants of prehomo-
geneous vector spaces are discussed in section 7. They provide very interesting
examples which motivated the conjectures. The adelic situation is only men-
tioned briefly in 7.7. We will not treat the connection with Siegel-Weil formulas,
but refer for this to Igusa’s book [30, Chap. 4] and his survey paper [34]. At

the end we briefly discuss the theory of p-adic subanalytic sets which yields very
general rationality results.
1. FIRST PROPERTIES OF LOCAL ZETA FUNCTIONS

1.1 Local zeta functions

(I.I.I) Let I1 be a p-adic field, i.e. ~K: Qp]  oo. Let R be the valuation

ring of I~, P the maximal ideal of R, and I( = R/P the residue field of ~~. The
cardinality of I~ is denoted by q, thus A = Fq. For z E ~~, ord z E Z U { +00 }
denotes the valuation = and ac(z) = where ~r is a fixed

uniformizing parameter for R.

(1.1.2) Let f (x) E ~~(x~, x = (xl, ... , xn), f ~ I~. Let ~ : -~ (C be a Schwartz-

Bruhat function, i.e. a locally constant function with compact support. Finally,
S.M.F.
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let x be a character of R" , i.e. a homomorphism x : R" --~ ~" with finite image,
where RX denotes the group of units of R. We formally put x(0) = 0.
(1.1.3) To the above data one associates Igusa’s local zeta function

for s E C, Re(s) > 0, where Idxl denotes the Haar measure on Kn so normalized
that Rn has measure 1. These zeta functions were introduced by Weil [83] and
their basic properties for general f were first studied by Igusa [28], [30]. We will
see below that Z~ (s, x) is rational in q-S, so that it extends to a meromorphic
function on C.
We will write Z, resp. Zo, instead of when $ is the characteristic function

of Rn, resp. PRn . Throughout this paper, we put t = Note that 

is a power series in t. The coefficient of tm in a power series P(t) is denoted by
CoefftmP(t). We denote the trivial character by xir;v and the support of $ by
Supp ~.

(1.1.4) Remark. Note that ac(f(x)) and hence also x, h, f) depend on the
choice of the uniformizing parameter 7r. More canonically one introduces

as a function of a quasicharacter w of (i.e. a continuous homomorphism
w : I~" --~ (C" ). Every quasicharacter w of I~" is of the form ~(~/) = 
Thus studying is equivalent with studying x, ~~, f ).

Sometimes it is also helpfull to think of Z~ as a distribution $ ’2014~ ZI>.

1.2 Number of solutions of congruences

(1.2.1) Suppose f(x) has coefficients in R. Let Nm be the number of solutions of

f(x) == 0 mod Pm in and put P(t) := The Poincaré

series P(t) is directly related to Z(s, xtriv) by the formula

Indeed, since q-nrnNm equals the measure of {x E Rnlord f (x) > m}, this
follows directly from



To verify this last equality note that the left-hand side equals

1.3 Rationality of local zeta functions

(1.3.1)Resolutions. Put X = Spec I~~x~ and D = Spec K~xJ~( f (x)). Choose an
(embedded) resolution (Y, h) for over K, meaning that Y is an integral
smooth closed subscheme of projective space over X, h : Y -~ X is the natural

map, the restriction h : isomorphism, and the reduced
scheme associated to has only normal crossings (i.e. its

irreducible components are smooth and intersect transversally, cf. [25]). Let

Ei, i E T, be the irreducible components of (h-1 (D))red. These consist of the
components Ei, i E Ts, of the strict transform of D, and the exceptional divisors

Ei, i E For each i E T let Ni be the multiplicity of Ei in the divisor of f o h
on Y and let vi -1 be the multiplicity of Ei in the divisor of h*(dxl A ... A dXn).
The (Ni, vi) are called the numerical data of the resolution. For i E T and I ~ T
we consider the schemes

When I = 0, we put Y. Finally let C f C X be the singular locus of

(1.3.2) Theorem (Igusa [28],[30]). Assume the notation of l. I and 1.3.I, then
(i) is a rational function of q-s. Its poles are among the values s =

-vi/Ni + 203C0-1k/Ni loge q with k E Z and i E T such that the order of x
divides Ni.

(ii) If C j n Supp $ C f -1 (0), then = 0 for almost all x.

Proof of (i). Consider the set Y(K) of K-rational points of Y as a I(-analytic
manifold. We have



where E and r~ are analytic in a neighbourhood U of band E(b) =f 0, ~ 0.
Note that ~r~~ and x(ac E) are constant on U when U is small enough. Because

~) is compact, we see that is a finite ~-linear combination

of products of factors of the form C Z, 
But this last integral is zero unless the order of x divides Ni, in which case it is
a rational function of q-S with denominator 1- This proves (i). For

(ii), see [30, p. 91-96].

Remark. The rationality of Z~ (s, x) can also be proved without the use of res-
olution of singularities, see [10] and section 8.

1.4. Exponential sums and integration on fibers

(1.4.1) Let 03A8 be the standard additive character on K, thus, for z E K,
= where Tr denotes the trace. Weil [83] introduced

the following two functions

for z E K and y VI, where VI = f (C f). The function Ecp (z) is locally
constant and bounded on K. One is interested in its behaviour for z ( --~ oo. The

simplest case is when 0, then = 0 for Izllarge enough. The
function Pcp (y) is locally constant on K B V f and has compact support. One is
interested in its behaviour when y tends to a point of Vf. For a nice introduction,
see Serre [73].

We will write E, F, resp. Eo, Fo, instead of when $ is the characteristic

function of Rn, resp. PRn.

(1.4.2) Suppose f (x) E R~x~, m E I~~~O~. If u E R", then obviously E(u7r-m) =
which is a classical exponential sum mod 

Let a E and denote by Nm (a) the number of solutions in R/Pm of the

congruence a mod Prn. Then one verifies that F(a) = 
for m big enough (depending on a). This stable quotient F(a) is classically
known as the local singular series associated to f and a, and plays an important
role in the circle method.



(1.4.3) Note that = fK is the Fourier transform of 

on K and that K, f ) = fK is the Mellin transform of (1 -
q-1 on This gives the relation between exponential sums and local
zeta functions. By decomposing $ and translation one reduces to the case where
GI n Supp $ C f -1 (0). Then, due to 1.3.2 (i) and (ii), the following are related
by formulas (see [28], [30]):

(i) Principal parts of the Laurent expansions of the X) around their
poles,

(ii) Terms of an asymptotic expansion of as Izl -> oo,
(iii) Terms of an asymptotic expansion of as y -~ 0.

Still more information is provided by the following.

(1.4.4) Proposition. Let u E R" and m E Z. Then equals

where c(x) denotes the conductor of x, i.e. the smallest c ~ 1 such that x is
trivial on 1 + P~, and gx denotes the Gaussian sum

Proof. Replacing f by u f we see that it suffices to prove the theorem for u = 1.
We introduce for any e E N B f 0} the integral

Direct verification shows

The proposition follows now from 1.2.2, since Fourier transformation on 
yields Z~ (s~ X).



(1.4.5) Corollary (Igusa [28], [30]). Suppose that Cf ~ Supp 03A6 C f -1 (0).
Then for Izl [ big enough a finite C-linear combination of functions of the

form with coefficients independent of z, and with A E C
a pole of (s + xtriv) or of x), x ~ xtriv, and with 03B2 E N,03B2 
(multiplicity of pole ~) -1. Moreover all poles ~ appear effectively in this linear
combination.

Proof. This follows from 1.3.2 (i), (ii) and 1.4.4, by writing in partial
fractions.

1.5 Igusa’s conjecture on exponential sums
Let F be a number field, f(r) E ~0~ a homogeneous polynomial and a E I~.
Suppose 1  (7  min where the minimum is taken over all i except those
with Ni = vi = 1 and the (Ni, vi) are the numerical data of a fixed resolution
of (0) over F. By 1.4.5, for each p-adic completion I( of F there exists

E R satisfying I~, f) (  for all z E I~.

Conjecture (Igusa [30]). In the above inequality one can take c(I() independent
of I~.

This is related to the validity of a certain Poisson formula, see [30, p. 122,
170]. Igusa [27] proved the conjecture when C f = {0~, by using Deligne’s bound
[8] for exponential sums over Fq, which in turn depends on the Riemann hy-
pothesis for varieties over Fq. He also verified it for certain relative invariants
of prehomogeneous vector spaces [26], [29], [30, p. 123-127]. Recently Sperber
and Denef proved the conjecture for polynomials f(r) which are non-degenerate
with respect to their Newton polyhedron 0( f ) (see 5.3) assuming that ~( f ) has
no vertex in ~0, l~n (and only considering toric resolutions).
1.6 The Archimedean case

Replacing I( by I~ or C and $ by a C°° function with compact support, one
defines

for s E C, Re (s) > 0, where 6 = 1 if Ii = R and 6 = 2 if 7f = C. One

proves that Z~ (s, ~1, f ) extends to a meromorphic function on C whose poles are
rational, either by resolution of singularities [2],[5] or by the theory of Bernstein
polynomials [4].



2. MONODROMY AND BERNSTEIN POLYNOMIALS

2.1 Monodromy
(2.1.1) Let f : non constant polynomial map and fix b E (C’~ with

f(b) = a. Let B C cn be a small enough ball with center b. Milnor [63] proved
that the restriction is a locally trivial C°° fibration over a small enough
pointed disc A C C B ~a~ with center a. Hence the diffeomorphism type of the
so called Milnor fiber Fb := n B of f around b does not depend on t E A
and the counter clockwise generator of the fundamental group of A induces an

automorphism T of H.(Fb, C) which is called the local monodromy of f at b.

It is well known that the eigenvalues of T are roots of unity (see [22, Expose
I]). When b is an isolated critical point of f , a result of Milnor [63] states that
Hi (Fb, cC) = 0 for i ~ 0, n - 1, and H° (Fb, (C) = C with trivial monodromy
action.

(2.1.2) Theorem (A’Campo’s formula [1]). Suppose b is an isolated critical
point of f , with I(b) = 0, ?7 ~ 2. We adopt the notation of 1.3.1 with K = C.
Then the characteristic polynomial of the monodromy action on (Fb, C)
equals

where x denotes the Euler characteristic with respect to singular cohomology.
In particular for > 1, is an eigenvalue of the local

__ 

0

monodromy at b if and only if EklNi x(Ei n h-1 (b)) ~ 0.
2.2 The Bernstein polynomial
I.N. Bernstein [4] has proved for any polynomial f(x), x = (xl, ... , xn), over
a field I( of characteristic zero, that there exist P E I~~~, ax, s], and b(s) E
J{[s] B ~0~ which satisfy the functional equation = The monic

polynomial b(s) of smallest degree which satisfies this functional equation is
called the Bernstein polynomial of f and will be denoted by b f(s). If f is not
constant, then s + 1 divides b f(s). If further f = 0 has no singular points over
the algebraic closure of K, then = s + 1. A basic theorem of Kashiwara

states that all roots of b j (s) are negative rational numbers. When K = I~ or C
one easily verifies, using the functional equation and integration by parts, that



the poles of K, f) are among the values s = a - j with a a root of b f(s)
and j E N. Note however that this integration by parts does not make sense in
the p-adic case.

The roots of bf(s) are related to the geometry of f. Indeed by Malgrange [58],
if a is a root of b j (s) then is an eigenvalue of the local monodromy
of f at some point of (0), and all eigenvalues are obtained in this way. (Note
that b I ( s) is the least common multiple of all local Bernstein polynomials, see

e.g. [23, Lemma 2.5.2~.)
Thus, in the Archimedean case if s is a pole of K, f) then 

is an eigenvalue of monodromy. (For a direct proof in the isolated singularity
case, see Malgrange [57].) Moreover, Barlet [3] has proved that each eigenvalue
is obtained in this way, when K = C. We refer to Loeser [50] for information on
the exact location of the poles and to Loeser [51] for an estimate on the largest
pole.

2.3 The monodromy conjecture
Motivated by the situation in the Archimedean case 2.2 and the study of concrete

examples, it is natural to propose the following conjectures for any polynomial
f (x) over a numberfield FCC.

(2.3.1) Conjecture (Igusa [36]). For almost all p-adic completions K of F , if
s is a pole of Z(s, x, K, f), then Re(s) is a root of b f(s).

This conjecture has been verified in special cases, see 5.2.5, 5.3, 7.3 and 7.4

below.

(2.3.2) Monodromy conjecture (Igusa). For almost all p-adic completions
K of F, if s is a pole of Z(s, x, Is, f ), then exp(203C0-1 Re (s)) is an eigenvalue
of the local monodromy of f at some complex point of 

Note that the first conjecture implies the second by what we said above. But

for the second one there is by now a massive amount of experimental evidence,
see section 6. Both conjectures might be true for all p-adic completions and for

Z replaced by Z~. In most numerical examples, theorem 1.3.2 yields a very big
list of candidate poles. However, due to miraculeous cancellations, usually many
of these candidates are no pole. This strange phenomenon would be explained
by the monodromy conjecture.



Loeser [53] studied zeta functions J Kn of several

variables and formulated a conjecture on the existence of certain asymptotic
expansions (generalizing 1.4.3 (iii)). Surprisingly this conjecture implies a re-
lation between the polar locus of these zeta functions and the geometry of the
discriminant of f 1, , .. , f k . Moreover there are connections with the monodromy
conjecture.

3. EXPLICIT FORMULAS

We continue to use the notation of 1.1 and 1.3.1. Reduction mod P is denoted

by - .
(3.1) We call a Schwartz-Bruhat function $ residual if Supp ~ C R and ~(x)
only depends on x mod P. Such $ -~ C.

(3.2) We say that the resolution (Y, h) for (0) has good reduction modP if
Y and all Ei are smooth, UiETEi has only normal crossings, and the schemes

Ei and Ej have no common components whenever i (cf. [12]). Here the

reduction mod P of any closed subscheme Z of Y is denoted by Z and defined
as the reduction mod P of the closure of Z in projective space over Spec R[x].
If in addition N; / P for all i E T then we say that the resolution has tame

good reduction. When f and (Y, h) are defined over a number field .F, we have
good reduction for almost all completions K of F. When the resolution (Y, h)

_ _ o _ _

has good reduction we have EI = ~i~IEi and we put EI = EI 1 Uj~TBIEj and
o _ _ _ _ _

Ei = Ei B Finally let C- be the singular locus of f : Kn -~ I~.
3.3 Theorem [14]. Let f E R~x~, f ~ 0. Suppose that has a resolution

with tame good reduction mod P and that ~ is residual. If x is not trivial on 1+P
then ~) is constant as function of s. If moreover C- n Supp 03A6 c f 1 0 ,
then = 0.

3.4 Theorem [12], [14]. Let f E R~x~, 0. Suppose that (Y, h) is a resolution
for f !1 (o) with good reduction mod P, and that ~ is residual. Let x be a

character of RX of order d which is trivial on 1 + P. Then



o

Here is defined as follows: If a E and dlNi for all i E I then we
can write f o h = uwd with E Oy,a and we put := x(u(a)).
We will write resp. instead of when $ is the characteristic

function of Rn, resp. P Rn. To denote the dependence on jFC, we will sometimes
write 

3.5 Cohomological interpretation. Assume the hypothesis of 3.4 and choose
a prime f with f f q. Note that x induces a character of Fq which we denote
again by x. Let Lx be the Kummer ~~-sheaf on {0~ associated to this
last character (see [9, Sommes Trig.]). Put U = Y ~ ( f o h) 1 (o). Let v be
the open immersion v : U ~ Y and a : U - ~0~ the map induced by
1 o h. We define := It is easy to verify that is lisse of rank

one on Ud := Y B UdlNaEi. Moreover, if a E Ud(Fq) then the action of the
geometric Frobenius on the stalk of at a is multiplication by Hence

Grothendieck’s trace formula yields

where F denotes the Frobenius and Fq the algebraic closure of Fq. For further
use we still mention

3.6 Lemma. The higher direct images are zero outside Ud for all
0 _

j > 0. The same holds also for the open immersion vI : E I -~ E I .

(3.7) We should also mention that Langlands [47] has given a formula, in terms
of principal-value integrals, for the principal parts of the Laurent expansions of

x) around its poles.

4. CONSEQUENCES OF THE EXPLICIT FORMULAS
Unless stated otherwise, we keep the notation of 1.1 and 1.3.1. When x is

a character of I~" we denote the induced character of R" also by x. We say a
property holds for almost all P if it holds for almost all completions of a number



field F (all data being defined over F). For any scheme V of finite type over a
field L C C, we denote by x(V) the Euler characteristic of V(C) with respect to
singular cohomology.
4.1 Degree of local zeta functions

(4.1.1) Because x) is a rational function of q-S we can consider its degree
which is defined as the degree of the numerator minus the degree

of the denominator (as polynomials in q-S ). If the hypothesis of theorem 3.4
holds, then it is clear from the explicit formula that 0. Clearly
the degree is  0 if and only if x) = 0.

(4.1.2) Proposition [12]. For almost all P, deg Zo (s, Xtriv) = 0. If moreover f
is homogeneous, then deg Z(s, deg f.

Proof. From theorem 3.4 it follows that

Hence 0. This proves the first assertion. The second

assertion follows from the first by the formula Z(s, x) - 

(4.1.3) When f(0) = 0 we proved [15], using the method of vanishing cycles
[22], that for almost all P and any character x of of order d we have

where Fo is the Milnor fiber of f at 0, Hi(Fo, denotes the component of
the cohomology on which the semi-simplification of the local monodromy acts
like x, and Frob is a suitable lifting of the Frobenius. In particular this implies
that deg Zo(s, x)  0 when there is no eigenvalue of the local monodromy of f
at 0 with order d.

4.2 The functional equation
(4.2.1) We denote by h’~e~ the unramified extension field of 7~ of degree e, and
put

where N denotes the norm. D. Meuser [61] has shown that Z(s, e, xtriv), as
function of sand e, is a rational function of q-es, al, ... , for some al, ... , ar E



C. In case of good reduction, 3.4 and 3.5.1 directly imply that this remains true
for Z(s, e, x) where x is any character of I(x. Because of this rationality we can
canonically extend Z(s, e, x) to a function on C x ZB ~0~. With this notation we
can state the following result of Meuser and Denef [17] (see also [62]).

(4.2.2) Theorem [17]. If f is homogeneous, then for almost all P we have the
functional equation Z(s, -e, x) - E ZB ~0~.

Idea of the proof. For a homogeneous polynomial it is possible to give an explicit
formula for Z(s, x) in terms of an embedded resolution of singularities (with good
reduction) of Proj I~ ~x~ ~ ( f (x) ) . This has the advantage that the EI become
proper. Then we can use the functional equation for the Weil zeta function of
the varieties EI to obtain the theorem when x is trivial. In the general case
we have to use Poincare duality for the sheaf Fx on EI n Ud (notations as in
3.5). This works since its cohomology equals compactly supported cohomology
because’ of lemma 3.6.

(4.2.3) The above functional equation takes an interesting form if Z(s, is

universal, meaning that there exists Z(u, v) E Q(u, v) with 
= for all e E l~ 1 {0~. This happens often when f is a relative

invariant of a reductive group (see 7.6). Note that the functional equation 4.2.2
takes the form = whenever is universal. It

was this form of the functional equation which was first conjectured by Igusa
[38]. His conjecture was based on extensive calculations with relative invariants
of prehomogeneous vector spaces.
4.3 Topological zeta functions

(4.3.1) To any f E C[x] and ~0~ Loeser and Denef [16] associate the
"topological zeta function"

where the notation is as in 1.3.1 (for a resolution of over It is a

remarkable fact that this expression does not depend on the chosen resolution.
Untill now the only known proof of this uses local zeta functions. To simplify,
assume f has coefficients in a number field F. Then, for almost all P, formulas



3.4 and 3.5.1 yield

when x is a character of K" of order d. This shows that is indeed

intrinsic. The limit for e --~ 0 makes sense because one can radically interpolate
Z(s, e, x~ as a function of e (for e divisible by a suitable number, see [16]). In

particular, we have

for almost all P, where Xc denotes the Euler characteristic with respect to f-adic

cohomology with compact support (cf. [41]). From (4.3.1.2) one also gets the
following.

(4.3.2) Theorem [16]. If p is a pole then for almost all P and all

characters ~ of of order d there exist infinitely many unramified extensions
L of !( for which p is a pole 

Thus conjecture 2.3.1 would imply that the poles of are roots of the

Bernstein polynomial b I( s). However, even the relation with local monodromy
(implied by conjecture 2.3.2) is not yet proved.
(4.3.3) Because 1, formula 4.3.1.2 yields 1. A local

version of this fact together with M. Artin’s approximation techniques yields the

following application to analytic geometry.

(4.3.4) Theorem [16]. Let h : Y --~ X be an analytic modification of compact
analytic manifolds. Suppose the exceptional locus E of h has normal crossings
~ 

0

in Y. Let Ei, i E T, be the irreducible components of E and let Ei, v2 be as in
1.3.1. Then

Where nI = I1iEI Vi.

It would be interesting to find a proof of this theorem which does not use
local zeta functions.



4.4 Holomorphy of x) and monodromy
(4.4.1) By 1.3.2, x) is holomorphic on C when the order of x divides no
Ni . The Ni are not intrinsic, but the order (as root of unity) of any eigenvalue
of the local monodromy on divides some Ni. Being very optimistic, we

propose the following conjecture:

(4.4.2) Conjecture [15]. For almost all P, when 4$ is residual, x) is

holomorphic unless the order of x divides the order of some eigenvalue of the
local monodromy of f at some complex point of 

In fact, this might be true for all P and for any &#x26;. The following proposition
shows that the conjecture is the best possible.

(4.4.3) Proposition [15]. Suppose 0 is an isolated singularity of the hypersur-
face f (x) - 0. For almost all P if the order d ~ 1 of the character x of Kx
divides the order of some eigenvalue of the local monodromy of f at 0, then

Zo(s, x 0 is not holomorphic on C, for infinitely many unramified
extensions L of ~~.

Proof. From 3.4, 3.5.2 and a variant of 4.3.1.3 we get
(4.4.3.1)

for all m E NB ~0~. The hypothesis on d and A’Campo’s formula 2.1.2 imply the
__ 

0

existence of a minimal m satisfying dim and ~"~(0)) 7~ O. Then
this last sum equals the right-hand side of 4.4.3.1. Hence for infinitely many e
the zeta function over I~ ~e~ is not constant, and hence not holomorphic since its

degree is ~ 0.

4.5 L-functions of exponential sums mod Pm

(4.5.1) The L-function of the exponential sum mod Pm of f E R[x] is defined
by

for m E I~~{0}. By adapting Dwork’s method [21] one can show that f )
is a rational function of t. In case of tame good reduction, this can also be derived

directly from 1.4.4 and section 3 (if m ? 2). The next theorem expresses the

degree of these L-functions in terms of monodromy.



(4.5.2) Theorem. Suppose f has only isolated critical points in n > 2.

Then for almost all P and all m ~ 2 we have

where a runs over all eigenvalues (counting multiplicities) of the monodromy
action on at all critical points b of f (notation of 2.1.1).

Proof. Clearly deg Lm(t, K, f ) If f (0) - 0, then
1.4.4, 3.3, 4.4.3.1 and the Hasse-Davenport relation yield

By A’Campo’s formula 2.1.2 the right side of the above equals (-1)n Eo 
where a runs over all eigenvalues of (Fo, ~). The theorem follows now from
remark 4.5.3 below.

For m = 1 the theorem remains true if f has a compactification g : Y --> Al
with Y B ~~‘ a divisor with normal crossings over AI, but it fails in general.

(4.5.3) Remark. Note the following completely elementary fact: If 03A6 is residual,
f E R[x] and Cf~Supp 03A6 = 0, then = 0 when |z| > q.

4.6 Non-contribution of certain Ei

Theorem [14]. Assume good reduction. Let x be a character of order

d, and io E T. Suppose Eio is proper, and Eio intersects no Ej with
0

io. If = 0, then Eio does not contribute to Z(s, x), meaning
that in formula 3.4 we can restrict the summation to I C T 1 {io ~.

This is a direct consequence of 3.5.1 and a lemma stating that in the above
o 0

situation H(Eio @ Fq , = 0 for all i ~ n -1. In the special case that E~o is
affine this lemma follows from Poincaré duality because the cohomology of Fx

o

on Eio @ F: equals compactly supported cohomology by 3.6. The general case
requires more work, see [14].



5. SPECIAL POLYNOMIALS

5.1 Polynomials of the form f(x) + g(y)
Let f(x) E .K~x~~ 9(y) E = (xl, ... , xn), y = (y, ... , y~,,), and ~1, ~2
Schwartz-Bruhat functions on Put A(s,X) = s + 1 if x = ~triv and

A(s,X) = 1 otherwise. Suppose C f n Supp ~l C f -1 (0) and Cg n Supp ~2 C
(0). Then the poles of A(s, (s, x, K, f (x)+g(y)) are of the form s1+s2

with si resp. s2, a pole of A(s, (s, x’, I~, f ), resp. A(s, (s, x", I~, g),
for some x’x" - x. Indeed, this follows directly from 1.4.5 and the obvious
fact that E03A61 03A62 (z, Ii, f (x) + g(y)) = E03A61 (z,K,f)E03A62 (z, K, g). Concerning the
monodromy conjecture, note that this is in complete agreement with the result
of Thom and Sebastiani [76] on the monodromy of f(x) + g(y).
5.2 Polynomials in two variables
Now we will see that conjecture 2.3.1 on the relation between Z(s, x) and bl(s)
is true for any f E k’(xl, x2~. For this we use the canonical embedded resolution
(Y, h) of over the algebraic closure I~a of Ii, and we keep the notation of
1.3.1. In particular Ej is a projective line over ~~a when j E The following
theorem was first proved for analytically irreducible singularities and almost all
P by Strauss [74], and further extended by Meuser [60], Igusa [32] and Loeser
[52] towards the general case.

(5.2.1) Theorem. Let f E x2~. If s is a pole of Z(s, x), then Re(s) =
0

-vj /Nj for some JET, with |Ej B Ej|  3 or j ~ Ts.
0

For a converse see [79]. Usually, most consist of no more than two points.
This explains why so many candidate poles do not appear. All known proofs of
theorem 5.2.1 are based on the following lemma.

(5.2.2) Lemma. Fix j ~ T B Ts. Let ai, i E J, be the geometric points of
0

Ej B E j. For i E J denote by Ni, vi the numerical data of the unique 
which contains ai, and put c~~ = vi - Nivj/Nj. Then

The first proofs of this lemma were computational. Loeser [52] found a con-
ceptual proof of the first formula, noting that the degree of w in 5.2.4 below



equals -2. We will outline in 6.1.2 a simple conceptual proof of both formulas,
which is due to Veys [82].

(5.2.3) A proof of theorem 5. ~.1 (in case of tame good reduction ). For simplicity
we suppose everything is defined over !(. Consider the set S of all Ej with

0

Re(s) = -vj/Nj. Suppose the theorem is false. Then IEj B 2 and j ~ TS,
for all Ej E S. Different E~2 E S are disjoint, otherwise (applying the last
lemma twice) there would be another Ej3 E S intersecting Ej2. Iterating this
would contradict the finiteness of S. Let Ej E S with Nj a multiple of the order
d of x. It suffices to show that Ej does not contribute to the pole s. Suppose

0

Ej B Ej consists of two points al, a2 (similar argument for one point). If d t Nl,
then d ~ N2 by the last lemma, and Ej does not contribute because of 4.6. Thus
suppose d~N2. Then the sheaf from 3.5 is locally constant and hence

geometrically constant on E j. Thus the explicit formula of section 3 implies that
the contribution of Ej to the residue of Z(s, x) at s equals (up to a factor)

Since ai + a2 = 0 by the last lemma, Ej does not contribute.
o

(5.2.4) Theorem (Loeser [52]). Let f E and j E 3,
then - vj /Nj is a root of the Bernstein polynomial of f.

Idea of the proof. Assume the notation of 5.2.2 and put S = E J~. We sup-
pose 0 for all i E J. (Otherwise a different but easier argument is needed.)
The residue of ( f o h* (dx 1 I1 dx2 ) on Ej = I~1 defines a meromorphic
differential form w with coefficients in a suitable rank one local system L on

pI B S. We have (i) 3, (ii) w has no zeros or poles outside S, and (iii) at
each point of S the multiplicity of w is not integral. Indeed a local calculation
shows that the multiplicity of w at ai equals c~ 2014 1 and Loeser proved by a diffi-
cult combinatorial argument that ~ai ~  1. Then a result of Deligne and Mostow
assures that w defines a non-zero cohomology class in S, L). Hence there
is a cycle q E S, L) 0. Considering a suitable etale cover of

S and a lifting of for a suitable m ~ N B {0}, one constructs a family of
cycles E Hl (t), C), t ~ 0, with



appears as the dominating term in the asymptotic expansion
of (dx A dy) / df. Since 1 (see ~32~), it is well known that this implies
that -vj/Nj is a root of b f(s).

(5.2.5) Combining theorems 5.2.1 and 5.2.4 we obtain Loeser’s result that for
any f E if s is a pole of Z(s, x), then Re(s) is a root of 
5.3 Non-degenerate polynomials
We treat this topic only very briefly. For the notion of a polynomial which is
non-degenerate with respect to its Newton polyhedron at the origin, we refer to
Varchenko [78]. For such polynomials there is a very explicit embedded resolu-
tion, which is called "toric". However, this yields a set of candidate poles for
Z(s, x) which is much too big. Lichtin and Meuser [48] have determined the
actual poles in case of two variables. In general, a reasonable set of candidate
poles (one value of Re(s) for each facet of the polyhedron) was obtained by Denef
(unpublished, see [ 54, Thm 5.3.1]) (the method is the same as in the real case
[18, I~). Loeser [54] proved that these candidate poles are indeed roots of b f(s), if
some weak additional conditions are satisfied. For several results and intriguing
open problems about the largest pole (~ -1), we refer to [18, II].

6. THE WORK OF VEYS

6.1 Relations between numerical data

Let f E C[x] and h : Y - cn an embedded resolution of (0) over C, con-
structed as in [25]. Thus in particular h is a composition of blowing-up maps.
Veys [80], [81] has developed a general theory about relations between the nu-
merical data of resolutions, generalizing lemma 5.2.2.

Consider a fixed exceptional divisor E = keeping the notation
0

1.3.1. Let E J, be the irreducible components of E B E. For i E J denote

by Ni, vi the numerical data of the unique E~ ~ E which contains Ei, and put
ai = Veys’ starting point is the following.

(6.1.1) Lemma [80] [81]. Let be the canonical divisor on E and EZ the
self-intersection divisor of E in Y. Then

where Pic denotes the Picard group.



Proof. By definition of the numerical data we have EiET Ni Ei = 0 and Ky =
in PicY. Thus NjE = - NiEi and the formula for NjE2

is obtained by intersecting with E. Moreover Ky + E = vjE 
Replacing vjE by - we get KY + E = The

expression for follows now from the adjunction formula I(E = (Ky + E) ~ E.

(6.1.2) Proof of Lemma 5. 2. 2. This follows directly from the above lemma by
taking degrees, since deg KE = -2.

(6.1.3) We now describe some of Veys’ results. There are Basic Relations (B1
and B2) associated to the creation of E in the resolution process, generalizing
5.2.2. And there are Additional Relations (A) associated to each blowing-up
of the resolution that "changes" E. More precisely: the variety E in the final
resolution Y is in fact obtained by a finite succession of blowing-ups

with irreducible nonsingular center Vi C Ei and exceptional variety C 

for z = 0, ... , m - 1. The variety E° is created at some stage of the global
resolution process as the exceptional variety of a blowing-up with center D and
is isomorphic to a projective space bundle II: jE~ -~ D over D. Let E Jo,
be the irreducible components of intersections of E° with previously created
exceptional divisors in the global resolution process or with the strict transform
of Then the Ei, i E J, are precisely the strict transforms of the Ci, i E
Jo U ~1, ... , m~. So we put J = Jo U ~1, ... , m~, Ei = strict transform of Ci. The
relations A express ai, resp. Ni mod Nj , for i = 1, ... , m, in terms of a~, resp.
N~ mod Nj, for f E Jo U ~ 1, ... , i -1 }, see [80], [81]. The relations B 1 are

where k = n - dim D and di is the degree of the intersection cycle F on F for
a general fibre F ~ of n: EO --+ D. The relations B2 hold in Pic D and are
more difficult to state. They are vacuous when D is a point. When n = 3 and D
is a projective curve of genus g, the relation B2 for the a; becomes a numerical
relation by taking degrees in Pic D, namely



where r~i is the self-intersection number of Ci in E°. The proof of B1 depends
on lemma 6.1.1 taking the degree of the intersection with F of the direct image
in PicE° of the divisors in PicE. The proofs of relations B2 and A require more
work, but are also based on 6.1.1.

6.2 Applications to the monodromy conjecture
0 0

In section 5.2 we saw two configurations E = Ej which do not contribute to
poles, namely minus one or two points. Using his relations 6.1, Veys extended
this to higher dimensions (mostly surfaces, n = 3), producing a long (but not

0

exhaustive) list of configurations E which do not contribute to poles of Z(s, Xtriv)
(meaning that in the calculation of the residue at s = by the explicit

0

formula, one can omit all El with EI C E , assuming good reduction and K big
0 0

enough). When x(E) = 0 and E C h-l (0), there is no contribution in A’Campo’s
formula 2.1.2. Thus in view of the monodromy conjecture, one expects that
such an E usually does not contribute to poles. For n = 3, Veys searched for

0 0

configurations E with x(E) = 0, and proved for all but two of the ones he found
that they do not contribute to poles. I consider this as very convincing evidence
for the monodromy conjecture. Here are two examples of such non-contributing

0

configurations with E° = I~2. Example 1: E = I~2~ (at least two lines through
0

the same point P and another line not through P). Example 2: E = I~2, (the
curves x = 0, y = 0, z = 0, and yk z = with k  2.

7. PREHOMOGENEOUS VECTOR SPACES

(7.1) We consider a regular prehomogeneous vector space (G, X) over h, consist-
ing of a connected reductive algebraic subgroup G of GLn defined over acting
transitively on the complement U of an absolutely irreducible K-hypersurface V
in X = An. Let f E be an equation for V. Then f is homogeneous and

f(gx) = v(g) f (x) for all g in G where v is a rational character of G. Thus f is a
relative invariant of G. We have (detg)2 = V(g)2K where K = n~ deg( f ), 2K E N.
Moreover the Bernstein polynomial b f(s) has degree deg( f ). For all this we refer
to [70]. (Actually equals the Sato polynomial, see [23, Cor. 2.5.10].)

We will see below that the local zeta functions of such relative invariants f
have very remarkable properties. This was first discovered in the Archimedean
case by M. Sato and Shintani [70]. The p-adic case was first investigated by



Igusa [31]. In what follows I( is p-adic field and for 7.4 and 7.5 we make the
additional assumption that V has only a finite number of orbits under the action
of ker v. We first give an easy example.

(7.2) Example. Take for X the space of all (m, m) matrices, and G = SLm x GLm
with action of (gl, g2) E G on x E X given by g1xgt2. Then f(x) = det x, b(s) =
(s + 1)(s + 2)... (s + m), and Z(s, (1 - q ~)~(1- One has
also examples with f the determinant (resp. Pfaffian) on the space of symmetric
(resp. antisymmetric) (m, m) matrices, or with f the discriminant on the space
of binary cubic forms.

(7.3) M. Sato and Kimura [69] have given a complete classification in 29 types of
all ]{-split irreducible (as representation) regular prehomogeneous vector spaces,
and Kimura [42] has determined their Bernstein polynomial. For 20 out of these
29 typesB Igusa [26],[29],[31],[37] has explicitly calculated Z(s, Xtrzv). These

are tabulated in [36]. His calculations don’t use resolution of singularities, but
exploit the symmetry of the group structure. In all these cases the formulas
show that the real parts of the poles are indeed roots of b I ( s ). This was the first
evidence for conjecture 2.3.1. Also it was on the basis of these formulas that

Igusa conjectured proposition 4.1.2 on the degree of Z(s, 
(7.4) Igusa [31] has found a finite list of candidate poles for Z~ (s, x) which only
involves group theoretical data associated to (G, X ). A weakened version of his
result is the following.

Theorem (Igusa [31]). If s is a pole of x), then tilere exists a E V(I()
such that for all h E H where H is the fixer of a in G .K
and ~H the modulus of H (i.e. d(h-1uh) = H(h)du for any Haar measure du
on H).

More recently Kimura, F. Sato and Zhu [46] proved (using microlocal analysis)
that the real parts of the above candidate poles are roots of when (G, X)
is irreducible and reduced (in the sense of [69]).
(7.5) By a theorem of Borel and Serre, U(I{) splits into a finite number of
G(I() orbits, say Ul, ... U~. For i = 1, ... , .~ one defines the functions (s, x)
in the same way as x) but integrating now over Ui instead of These

1 Very recently Igusa [40] calculated Z(s, ~triv) for 4 more types.



are rational functions of q-S (see section 8) and satisfy the following functional
equations.

Theorem (Igusa [31]). For i =1, ... , .~ and we have

where ~* is a Fourier transform of $ and the 1ij are rational functions of q-S
which are independent of$. Moreover, 7.4 holds also for the Zi and 

In this theorem we have tacitly assumed that there exists an involution of End(X)
defined over K under which G is stable (one can often take transposition). For a
generalization of this result, see Kimura [44]. When f = 1 the above functional
equation takes a nice form. Igusa has classified the (G, X) with f == 1 when G is
irreducible and K-split, and has calculated 1ll explicitly in these cases [33]. In
the Archimedean case much more is known about the see (70~ .
(7.6) For the 20 types of prehomogeneous vector spaces mentioned in 7.3, Igusa
[38] found that Z(s, xtriv) is universal in the sense of 4.2.3. This led him to the
following conjecture.

Conjecture. If (G, X) is defined over a number field F, then Z(s, xtriv, f, K)
is universal for almost all completions I( of F, provided G splits over Ii .

We recall from 4.2.3 that universality implies the functional equation 
= udeg v), which was first proved by Igusa [38] for the above mentioned 20
types by explicit calculation. For some more conjectures, see Gyoja [24].
(7.7) Ono [65] has shown, for any non-constant absolutely irreducible polynomial
f over a number field F, that the product of over all

p-adic completions K of F is convergent and holomorphic for Re(s) > 0. In

the case of irreducible regular prehomogeneous vector spaces with only finitely
many adelic open orbits, Igusa [35] proved that this product has a meromorphic
continuation to the whole s-plane and satisfies a functional equation (assuming a
mild condition which was removed in [44], [45]). However, it seems very unlikely
that this remains always true when there are infinitely many adelic open orbits.
For some other adelic results, see Datskovsky and Wright [7].



8. INTEGRATION OVER SUBANALYTIC SETS

Igusa’s result on the rationality of x) can be much generalized. We
briefly survey some of the results. As always, we assume that K, R and Pare
as in 1.1.

A subset S of is called semi-algebraic if it can be described by a finite
Boolean combination of conditions of the form g(x) = 0, ord ord h(x),
or 3y E K : g(x) = ym, with g, h E The subset S is called semi-

analytic if locally at each point of it can be described by such conditions
where we allow now g, h to be analytic functions.

Macintyre’s remarkable theorem [55] states that the projection (from 
to Kn) of a semi-algebraic set is again semi-algebraic. His proof is based on
results from mathematical logic and the work of Ax-Kochen-Ersov. For different
proofs, see the references in [19, (0.14)]. Iterating the operations of projection
and complementation, one sees that many sets, which arise in practice, are semi-
algebraic. For example, the p-adic orbits of a p-adic algebraic group action are
semi-algebraic.

Using Igusa’s method 1.3 one shows that Is is a rational function

of q-S whenever S is semi-algebraic and bounded and f E I([x], see [10] (this
extends [59]). However, this can also be proved without resolution of singu-
larities, using p-adic cell decomposition [10] instead. This method is based on

partitioning S in semi-algebraic "cells" on which has a simple description
so that the integral can be evaluated using separation of variables and induction
on n. For other applications of this method, see [11] and [68].

We now return to the analytic case. The projection of a bounded semi-
analytic set is not semi-analytic in general. This motivates the following defini-
tion. A subset S of is called subanalytic if locally at each point of it is

the projection of some bounded semi-analytic set. If we replace I( by R then
this agrees with the classical notion of real subanalytic sets, introduced by Lo-
jasiewicz, Gabrielov and Hironaka [75]. Van den Dries and Denef [19] developed
the theory of p-adic subanalytic sets. Some of their ideas were inspired by math-
ematical logic. A first basic theorem is that the complement of a subanalytic
subset of is again subanalytic. Another basic result is the following.

8.1 Theorem (Uniformization of p-adic subanalytic sets [19]). Let S C I{n be
subanalytic and bounded. Then there exists a I(-analytic manifold M and an



analytic map h: M -~ K’~, which is a composition of finitely many blowing-up
maps with respect to closed submanifolds of codimension > 2, such that 
is semi-analytic in M.

Since integrals over semi-analytic sets can be evaluated by using Igusa’s
method, the above theorem yields the following.

8.2 Theorem. Let S C Kn be subanalytic and bounded, and f : I~’~ --~ K

analytic. Then, is a rational function of 

Actually this remains valid when f is any function whose graph is subanalytic
[13]. A first application of theorem 8.2 is the following.

8.3 Corollary [19]. Let f be a power series over K which converges on Rn. For
mEN, denote by Am the cardinality of the reduction mod P’~ of V = {x E

= 0~. Then R(t) := Amtm is a rational function of t.

This corollary was conjectured by Serre and Oesterlé [72],[64] and was our
main motivation to investigate p-adic subanalytic sets. Corollary 8.3 follows
from 8.2 by expressing R(t) in terms of the integral ID where D =

~(x, w) E [ distance from x to V is  Note that D is indeed the

projection of a semi-analytic set. We refer to Oesterlé [64] for fundamental
results on the asymptotics of Am. When f has only two variables, R(t) has been
explicitly calculated by Bollaerts [6].
Another application of theorem 8.2 is the following remarkable result of du

Sautoy [20].

8.4 Theorem. Let G be a compact p-adic analytic group. For m ~ N denote

by Cm the number of open subgroups of index pm in G. Then Cmtm is
rational in t.

Finally we mention some further developments. The main results about p-
adic semi-algebraic and subanalytic sets are not uniform in p. Uniform versions
have been obtained by Pas [66], [67] and Van den Dries [77]. Subanalytic sets in
the context of rigid analytic geometry have been studied by Lipshitz [49] and
Schoutens [71].
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