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ASYMPTOTIC MORSE INEQUALITIES FOR ANALYTIC SHEAF COHOMOLOGY

[according to J.-P. Demailly]

by Yum-Tong SIU

Seminaire BOURBAKI Juin 1986

38ème annee, 1985-86, n° 666

Recently J.-P. Demailly [6,7] obtained some Morse inequalities estimating

asymptotically the dimensions (and also their partial alternating sums) of

cohomology groups of the tensor powers of a Hermitian holomorphic line bundle over

a compact complex manifold in terms of some integrals involving the curvature of

the line bundle as the power tends to infinity. When the complete alternating sum

is used, one recovers the asymptotic case of the theorem of Riemann-Roch. These

Morse inequalities give sufficient conditions for a compact complex manifold to be

Moishezon. We will discuss these Morse inequalities, their background, Demailly’s

proof, a later probabilistic proof by Bismut, and the applications.

1. STATEMENT OF THE INEQUALITIES

Let X be a compact complex manifold of complex dimension n, F be a

holomorphic vector bundle of rank r over X, and E be a Hermitian holomorphic
line bundle over X. We denote by c(E) the curvature form of E, which equals

when the Hermitian metric of E is locally given by e ‘~, and denote by

X(q) the open subset of X consisting of all points x of X where c(E)(x)
has exactly q negative eigenvalues and (n-q) positive eigenvalues. Let

X(q) = X(0)UX(l)U--UX(q). Demailly’s result is the following.

THEOREM 1.1.- (a) (Morse inequality)

8.M.F.
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Here o(kn) is the Landau symboL denoting a term of order Less than that of kn’

Before we present Demailly’s proof we discuss first the background of his

result.

2. BACKGROUND

The question of asymptotically estimating the dimensions of cohomology groups
with coefficients in the tensor power of a fixed line bundle was motivated by a

conjecture of Grauert and Riemenschneider [8]. Kodaira proved that a compact

complex manifold is projective algebraic if and only if it admits a positive

holomorphic line bundle. The conjecture of Grauert and Riemenschneider was an

attempt to generalize Kodaira’s theorem to Moishezon manifolds. A Moishezon

manifold is a compact complex manifold with the property that the transcendence

degree of its meromorphic function field equals its complex dimension. Moishezon

showed that such manifolds are precisely those which can be transformed into a

projective algebraic manifold by proper modifications. One similarly defines the

concept of a Moishezon space. The conjecture of Grauert-Riemenschneider asserts

that a compact complex space is Moishezon if there exists on it a torsion-free

coherent analytic sheaf of rank one with a Hermitan metric whose curvature form is

positive definite on an open dense subset. Here a Hermitian metric for a sheaf is

defined by going to the linear space associated to the sheaf and the curvature

form is defined only on the set of points where the sheaf is locally free and the

space is regular. The conjecture is easily reduced to the following special case.

2.1. A Special Case of the Conjecture of Grauert-Riemenschneider. Let X be a

compact complex manifold of complex dimension n. If X admits a Hermitian

holomorphic line bundle E whose curvature form is positive definite on an open

dense subset of X. Then X is Moishezon.

This conjecture was proved in [14,15]. The proof relies on the asymptotic

dimension estimate that for any positive number E one has dim e’

for q > 1 and for k sufficiently large. From this estimate and the theorem of

Hirzebruch-Riemann-Roch one gets a positive constant c such that

dim > ckn for k sufficiently large. By taking quotients of elements of

one gets enough meromorphic functions to make X Moishezon. In [14,15]

the asymptotic dimension estimate was obtained by imitating a familiar technique



in analytic number theory of using the Schwarz lemma to prove the identical

vanishing of a function by estimating its order and making it vanish to high order

at a sufficient number of points. Such a technique applied to the holomorphic

sections of a holomorphic line bundle was used by Serre [12] and also later by

Siegel [13] to obtain an alternative proof of Thimm’s theorem [17] that the

transcendence degree of the meromorphic function field of a compact complex

manifold cannot exceed its complex dimension. To get the asymptotic dimension

estimate for sheaf cohomology groups one shows that the cocycle constructed in the

natural way by solving a equations from a harmonic form must be identically zero

if it vanishes on a lattice of points in the manifold which are, roughly speaking,

spaced (Ak) 
-1/2 

distances apart along directions in which the curvature form of

E has eigenvalue X. In the oral presentation of [15] it was conjectured that

there should be an asymptotic estimate of dim Hq(X,Ek) given by some integral

expression of the curvature of E. Demailly’s result gives such an asymptotic

estimate and as a consequence gives better sufficient conditions than the

conjecture of Grauert and Riemenschneider for a compact complex manifold to be

Moishezon.

3. MAIN STEPS OF DEMAILLY’S PROOF

3.1. Reduction to a problem of asymptotic eigenvalue distribution. Let

be the group of all global Ek~F-valued (O,q)-forms on X whose

coefficients have locally L2 first-order derivatives. Fix ~. > 0. Let

be the subgroup of spanned by all eigenfunctions of

the Laplace operator aa + a a whose eigenvalues are  u. On let

H be the projection operator onto the harmonic forms and G be the Green

operator for ~~*+ ~*~. Since G maps to itself, it follows from

I - H = (a G)a + a(a G) that the q cohomology group of the complex

s~0’ . d is isomorphic to the group of all E0F-valued harmonic

(O,q)-forms on X and is therefore isomorphic to Let be the

complex dimension which is equal to the number of eigenvalues

of aa + ~*~ on AO,q(X,Ek~F) that are  u. By standard linear algebra
arguments we have



The proof of Demailly’s theorem is therefore reduced to estimating in 
asymptotically as and  ~ 0+. One estimates by a localization
procedure. The use of the localization procedure requires that the two limits

k and ~. -+ 0+ be taken in the following special way. Let Nk(~) = 
One fixes A and estimates 1 knNqk(03BB) asymptotically as and then lets

A ~ 0.

The localization procedure originated with the work of H. Weyl. Weyl [18]
introduced the localization procedure and the minimax principle to get the

asymptotic estimate of the distribution of eigenvalues of linear partial
differential equations. The intuition is that for the Dirichlet problem with zero

boundary value, as the eigenvalue increases the nodal hypersurfaces (the zero-sets
of the eigenfunctions) divide the domain into smaller and smaller subdomains and

the Dirichlet problem looks more and more like the union of Dirichlet problems for
all the subdomains.

Though Demailly attributed part of the motivation of. his method to Witten’,s
papers [19,20], his localization procedure is quite different from Witten’s. On

the other hand it bears a close resemblance to Weyl’s original localization

procedure.

We state first the result on asymptotic eigenvalue distribution obtained by
the localization procedure and use it to finish the proof of Demailly’s result.

We will later prove the result of asymptotic eigenvalue distribution.

3.2. Statement of result on asymptotic eigenvalue distibution. Let M be a

smooth compact Riemannian manifold of real dimension m, L be a Hermitian smooth

line bundle over M with a Hermitian connection D, G be a Hermitian smooth

vector bundle of rank t over M with a Hermitian connection v. Let vk be

the Hermitian connection on induced by D and v. Let S be a smooth

section of and V be a global Hermitian endomorphism of G.



For a global section u of L 0G consider the quadratic form

Let be the number of eigenvalues of the quadratic form Qk(.) which are

 A. For a e M Let V1{a)  V~(a)  ~~~ V (a) be the eigenvalues of V(a).
Let B be the curvature form of the connection D. For a E X write

B(a) = 03A3sj=1 B.(a)dx.Adx.+ where (x1,...,xm) is a normal coordinate system at

a and B2(a) >2014’> B s (a) > 0. Let

Here X means the maximum of X and 0 except when we are raising X to the

zeroth power, in which case X means 0 if A  0 and means 1 if X > 0.

Let vB(À) = lim uB(~+E). Then one has the following result on asymptotic
" 

0E-30 
"

eigenvalue distribtuion by the localization procedure.

We will prove this theorem later. We now apply this estimate to the case where

M = X, L = E, G is the tensor product of F and the bundle of (0,q)-forms

of X, and = k 2 X C(aa~+ We have to relate the operator

aa + a a to the curvature of E and F and this is done through the formula of

Weitzenbock, Bochner, and Kodaira.

3.3. Formulae of Weitzenbock, Bochner, and Kodaira. Let Q = be the
1J

curvature form of a holomorphic vector bundle W over X which is a

Hom(W,W)-valued (l,l)-form, where (z~.2014’.z~) is a local coordinate system and

the summation convention is used. Consider first the case when X admits a



Kahler metric Let Rij denote the Ricci curvature of the Kahler metric.

Then for any W-valued (O,q)-form 03C6 we have the following formulae of

Weitzenbock, Bochner, and Kodaira:

Here v denotes the covariant differential operator and

(The usual rule of raising indices is used. The notation (2) v means that the

index in the uth position is replaced by l, and 

- 
denotes the

components of cp with respect to the local coordinates 

For the case W = one chooses normal local coordinates at the point

under consideration so that the curvature form of E is diagonal ized and its

eigenvalues are a. (1 _ j  n). For I = let aI = ai 
v 

and

let CI denote the complement of the set I in {l,’**,n}. Then we have

Here is the pointwise L2 norm of the (covariant) first-order derivatives

of 03C6 in both the (1,0) and the (0, I ) directions and the notation 0 

means a term whose absolute value is dominated by C k X |03C6|2 with a constant C

independent of k and ~p. The summation ~J is over all J = (jl,...,jq) with

1  jl "’~ n. For the case of a non-Kahler Hermitain metric we have



Here S is a section of coming from the torsion of the

Hermitan metric and is independent of k. The other error contributions from the

torsion of the Hermitian metric are absorbed in the term . Now we

apply Theorem 3.2.1 to the quadratic form k 
X 

(~~*+~*~)03C6,03C6> (with the obvious

modifications due to the term 

The rank t of equals r times the binormial coefficient (n).
The set {Vi}ti=1 is equal to the set {03B1CJ - 03B1J} repeated r times, where J

runs through the set of all (j~,’".J ) with 1  jl "’ n. We have

{B.} = {nonzero In the following formula for asymptotic eigenvalue

distribution

at any given point when we compute vB(Vi+À) for a sufficiently small positive

number X, the only nonzero term we can possibly pick up from the sum is the term

with all the p.’s equal to 0. Even then the only possible nonzero

contributions must come from the case where

which means that a , is nonposi tive for j e J and a , is nonnegative for
J J

j e CJ.. We have a nonzero factor B1...Bs only when s = n which means that

all the a. ’ s must be nonzero to give a nonzero contribution. In that case

J 
s-2n ~

= 03A0ni=1 (a. ( and the factor #( becomes 1 . At a given point
S I* I n~S (2~)n

of X where all the a.’s are nonzero, out of the t numbers 03BDB(Vi+03BB) there
j i

are only r nonozero ones (when the positive number A is sufficiently small)



and they are all identical, because at that point there is only one J with the
property that aj  0 for jej and aj > 0 for j E CJ. ° Thus

Demailly’s result now follows from these two limits and Theorem 3.2.1.

4. PROOF OF THE ASYMPTOTIC EIGENVALUE DISTRIBUTION

4.1. The minimax principle. The pth eigenvalue Xp for a quadratic form Q(.)
is the minimum, over all p-dimensional vector subspaces F, of the maximum of

Q(f) over all elements f of unit length in F. Moreover, ~ is also equal
to the maximum, over all (p-1)-codimensional vector subspaces G, P of the minimum
of Q(g) over all elements g of unit length in G.

4.2. The case of a cube and constant curvature and potential. On the cube

consider the quadratic form



A change of scale and a translation of the eigenvalues gives us the following more

general case with a constant potential V. Let V be a real number and k be a

positive integer. Let

where NQ P(R),k (X) is the number of eigenvalues of that are ~ 03BB for

the Dirichlet problem with zero boundary value. To prove Lemma 4.2.1 one uses the

method of separation of variables by Fourier series and uses comparison with the

solution to the classical problem of the harmonic oscillator. For 1  j  s and

p. E N be the p. eigenfunction of the quadratic form
J J

for f with compact support in (- 2, 2) and let 03BBpj,lj be its eigenvalue. We

compare this with the following two eigenvalue problems of the harmonic oscillator

with explicit known solutions: (i) the same quadratic form q(f) but with no

support condition on the function f on lR (see e.g. [2~); (ii) the quadratic

form

with zero boundary value for f. We conclude from this comparison that the

eigenvalue X 

pj,lj J 
is strictly bounded from below by the maximum of the



eigenvalue problems of the harmonic oscillator. Moreover, by using a cut-off

function on the interval (- 2,2) and comparison with the eigenvalue problem (i)
of the harmonic oscillator, we conclude that for every p E ~(s there exists a

nonnegative constant C depending on p and B such that

with and 03C8p,l = 1~j~s 03C8pj,lj(xj), where x’ _ (xl’...’ x ),
x" = {xs+1,...,xm), and l.x" = l1xs+1 +...+ lm-sxm. The condition that u

satisfies the zero boundary value condition is equivalent to the equations

for all I  j  s and all p , l1,...,lj-1,lj+1, ...,ls. The L2 norm of u over

P(R) is Z (u and

where and l" = (l1,...,lm-s). By the minimax principle

NQ (X) is dominated by the number of (p,l) in with A . + 403C02 R2.
|l"|2 ~ A. From the lower bound of obtained above by comparison with the

J J
two eigenvalue problems of the harmonic oscillator and from a simple estimate of

the number of integral points inside a ball we obtain lim sup (A) 
R~ P(R)

° Using the upper bound of Àp,1! obtained above by comparison with the

eigenvalue problem (i) of the harmonic oscillator and using the fact that the

number of equations in (*) is of an order no higher than that of Rm 1, , we



conclude that lim R-~ inf (A} > 

4.3. The general, manifoLd case. To get the asymptotic eigenvalue distribution

for the general manifold case, the main tool is the following two observations.

Let Q be an open subset of M. In a way analogus to the definition of 

we define to be the number of eigenvalues ~ A for the Dirichlet

problem on 0 with zero boundary value. If °1’...’~ are mutually disjoint

open subsets of Q, then NO ,(X) > 03A3Nj=1 NO k(03BB). If covers 03A9 and

03C8j is a smooth function with compact support in n. and if 1, then

N (A)  Z:=1 where C is sup03A9 z:=1 |d03C8j|2.

First one applies these observations to reduce the general case to the case

of a bounded smooth subdomain Q of ~m with the bundles differentially trivial

over Q. Then on each Q we consider two kinds of cubes centered at 

with a E a smaller kind whose side has length k 1/3 and a larger kind whose

side has length k -1/3 + k il/24, . The smaller kind of cubes that are inside D

are used as the mutually disjoint open subsets. The larger kind of cubes that

intersect n are used as a cover of it. For the asymptotic eigenvalue
distribution of each cube we compare the original problem with the one obtained as

follows. The original Hermian metric is replace by a constant Hermitian metric

which is equal to the original Hermitian metric at the center. The original
connection is replaced by a connection whose curvature is constant and equal to

the original curvature at the center. The original potential V is replaced by
the constant potential which is equal to the original potential at the center. By

applying the above observations to the cubes and using the comparison to the local

case with constant curvature and potential, we get the asymptotic eigenvalue
distribution for a general manifold.

5. BISMUT’S HEAT EQUATION PROOF.

Bismut [5] later gave a probabilistic proof of Demailly’s result using the

heat equation. We very briefly discuss his proof. We use the same notations as

in Demailly’s proof. Let C be the set of smooth global sections of

over X. Let 0 k be the operator on the complex



Set t = k. For s > 0 the operator on C,{Ek®F) has a

smooth kernel PS. Let Tr be the trace of e on C (Ek®F). Then
s q q

Tr e equa,ls J Tr (PS(x,x))dx and
q X q s

This step corresponds to the step in 3.1. The curvature form of E can be

naturally regarded as an endomorphism of the bundle of (O,q)-forms and we denote

this endomorphism by 0. The next step is to prove that

This is the most difficult step. It corresponds to the asymptotic eigenvalue

distribution of Section 4. For this step the method of Brownian motion, Ito’s

formula and Bismut’s earlier work [3,4] on the asymptotic representations of

are used. The final step is

where lX(q) is the characteristic function of X(q). This step corresponds to

the step of letting 03BB ~ 0 in Demailly’s proof. Demailly’s result now follows

from integration over X. Bismut’s method gives also asymptotic bounds for the

dimension of the kernel of Dirac operators in both the even and odd dimension

cases.

6. APPLICATIONS.

6.1. Demailly’s result gives the following result on Moishezon manifolds that is

better than the conjecture of Grauert and Riemenschneider proved in [14,15], where

only condition (c) is given.

THEOREM 6.1.1.- Let X be a compact complex manifold of complex dimension n.

For X to be Moishezon, it suffices to assume that X admits a Hermitian



hoLomorphic Line bundle satisfying one of the following conditions:

(a) [ (ic(E))" > 0.

(b) c1(E)n > 0 and the curvature form c(E) does not have precisely a positive

even number of negative eigenvalues at any point of X.

(c) c(E) is semipositive everywhere and positive at one point of X.

6.2. Another application of Demailly’s result is the following integral

inequalities involving the Monge-Ampere operator. Let Q be a relatively compact

smooth subdomain of a Stein manifold M of complex dimension n such that the

complex Hessian of a defining function for the boundary of 0 has at least n - r

+ 1 nonnegative eigenvalues at every boundary point. Let ~p be a smooth

real-valued function on the closure of Q such that the complex Hessian H of

w has at least n - p + 1 nonnegative eigenvalues near the boundary of Q. Then

for q > p + r - 2 the integral of (-l)qdet H over Q is dominated by its

integral over the set of points where H is nonsingular and has no more than q

negative eigenvalues, where det denotes the determinant. There is also a real

analog in which M is replaced by IRn and the complex Hessian is replaced by the

real Hessian.

For the proof one applies Demailly’s result to a compact n-dimensional

complex manifold with a Hermitian line bundle such that the curvature form a of

the line bundle has at least n - q positive eigenvalues outside a subdomain D

and equals ~~03C8 for some smooth real-valued function 03C8 on D. One

constructs a sequence of such pairs (D, ~) approaching the given pair {D,~p).
The real analog is obtained via the correspondence between the complex and real

Hessians of functions on a Reinhardt domain and its associated real domain.

Though the formulation of these inequalities are so elementary, yet except in

the case q = 0 so far there is no way to prove these inequalities by the method

of integration by parts. For the case q = 0 A. Taylor has the following proof.
One solves the Monge-Ampere equation for a plurisubharmonic function f with

boundary value equal to that of ~p so that (iaaf)n equals times the

characteristic function of the set of points where H is positive definite. ° One

then uses the inequality f > ~p proved in [11] and apply Stokes’ theorem.
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