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MINIMAL MODELS OF ALGEBRAIC THREEFOLDS:
MORI’S PROGRAM

by JÁNOS KOLLÁR

Seminaire BOURBAKI

4leme annee, 1988-89, n° 712

Juin 1989

The aim of Mori’s program is to provide a rough classification of algebraic
varieties in dimension three (and higher if possible). Before I explain the exact
aims, let us engage in a rather slanted review of the case of curves and surfaces.

1. Curves and surfaces

1.1. Let C be a smooth proper algebraic curve over C (equivalently, a compact
Riemann surface). It is well known that C can be endowed with a metric of
constant curvature, and one has the following classification according to the
sign of the curvature:

curvature structure

positive P~

zero 

negative H/03C01 ( C)
(Here H is the upper half plane.)

This should be considered only a partial classification. The positive curvature
case is completely clear but in the negative case much remains to be done.

1.2. One can attempt to extend these results to higher complex dimensions in
several ways. Considering the sectional or the holomorphic bisectional curvature
turns out to be too restrictive. Instead we can consider the curvature of the
determinant of the tangent bundle, which is essentially the same as the Ricci
curvature of the tangent bundle. For historical reasons we also dualize and
consider our basic object:

This will be referred to as the canonical bundle or the dualizing sheaf (for
reasons that are unimportant now). Dualizing changes the sign of the curvature,
creating the possibility of confusion. One can easily prove the following:
S. M. F.
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1.4. PROPOSITION. Let M C be a smooth hypersurface of degree k. Then
KM admits a metric whose curvature is

This sounds very promising but even in complex dimension two life is more
complicated. There are two very simple constructions that create "mixed cur-
vature" surfaces.
Products. The product of a positively curved and a negatively curved man-

ifold cannot have a metric with semidefinite curvature. This is not surprising.
Blowing up or down. Let M be a complex manifold of dimension n and

pick a point x E M. We can "enlarge" M by removing x and introducing a
copy of corresponding to the complex directions at x. This way we obtain
a new manifold BxM which admits a natural map p : M. This is
called the blowing up or blowing down. The map p is an isomorphism over
M - ~~~ and p-1(~} ~’ If L C C BxM is a stra,ight line then an
easy computation yields that 6(KB.,M) = -1. Thus the canonical line
bundle of BxM cannot be positive semidefinite.

In complex dimension two these are the only sources of indefinite curvature:

1.5. THEOREM. Let M be a smooth proper algebraic surface. Then KM admits
a metric whose curvature is semipositive unless one of the following holds:

(1.5.1) there is another (smooth) surface Mi and x E Mi such that

(1 .5.2) M is a ~°1 bundle over a curve C;
(1.5.3)M^-_’~2.
In all three cases there is an embedded copy of pI  C C M such that

‘~ f C  o.

These cases are very different in nature. (1.5.2-3) are very precise global
structural statements. One can hardly wish for more. (1.5.1) merely identifies
(and removes) a small part of M and gives no global information. On the other
hand it introduces a new surface Mi which is simpler than M since it has "fewer"
curves. (In fact + 1 = We can apply (1.5) to
Mi and continue if possible. This gives the following:
1.6. THEOREM. Let M be a smooth proper algebraic surface. There is a

sequence of blowing downs M ~ M1 ~ ~ ~ ~ -~ Mn = M’ such tha.t M’ satisfies
exactly one of the following conditions:

(1.6.1) admits a metric whose curvature is semipositive.



(1 . 6.2) M’ is a P1-bundle over a curve C;
(1. ~. 3~ ~2 .

The aim of Mori’s program is to find an analog of these results for higher
dimensional varieties.

2. First steps in higher dimensions

Before continuing further we replace the curvature assumptions with some-
thing more algebraic. Let L be a line bundle on a complex manifold M with
metric h and curvature 0 and let C C M be any proper curve. Then

We will denote this number by C’ L. In particular, if 0 is semipositive then
C ~ ~ > 0 for every C.

2.1. Definition. We say that a line bundle L on a proper variety X is nef if
C’ . L > 0 for every compact curve C C X . (This replaces the earlier confusing
terminology "numerically effective" ). It is conjectured that for the canonical line
bundle being nef is equivalent to admitting a metric with semipositive curvature.
As (1.5) suggests, we should try to understand those varieties X for which

Iix is not nef. This means that there are curves C C X such that C . Kx  0.
First we would like to find the worst such curve C. To this end we consider

~iX gives a linear function on H2(X, R); thus the "worst" curves are on the
boundary of the cone NE(X). More precisely, they should be extremal.

If M is a surface and ]{M is not nef then by (1.5) we can always find an
embedded copy of pl. In higher dimensions we will be able to guarantee only
a nonconstant map X. The image of such a map is called a rational
curve. (In all examples known to me one can also find an embedded copy of
,P’1. ) 

Mori’s first major result is a partial description of the cone 



2.2. THEOREM. (Mori [Mol]) Let X be a smooth projective variety (any di-
mension~. The extremal edges of the closed cone of curves N E(X) are discrete
in the open halfspace {z E H2(X, h’X  0~. If R c N E(X) is such a
negative extremal edge then there is a rational curve C C X such that [C] E R.

Negative extremal edges are usually called extremal rays. Once an extremal
edge is identified as the source of the trouble, one would like to use it to construct
a map as in (1.5). In dimension three a complete description is known:

2.3. THEOREM. (Mori [Mol]) Let X be a smooth projective threefold over C.
Assume that Kx is not nef and let R c NE(X) be a negative extremal edge.
Then there is a normal projective variety Y and a surjective map f : X - Y
such that an irreducible curve C C X is mapped to a point by f iff [Cj E R.
One can choose Y such that f*Ox = Oy and then Y and f are unique up to
isomorphism. The following is a list of all the possibilities for f and Y.

(2.3.1) Case I: f is birational.

Let E C X be the exceptional set of f. One has the following possibilities for
E, Y and f :

(2.3.1.1) E is a smooth minimal ruled surface with typical fiber C and C . E =
-1. Y is smooth and f is the inverse of the blowing up of a smooth curve in Y.

(2.3.-L2,) p2 and its normal bundle is 0(-1). Y is smooth and f is the
inverse of the blowing up of a point in Y.

In the remaining subcases Y has exactly one singular point P and f is the
inverse of the blowing up of P in Y. Let be the completion of the local
ring of P E Y.

(2.3. J.3~ E ~ p2 and its normal bundle is O(-2).
~~,Y N ~~1~2~ y2~ z2~ ~y~ ~Jza zx~~~

(2.3.1.4) E  Q where Q is a quadric cone in p3 and its normal bundle is
~~3(-1)I~~ ~P,Y N ~ll~~ ~~ z~ tlJl (~~ - z2 - t3). °

(2.3.1.5) E ^’ Q where Q is a smooth quadric surface in ~°3, the two fami-
lies of lines on Q are homologically equivalent in X and its normal bundle is

~P,~ ~’ ~~~~~ ~~ z~ t~~~(~~ - zt).
(2.3.2~ Case 2: f is not birational.

Then we have one of the following subcases:
(2.3.2.1) dimY=2. Then Y is smooth and f is a conic bundle (i.e. every fiber

is isomorphic to a conic in ~2~.
(2.3.2.2) dimY = 1. Then V is a smooth curve and every fiber of f is an

irreducible and reduced ( possibly singular) Del Pezzo surfa.ce.
(2. 3. 2. 3~ di mY = 0. Then X is a Fano variety is negatively curved).



It is crucial to assume that X is projective. If we allow nonprojective but
proper algebraic varieties then infinitely many new subcases of birational con-
tractions will occur. These have not yet been classified.

I do not want to dwell on the second case; (2.3.2) provides a very satisfactory
classification.

The main point of interest is the first case. Instead of having only one subcase
(as for surfaces) there are five. The first two are as expected but in the last three
subcases the space Y has isolated singularities, although fairly simple ones.
Examples show that we cannot hope to get an analog of 1.6 if we insist on con-

sidering smooth varieties only. For a long time this was a considerable stumbling
block and even conjectural approaches were lacking.
A crucial conceptual step forward is to abandon smooth varieties. In retro-

spect, the signs were already clear in dimension two. If one considers families of

surfaces, then it is frequently more convenient to allow certain mild singularities
in all the surfaces. Before we decide which class of singularities to allow, let us
formulate clearly what do we want.

2.4. Choice of Singularities.
(2.4.1) We want to investigate varieties X for which KX is not nef. In order

to do this, Kx should exist and being nef should make sense.
(2.4.2) The usual definition of Kx works over the smooth locus of X. If X is

normal (a harmless assumption) then codim(SingX) ~ 2, hence KX has a well
defined hpmology class in ~)~ However, because of the singularities
there is no intersection product between H2dimX-2 and H2. Thus the symbol
C . K X makes no sense in general.

(2.4.3) If KX-SingX extends to a line bundle over X then its first Chern class
is in H2 (X, Z), and we can take the intersection product with [C] E H2 (X, Z).
For the singularity given in (2.3.1.3), this condition ’is not satisfied because of
the group action. However, will extend to a line bundle over X.
Thus we can still define a first Chern class E H2(X, Q), and this is also
satisfactory.

(2.4.4) Failure of any of the above conditions would result in the death of the
program. It is however desirable to have further conditions that keep us from
straying too far from smooth varieties. Earlier we were willing to put up with
blowing up smooth subvarieties. Therefore, the ideal would be to have a class of
singularities that has no effect on properties that are invariant under blowing up
of smooth subvarieties. This "metacondition" is too strong but serves as very
good guide.
One of the most important invariance properties under blowing up is the in-

variance of the plurigenera: Pm(X) = dim0393(X,K~mX) (m > 0). Singularities
that do not affect the plurigenera form one of the important classes of singulari-
ties for our purposes. There is however a technical strengthening of this property



that we will ultimately use.
(2.4.5) Finally, there is a condition whose role is less clear at the moment.

We say that a variety X has Q-factorial singularities if for every codimension
one subvariety V C X there is an integer m such that mV is locally definable
by one equation. The main consequence of this is that every codimension one
subvariety will have a cohomology class in H2(X, Q).

2.5. Definition. An algebraic variety X is said to have canonical resp.
terminal singularities if the following three conditions are satisfied:

(2.5.1) X is normal;
(2.5.2) extends to a line bundle over X for some m > 0; (This

unique extension will be denoted by 
(2.5.3canonical) If f : X’ --~ X is a resolution of singularities then Pm(X ~ _

Pm (X’ ) for every m ~ 0. (To be precise, we require an appropriate local version.)
(2.5.3terminal) If f : X’ -~ X is a resolution of singularities and a E is a

local section then f*a E vanishes along any codimension one component
of the exceptional locus. (This is a strengthening of (2.5.3canonical)’)

2.6. PROPOSITION. ~2.6.~) A two dimensional terminal singularity is smooth.
(2.6.2) Two dimensional canonical singularities are exactly the Duval sin-

gularities. (They are also called rational double points).

In dimension three there is a complete list of terminal singularities as a result
of works by Reid [Rl], Danilov [D], Mori [Mo2] and Morrison-Stevens [MS]:

2.7. PROPOSITION. Three dimensional terminal singularities are isolated. They
are all quotients of hypersurface singularities by cyclic groups. The typical
three dimensional terminal singularity can be described as the quotient of the
hypersurface singularity (xy + = 0) C C4 by the cyclic group action
(x, y, z, u) - (~’x, ~’ 1 y, z, where ~n = 1 is primitive and (a, n) = 1. (A
similar description is available for the remaining exceptional ones.)

2.8. The aim of Mori’s program is to find certain "elementary"
birational transformations such that by a successive application of
these transformations every threefold X can be transformed into a

threefold X’ such that

either: Iix, is nef;
or: X’ is similar to a projective space bundle.

The "elementary" birational transformations correspond to extremal rays,
though in a more complicated way than (2.3) suggests. The extremal rays

correspond to certain rational curves C Thus one can claim that if is

not nef then some rational curve C C X is responsible for this, and the program
provides a way of getting rid of these "bad" rational curves.



The whole program may work in all dimensions. At the moment only the first
step, corresponding to (2.2), is known in all dimensions, as is a partial result cor-
responding to (2.3). These results are due to Kawamata [Kal][Ka2],Benveniste
[B], Kollar [Ko], Reid [R,2] and Shokurov [S2].
2.9. THEOREM. Let X be a projective variety (any dimension) over C with
only Q-factorial terminal (resp. canonical) singularities.

(2.9.I) The extremal edges of the closed cone of curves are discrete in
the open halfspace {z E H2 (X, KX  0} and they have rational directions.

(2.9.2) For every extremal edge R there is a contraction map f : X - Y such
that a curve C E X is mapped to a point by f iff [C] E R. One can always
assume that = Oy and then f and Y are unique.

(2.9.3) We have the following possibilities for f and Y:
(2.9.3.i) f is birational and the exceptional set is an irreducible divisor. Then

Y again has Q-factorial terminal (resp. canonical singularities. Such a contrac-
tion is called divisorial.

(2.9.3.2) f is birational and the exceptional set has codimension at least two
in X. In this case is never a line bundle for m > 0. Such an f is called a
small extremal contraction.

(2.9.3.3) dimY  dimX. Then X is covered by rational curves. The gen-
era.1 fiber F has negative canonical class. Such a contraction is called a Fano
contraction. Such an .~’ should be considered "simila.r" to a. projective space
bundle.

By (2.3) the small contraction case does not occur for smooth threefolds. Also,
it leads us out of the required class of singularities since is never a line
bundle for m > 0. To see this assume that is a line bundle. Then 
and are two line bundles on X and they are isomorphic outside the
exceptional set. Since the exceptional set has codimension at least two, these
line bundles are isomorphic. On the other hand, if [C] E R then

This is a contradiction.
Therefore (2.9.3.2) is an incorrect step in the program. Something new must

be done; this new operation is called a flip.

3. Definition and examples of flips

From now on we restrict our attention to threefolds.
3.1 Definition. Let X be a threefold with terminal singularities and let

f : X -~ Y be the contraction of an extremal ray. Assurne that f is small. Let



the exceptional set be C C X and its image Q C Y. By the flip of f we mean
a threefold X+ together with a morphism f + : X+ - F which satisfies the
following conditions:

(3.1.1 ) .~+ has terminal singularities;
(3.1.2) The exceptional set C+ C X+ is one dimensional and its image is

again Q C Y. In particular, X - G‘ ^-_’ X+ - G’+.
(3.1.3) ]{x+ has positive intersection with any component of C+.
The rational map X - -> X+ will also be called the flip of f.
Heuristically speaking, a flip improves the situation because it replaces C

(which has negative intersection with ]{x) with C+ (which has positive inter-
section with Unfortunately, it is not known how to attach a precise
meaning to this remark.

It is not at all clear that flips exist; in fact, this is the hardest part of the
whole program.

3.2 Examples of flips. The following is probably the simplest series of
examples.
We start with an auxiliary construction.
Let us consider Y = (xy - uv = 0) C C4. This has an isolated singularity

at the origin. If we blow it up, we get X = Bo Y. The exceptional set Q C X
is the projective quadric (xy - uv = 0) C ~°3. This has two families of lines:
x = cv; y = and x = cu; y = These two families can be blown
down to smooth threefolds X resp. X+. X resp. ~r+ can also be obtained
alternatively by blowing up the ideals (x, v) resp. (~, ~c). Let G’ C X, resp.
C+ C X + be the exceptional curves of X - Y, resp. X+ - Y. Thus we have
the following varieties and maps:



Consider the action of the cyclic group Zn: (x, y, ~c, v) H (~x, y, ~~, v) where
( is a primitive nth root of unity. This defines an action an all of the above
varieties. The corresponding quotients are denoted by a subscript n.
The fixed point set of the action on Y is the 2-plane (x = u = 0). On the

projective quadric Q the action has two fixed lines: (x = u = 0) corresponding
to the above fixed 2-plane and ( y = v = 0) corresponding to the (-eigenspace.
On X therefore the fixed point set has two components: the proper transform
of the (x = u = 0) plane and the image of the (y = v = 0) line, this latter is an
isolated fixed point. It is easy to see that (x, v’ = give local coordinates
at the isolated fixed point. The group action is (x, v’, u) H ((x, ~-1v’, (u). In

particular, the quotient is a terminal singularity.
On X+ the fixed point set will have only one component and it contains the

exceptional curve C+. Thus X~ is smooth.
It is not too hard to compute the intersection numbers of the canonical classes

with the exceptional curves. We obtain that

Thus X+n ~ Yn is the flip of Xn ~ Yn for n ~ 2.
Before going further let us note two special properties of this example. At

the isolated fixed point on X we have coordinates ~x, v’, u) and the curve C
is the v’-axis. A typical local Zn-invariant section of IiXI is given by a =
(v’n-1 - A dv’ A which has intersection number (n - 1) with C.
Since this section is invariant, it descends to a local section an of Let
Dn = (an = 0). By construction which is a DuVal
singularity (= rational double point) of type Since Cn . Dn = en . 
one can easily see that even globally Dn is a member of ~i Xn ( . 
Another simple way of getting a surface singularity out of the above construc-

tion is to consider the general hyperplane section Hn of Yn. This is given as the
quotient of an invariant section of Y. v - ~cn = 0 is such a section whose zero
set on F is isomorphic to the the singularity (xy - = 0). This itself is a
quotient of C2 by the group Zn+i. Using this, Hn can be written as a quotient
of C2 and we easily get that Hn is isomorphic to the singularity C2/Zn+I where
the action is (zl, z2) - ~z2) and E is a primitive (n + 1)St root of unity.

4. Small contractions

In this section we will outline some steps toward the structure theory of small
contractions in dimension three. A small extremal contraction can contract



several irreducible curves simultaneously. If we pass to the analytic category
then we can factor it into a series of morphisms, each contracting one irreducible
curve only. These are the ones that we will consider for the most part.

4.1. Definition. Let f : X - Y be a proper bimeromorphic morphism of
complex spaces which satisfies the following conditions:

(4.1.1) X has only terminal singularities;
(4.1.2) Y is normal with a distinguished point Q E Y;
(4.1.3) consists of a single irreducible curve C C X ,
(4.1.4) the canonical class of X has negative intersection with C.
(4.1.5) f : X - C - Y - Q is an isomorphism.
In the above situation we say that extremal

neighborhood. We usually think of Y as being a germ around Q.
The ideal sheaf of the curve C C X will be denoted by I.
By an appropriate version of Kodaira’s vanishing theorem, R1 = 0. By

(4.1.4) we can say that O x is "more positive" than Wx and therefore =

0. Let J c O x be any ideal sheaf whose cosupport is C. Consider the sequences

Taking f * we get long exact sequences. All the are zero since the fibers of

f are at most one dimensional. Since = 0 and l~1 f *cvx = 0 we obtain
that

As we will see, these are very restrictive conditions.
4.2. Notation. (4.2.1) For a sheaf F we define gr0F = F ~ Oc/(torsion).
(4.2.2) If i : X - SingX - X is the natural injection then we define

03C9[k]X = i*(03C9~kX-SingX).
4.3. COROLLARY. With the above notation, C ~ P1.

Proof. = 0.

4.4. COROLLARY. With the above notation, gr003C9X ~ OC(-1).
Proof: 1Jx /Iwx is a generically rank one sheaf on pl. Therefore it is the

direct sum of O( a) and a torsion sheaf. Since = 0, we
see that a > -1. Let m > 0 such that is locally free. We have a natural
map

By (4.1.4), = C~  0, thus ma  0. This gives that a = -1.



4.5. COROLLARY. With the above notation, + and

a, b > -1.

Proof. Let us look at the long cohomology sequence of

The map clearly surjective. 0 , and
therefore H~ (.~~I2 ) = 0. Now we get the result as in 4.3.

It is clear that one can continue in this way to obtain results about higher
powers of I as well. The crucial point is however to get a handle on the singu-
larities. Let X D C 3 P be a singular point on X. By (2.7) X is locally the
quotient of a hypersurface singularity X~. Let C~ be the preimage of C.
Although C is smooth, C# can be quite complicated. For example, the quotient
of the monomial curve

by the group action (x, y, z) - (~ax~ (-a y, (b z) is smooth. This curve singularity
is fairly complicated if a is large. Also, in general C~ can be reducible.
To analyse the situation further, we will define certain local invariants of the

triplet X D C 3 P and then we use global inequalities to obtain bounds for
them. There are two very important such invariants. Let

where /3 is as in (4.4) and ex comes from the natural map

Using the information we already have about the source and target of a and {3
we obtain:

4.7. COROLLARY. With the above notation,



4.8. COROLLARY. With the above notation, -1 ~ C . Kx  0 and

O(a) + O(b) where -1  a, b and a + b  1.
The usefulness of these inequalities hinges on our ability to compute these

invariants. To simplify notation we assume that eU is irreducible. The following
result is very helpful:

4.9. LEMMA. Let D ~ Ck be an irreducible curve singularity. Assume that
the cyclic group Zn acts on and that is smooth. Then after an
equi variant local analytic coordinate change D becomes monomial i.e.

Proof. Let p : D - be the normalization of D. Let t be a local
parameter on D which is a Zn-eigenfunction. Let Xi be the coordinate functions
on Ck. We can write p* Xi = where is Zn-invariant with nonzero
constant term. Since D /Zn is smooth, D /Zn = Therefore gi is a regular
function on D. Hence it extends to a regular function hi on Ck. Now introduce
new coordinates xi = xih-1i. D is clearly monomial in this new coordinate
system.
The main advantage of this lemma is that generators of I, cv~ etc. can be easily

written down in terms of monomials. This makes the combinatorics manageable.
One can prove the following:
4.10. THEOREM. (Mori Let X ~ P be a three dimensional terminal
singularity and let X D C 3 P be the germ of a smooth curve. Assume that

Then either CU C ~~ is a planar curve singularity or CU has multiplicity 3.

Considering a third invariant will show that if X D C 3 P is on an extremal
neighborhood then in fact eU is always planar. This result is in some sense best
possible since planar singularities of arbitrary multiplicity can occur as CU.

Considering a whole series of new invariants Mori develops a complete local
classification of the possible triplets X D C 3 P. See [Mo4, Appendix A] for a
list.

5. How to flip

The previous chapter explained the approach to describing small contractions
in dimension three. Now we turn to examine various strategies for flipping.



At the moment there is no direct proof of the existence of flips. All the proofs
rely on the detailed structure theory developed in [Mo4]. Once we have a good
classification of small contractions one can check various sufficient conditions for
the existence of flips. In some cases this is easy, in some cases it is still very
hard.

5.1. Backtracking Method. This method has probably the simplest un-
derlying principle. The idea is that we essentially do not want to flip. In the

program we start with a smooth threefold X and construct a sequence of con-

tractions X - X1 ~ ... ~ Xk  Y where f is a small contraction. In the
intermediate steps we usually have a choice of which extremal ray to contract.
It is not too difficult to find an example that shows that even if we choose the
rays with care we can not avoid flips in the process. However one still might
hope that if we also allow blow-ups in the sequence then flips can be avoided.
This approach has failed so far in general, partly because there seems to be an
enormous amount of bookkeeping involved. In important special cases this was
used by Tsunoda [T] and Shokurov [Sl]. Even in these cases the process is very
complicated.
There are however two variants of this method that work well. Both rely on

the observation that a certain flip-like operation - called a flop - is much simpler
than a flip. There are two known ways of using flops to flip.

5.2. Definition. Let X be a threefold with canonical singularities and let
f : X -~ Y be a morphism. Assume that the exceptional set is a curve C C X
and its image is Q C Y. Assume that ~X has zero intersection with every
component of C. Furthermore let D E H2(X, IR) be an algebraic cohomology
class such that D has negative intersection with every component of C.
By the flop of f we mean a threefold X+ together with a morphism f + :

X+ - Y which satisfies the following conditions:
(5. 2. ~ ~ X+ has canonical singularities;
(5.2.2) The exceptional set C+ c X + is one dimensional and its image is

again Q C Y. In particular, X - C ~ X+ - C+.
(5.2.3) There is a (necessarily unique) class D+ E .H2 (X +, (~~ such that

D+ /X+ - C+ = D IX - C and D+ has positive intersection with every com-
ponent of C+.
The rational map X - -> X + will also be called the flop of f.
The extra datum D is not really important; it is mainly there to avoid the

possibility that X = X +.
The main difference between flips and flops is that in the latter C ’ =

C+.Iix+ =0.
The reason that flops are easier to work with is that Y has nicer singulari-

ties. Indeed, since C = 0 it is reasonable to hope (and indeed it is true)
that KX descends to Y to give Now it is easy to see that Y has canoni-



cal singularities. Since we understand three dimensional canonical singularities
quite well, we can hope to prove the existence of flops. In the case in which the
canonical singularities are actually terminal, this was done by Reid ~R3~ . The
general canonical case can be reduced to the terminal case by a variant of the
backtracking method. This was done by Kawamata [Ka3].

There are two methods of reducing flips to flops.
5.3. Double Covering Method. Let f : X D C -~ Y 3 Q be a small

extremal contraction. Let D C X be a general member of - .Construct
the double cover 7r : Xd  X ramified along D. Thus we have f d : Cd 

Qd. Note that

Therefore, if Xd has canonical singularities, then f d corresponds to a flop. Thus
we can realize a flip as a quotient of a flop by an involution. This method was
first used by Kawamata [Ka3].
The big question is of course to ensure that X d has canonical singularities.

This requires an understanding of the general member of ] - 2HX ~ .
It is fairly easy to prove that if the the general member of ( - ( has only

DuVal singularities, then the general member of I - 2I~X ~ ] satisfies the above
requirement.

5.4. One Step Back Method. Let f : X D C - Y 3 Q be a small extremal
contraction. We try to choose a modification at a singular point g : X’ --~ X
carefully enough such that X’ has terminal singularities and that if C’ denotes
the proper transform of C on X’ then C’ . j~x~ ~ 0. If we have strict inequality
then the contraction of C’ results in a flip and we are done by some sort of
induction. If C’ . = 0, then we are really happy since the contraction
of C’ results in a flop. The details of this approach (due to Kawamata) have
not appeared yet, but it also requires a substantial portion of the information
obtained in [Mo4].

5.5. Families of Surfaces Method. Let f : C --~ Y 3 Q be a small
extremal contraction. Let t E r(0y) be a general section such that t(Q) = 0.
Let H = (t = 0) C Y. Using the map t : Y -~ ~ we can view Y as a one
parameter family of surfaces. If we understand H and its deformations well,
then we can hope to understand X+. In the example of section 3, H (denoted
there by Hn) is the quotient singularity C2 /7Ln+I, where the action is given by

(EZ1, ~z2) with E a primitive (n + root of unity.
It is known that if 3 then the deformation space of this singularity has

exactly one component, the so-called Artin component. Moreover, if H+ - H
is the minimal resolution of H, then every deformation of H can be lifted back
to a deformation of H+. It is easy to see that X+ is exactly the total space of
the corresponding deformation of H+.



For this method to work, we need to understand H. Then we need a descrip-
tion of the deformations of H analogous to the above description of the Artin
component. For quotient singularities this was done in [KSB]. It is interesting
to note that the proof itself uses some results of Mori’s program.

This leads to one of the drawbacks of this approach. One must do much of
the work twice to avoid a vicious cycle. The other drawback is that it is much
more difficult to control the general section of O x than the general member of

The advantage is that this approach works well for families of threefolds, see
(KM] .

5.6. Complete Intersection Method. Let 
small extremal contraction and let X+ D C+ be the flip. In X + we take two
surface germs D1 and Dt that are disjoint and intersect C1+ transversally. Let
their proper transforms on X be Di and D2. Clearly both contain C and they
are disjoint outside C. Thus, set-theoretically, Di n D2 = C. Conversely, it is

easy to see that if we find two such surface germs along C then X+ is essentially
given by the linear system (Di, D2). One can compute that Di. C  0, thus one
expects that the Di will be members of Ij Kx for some positive j.

This is Mori’s original approach [Mo3]. Its disadvantage is that finding these
Di is very hard; in fact, it has not been done in all cases. On the other hand,
this approach gives the most precise results about X+ .

6. Sections of 

We saw in the previous section that various methods of flipping are based on
finding sections of the sheaves for k = -2, -1,0,.... Let us observe first that
if k « 0 then is f -very ample; thus, there are plenty of sections in general
position. In particular, finding nice sections should be easier for k = -2 than
for k _ -l, and so on. On the other hand, we can use a section of c~~X-1~ to get
some information about the sections of r~~X~ . If Ox - c~~~-1 ~ is a section with
zero set D, then consider the sequence

As we already noted, R1 f*wx = 0. In particular, any section of lifts to
a section of w~X~ . Thus we have two tasks ahead of us. First we have to find a
section for k negative and then get a section for k larger and larger step-by-step.
While it is very easy to start with k « 0, the rest of the process becomes very



difficult. Therefore we start with k = -2 or k = -1 depending on the extremal
neighborhood.

6.1. k = -2 case. Since (7 ’ > 0 we have a chance to find a section
which does not contain C. In many cases this indeed will be possible. Consider
a singularity of the extremal neighborhood X D C 3 P. Let P E D C X be any
divisor which does not contain C and assume that some multiple of D is Cartier.
Let us consider the hypersurface cover C~ ~ P~. Let mp = 
Let P# E DU C XU be the pull-back of D. Since DU is a Cartier divisor,

Assume that D is a global section of wX 2~ not containing C. Then D must pass
through all the points of C where is not locally free. In particular we get
that

Therefore we can have such a section D only if C . w!;2] is large compared to
the multiplicities of C~ .
From the list in [Mo4,Appendix B], one can easily see that there is a section

of not containing C’ if there is at most one singular point of index > 2
along C. There are, however, examples when there are two singular points of
indices m and m + 1 such that

In this case every section of c~X 2~ must contain C; and it turns out to be easier
to find a section of directly.
6.2. k == -1 case. We consider the case when there are (at least) two

singular points of index > 2 along C. One can prove that these are the only
singular points along C. Finding a section of 03C9[-1]X is the same as finding a
homomorphism h : Ox. We want the section to vanish along C. Thus
the image of h lies in I (the ideal of C). We want to build this h via infinitesimal
methods. The first approximation is a map

By (4.4) C~C(-1~. There are two singular points along C; both have
i p = 1. Thus by (4.7) -1. In fact one can see that 

C~C ( -1 ) + Oe. Thus we are searching for a map



Such maps certainly exist, our problem is that there are too many of these.
One can see from examples that in general grO h is independent of h. Therefore
somehow we have to find a unique way of picking such a map.

If we had started more systematically, the same problem would have come up
earlier. Namely, as a first step we would have a map

There are many such maps but we know that in general they cannot be extended
to higher order neighborhoods. Here we can use an ad hoc argument which
goes as follows: h cannot be an isomorphism at the points where c~X is not

locally free. If there are two such points then this implies that the induced map
C~C(-1) -~ Oc is not an isomorphism at two points. Therefore it is the zero

map.
In general it is unlikely that such ad hoc arguments will solve all our problems.

In fact one can see that similar problems do exist at all levels of the extension
process. Therefore we need to find a systematic way to provide extra rigidity to
the sheaves and maps. This will be discussed next.

6.3. l-structures. Consider a singularity X D C 3 P, and let its hypersur-
face cover be C~ ~ P~. ~ : X~ -~ X is an etale ~~-cover outside P. Let F
and G be reflexive sheaves on X (e.g. or O x .) Let etc. denote the
reflexive hull of the pull-back. Then any homomorphism h : .F 2014~ G induces a
homomorphism Moreover there is a natural ~~-action on
the pulled-back objects and

For a sheaf H on ~~ let gr~(H~ = H 0 Then we have the

following relationship:

Moreover, grO h lifts to a map

6.4. Definition. Let C be a smooth curve and let Pj E C be closed points.
Let Pj E C~ C C be an analytic (or formal) neighborhood of Pj for every
j. Assume that we specify germs of curves CJ with a Zm; action such that

Let finally F° be a torsion free sheaf on C.



(6.4.1) An I-structure on F° is:
(6.4.1.1) a collection of torsion free sheaves Fj on with a Zmj action and
(6.4.1.2) a collection of isomorphisms

As we explained in (6.3), if F is a reflexive sheaf on X then F° = grO F comes
endowed with an l-structure .

(6.4.2) An l-homomorphism between two sheaves with I-structures F° and
GO is a homomorphism h° such that there exist homomorphisms h° : F° --~ Go
which induce h° on the invariant parts. If h : F - G is a homomorphism
between reflexive sheaves on X then grO h is an I-homomorphism.

6.5. Example. Let C be a smooth rational curve. Let p : C~ = C be
a smooth local double cover, ramified at a fixed .P E C. If z is a local prameter
at P then ~/~ is a local prameter on C~. ~2 acts via T~~) _ 2014~/~. If L is a
line bundle on C there can be two different I-structures on L.

Trivial: LP ~ OC# with Z2-action = 1 trivial. In this case the invari-
ant part is 1 trivial. Oc. We denote this by 

Twisted: LP ~ OC# with 22-action this case the
invariant part is 1 twisted. ~ . Oe. We denote this by 

I claim that there are no I-homomorphisms from L+ 2 to L+° . Indeed, if a is
a local generator of L at P then we can assume that a. In L+ 2 we can
write a = lasted . ~+0 we can write a ~ 1 trivial.
The corresponding homomorphism hi : Oeu should satisfy the equal-

ity hi (1 twisted) = 1 trivial, which is impossible.
As suggested by this example, if CU is smooth and C# -~ C has ramification

index m at P then putting an I-structure on a line bundle L at P is essentially
the same as specifying some negative fractional power (of course a  nt) as
the hypothetical generator of Lp. To be precise, let fl be a local parameter on
CU and let the group action be given by y7 - ( "~. The action on Ocu. given
by 1 - (m-a 1 gives an I-structure on L. We denote this I-structure by L+ ~ .
It is clear that there is a nonzero I-homomorphism between L+ ~ and L+ m iff

a ~ a~.
The same principle applies if there are several points Pi; we just have to keep

track of them independently. However if CU is singular or we consider higher
rank sheaves then I-structures can even have moduli.

6.6. Now we return to our problem to see how I-structures help. First of all
consider the possible maps



The i-structure on is trivial at both singular points. What about the
i-structure on One can prove that at the two singularities Pl and P2 in
suitable coordinates we have

and eU is the x-axis. The group action is (x, y, z, ~c~ H where

(mi = 1 is primitive and =1. Thus the generator of at Pi is

Therefore, in the above notation we can write

Thus the zero map is the only i-homomorphism 
Let us turn our attention to grO h : By the previous discussion,

we are likely to have fewer I-homomorphisms than ordinary homomorphisms. In
fact the new problem will be to prove that there are any I-homomorphisms at
all. This requires the computation of the I-structure of This is far from

trivial, since i-structures on higher rank sheaves are more complicated than on
line bundles. In fact, very delicate arguments are needed to show that certain
cases cannot occur.

The step-by-step extension of the homomorphism requires a very thorough
knowledge of how the two singularities behave with respect to higher order
neighborhoods of C. The required arguments are long and delicate. I can only
urge everyone to study [Mo4, Chapters 8-9].

7. Statement of the results

The description of extremal neighborhoods developed in [Mo4] and [KM] is
too long to be given here. The following two results are the ones needed for
various results concerning flips:
7.1. THEOREM. (Mori Kollar-Mori (Reid’s conjecture about gen-
eral elephants ) Let f : X D C - Y 3 Q be an extremal neighborhood. Then
the general member of I - I and the general member of I - ] have only
Du Val singularities.



7.2. THEOREM. (Kollar-Mori Let f : X D C - Y 3 Q be an extremal
neighborhood. Let t E C Oy be a general element of the ideal of Q and
let J? == (t = 0). Then H is either a cyclic quotient singularity or one of the
following singularities described by the dual graph of their minimal resolution:



As I explained in section 4 these results imply the existence of flips. Now we
are ready to complete Mori’s program in dimension three as follows:

7.3. MAIN THEOREM. (Mori [Mo4)) Let X be a smooth projective three di-
mensional algebraic variety. A succession of divisorial contractions and flips
transforms X into a variety X’ which has the following properties:

(7.3.I) X’ and X are birationally equivalent;
(7.3.2) X’ has only Q-factorial terminal singularities;
(7.3.3) X’ satisfies exactly one of the following alternatives:
either: Kx’ is nef (i.e. it has nonnegative intersection with any compact curve

C in X’ );
or: there is a morphism g : X’ -~ Z onto a lower dimensional variety such

that Kx’ has negative intersection with every curve contained in a fiber of g.
This X’ is not unique, but only one of the alternatives can occur. Moreover, if

is nef then it is well understood how the different choices of X’ are related
to each other.

Proof. Starting with a smooth threefold X we define inductively a series of
threefolds as follows. Let Xo = X. If Xi is already defined, we consider Iix; .
If it is nef then let X’ = Xi. If it is not nef then we contract an extremal ray.
If the contraction gives a nontrivial fiberspace structure Xi  Z then again we
set X’ = Xi. If the contraction f i : Yi is divisorial then we set Xi+1 = Yi.
If the contraction is small then we set = xt (the flip). All that remains
is to prove that the process will terminate.
A divisorial contraction decreases dirrzH2 by one, so we can have only finitely

many of these. A flip leaves dimH2 unchanged. Shokurov [S2] proved that a flip
"improves" the singularities and this easily implies that any sequence of flips is
finite. This completes the proof.

8. Consequences

The Main Theorem (7.3) is only the starting point of the structure theory of
threefolds. Most of the work still lies ahead. There are already several results
that can be formulated (and originally were conjectured) independently of Mori’s
program, but whose proofs rely on the program in an essential way.
8.1. THEOREM. (Miyaoka Miyaoka-Mori [MM]) (03BA = -~ ch ara c t eri za-

tion) Let X be a smooth projective threefold. Then the following two sta,tements
are equivalent:

(8.1.1) There is a rational curve through every point of X.
(8..I . 2) 0 for e very i > 0.



8.2. THEOREM. (Kawamata [Ka1j, Benveniste Fujita [Fj) (Finite genera-
tion of the canonical ring) Let X be a smooth projective threefold. Then the
canonical ring

is finitely generated. -

8.3. THEOREM. (Kollar-Mori [KMJ) (Deformation invariance of plurigenera)
Let {Xt : t E T~ be a flat family of smooth projective threefolds. Assume that
T is connected. Assume that for some 0 E T and for some m > 0 we have

2 .

Then is independent oft E T for every n.

8.4. THEOREM. (Kollar-Mori (Moduli space for threefolds of general
type) Let M be the functor "families of threefolds of general type modulo bira-
tional equivalence", i. e.

Then there is a separated algebraic space M which coarsely represents M .
Every connected component of M is of finite type.

Finally, I would like to mention two easy applications of the above results to
nonprojective threefolds. These results are aside from the main direction, but
they illustrate the scope of applications.

8.5. THEOREM. (Peternell ~PJ~ Let X be a compact complex threefold which
is bimeromorphic to a projective threefold but not itself projective. Then X

contains at least one rational curve. 
,

(When Peternell proved this result, (7.3) was still a conjecture. His proof -
using only (2.3) - is quite delicate. Using (7.3) the proof is easy.)
8.6. THEOREM. (Kollár-Mori [KM]) Let g : X ~ S be a proper smooth map
of complex spaces. Assume that the fiber Xs is a projective threefold of general
type for some s E S. Then there is an open neighborhood s E U C S such that
Xu is projective for every u E U. (In general g is not projective over U . )



References

Survey articles

H. Clemens, J. Kollár and S. Mori, "Higher Dimensional Complex Geometry,"
Asterisque 166, 1988
This booklet contains the simplest known proofs of (2.9) and (4.10). It also
contains a lot of background material..

Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal
Model Problem, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math.
vol 10. T. Oda ed., Kinokuniya - North-Holland, 1987, pp. 283-360.
The most complete discussion of (2.9) and related questions. 

J. Kollár, The structure of algebraic threefolds - an introduction to Mori’s
program, Bull. AMS 17 (1987), 211-273.
A leisurely introduction, aimed at all mathematicians.

M. Reid, Young person’s guide to canonical singularities, in "Algebraic Geom-
etry Bowdoin 1985," Proc. Symp. Pure Math. vol. 46, 1987, pp. 345-416.
A nice treatment of the relevant singularities.

P.M.H. Wilson, Toward a birational classification of algebraic varieties, Bull.
London Math. Soc. 19 (1987), 1-48.
An overview aimed at algebraic geometers, written before [Mo4] appeared.

Research articles

[B] X. Benveniste, Sur l’anneau canonique de certaines variétés de dimension
3, Inv. Math. 73 (1983), 157-164.

[D] V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33
(1978), 97-154.

[F] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds,
J. Math. Soc. Japan 38 (1986), 19-37.

[Ka1] Y. Kawamata, On the finiteness of generators of the pluri-canonical ring
for a threefold of general type, Amer. J. Math. 106 (1984), 1503-1512.

[Ka2] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math.
119 (1984), 603-633.

[Ka3] Y. Kawamata, The crepant blowing-up of 3-dimensional canonical sin-
gularities and its application to the degeneration of surfaces, Ann. of Math
127 (1988), 93-163.

[Ko1] J. Kollár, The Cone Theorem, Ann. of Math. 120 (1984), 1-5.
[KM] J. Kollár and S. Mori, soon to be written up.



326

[KSB] J. Kollár and N. Shepherd-Barron, Threefolds and deformations of sur-
face singularities, Inv. Math. 91 (1988), 299-338.

[Mi] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math.
Ann. 281 (1988), 325-332.

[MM] Y. Miyaoka and S. Mori, A numerical criterion of uniruledness, Ann.
of Math 124 (1986), 65-69.

[Mol] S. Mori, Threefolds whose canonical bundles are not numerically effec-
tive, Ann. of Math. 116 (1982), 133-176..

[Mo2] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98

(1985), 43-66.
[Mo3] S. Mori, Minimal models for semistable degenerations of surfaces, Lec-

tures at Columbia University (1985), unpublished.
[Mo4] S. Mori, Flip theorem and the existence of minimal models for 3-folds,

Journal AMS 1 (1988), 117-253.
[MS] D. Morrison and G. Stevens, Terminal quotient singularities in dimen-

sion three and four, Proc. AMS 90 (1984), 15-20.
[P] T. Peternell, Rational curves on Moishezon threefolds, in "Complex Anal-

ysis and Algebraic Geometry," Springer LN. 1194, 1986, pp. 133-144.
[R1] M. Reid, Canonical Threefolds, in "Géometrie Algébrique Angers," A.

Beauville ed., Sijthoff &#x26; Noordhoff, 1980, pp. 273-310.
[R2] M. Reid, Projective morphisms according to Kawamata, preprint, Univ.

of Warwick (1983).
[R3] M. Reid, Minimal models of canonical threefolds, in "Algebraic Varieties

and Analytic Varieties," Adv. Stud. Pure Math. vol 1. S. Iitaka ed.,
Kinokuniya and North-Holland, 1983, pp. 131-180.

[S1] V. V. Shokurov, letter to M. Reid (1985).
[S2] V. V. Shokurov, Theorem on nonvanishing, Math. USSR Izv. 26 (1986),

591-604.

[T] S. Tsunoda, Degenerations of Surfaces, in "Algebraic Geometry, Sendai,"
Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya - North-Holland,
1987, pp. 755-764.

Janos KOLLAR
Department of Mathematics

University of Utah
Salt Lake City, UT 84112
USA


