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Séminaire BOURBAKI Juin 1986
38&me année, 1985-86, n° 663

ENTROPY, HOMOLOGY AND SEMIALGEBRAIC GEOMETRY
[after Y. Yomdin]

by M. GROMOV

1. COMPUTATIONAL DEFINITION OF TOPOLOGICAL ENTROPY
1.1. The entnopy of a partition NI of a set X into N subset is defined by
ent I = log N

The intersection of two partition say n, n n2 , is the partition of X into
the pairwise intersections of the elements of I[1 and H2 .

Foramap g : Y > X cne cbviously defines the pull-back partition of Y
denoted Iig for every partition I of X . If f is a self mapping X > X one
consideres the pull-backs of N under the iterates f'@ = f ,

£2 = fFof ... ' = fo £ and set

i,
" =0 N0 «..Nl

and

ent(n;£,i) = i7" ent 1° .
Similarly, if Y is mapped into X by g one defines

ent(1|Y;£,1) = i !

ent(II‘L)g .

1.2. Let X be a cubical polyhedron, that is a topological space divided into
cubes 0o , such that every two cubes meet at a cammon face. Denote by I the
partition of X into the open (i.e. taken without boundary but not necessarily
open as subsets in X) cubes of the polyhedron X and let I (j) be the refine-
ment of 1 obtained by dividing every o into 3™ equal subcubes. Now define
the topological entropy ent £ of amap £ : X » X as the lower bound of the
numbers h > O with the following property :

(P) There exists an arbitrarnily Lange integen k > O (depending on h) such that

Lin sup ent(n(3) ; £,1) < hk

i
for all j =1,2,... .

S.M.F.
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M. GROMOV

In the same way ane defines ent £ly for every space Y mapped into X .
This definition is justified by the following easy theorem.

1.3. Topological invariance of the entropy. I§ X 44 compact and £ 48 continuous
then ent £ does not depend on a chodice of the (cubical) polyhedrnal structure on
X . The same applies to entf|Y 4on compact spaces Y continuously mapped into

X . Moreovern, i X 4s gfinite dimensional and Y <X (s a compact subset inva-
niant unden £ then ent £|Y only depends on Y and £ : Y > Y [but not an embed-
ding Y >~ X ) , provided the map £ 48 continuous on Y

1.4. Remark. Consider the standard partition 1 of K into unit cubes which
are the faces of the integer translates of the cube {0 < % < 1,1i-= 1...n}cR" .
The entropy defined with this Hst is not topologically J.nvarlant over all R .
Yet it is invariant on every campact subset Y , such that f is continuocus on Y
and £(Y) €Y . Thus one cbtains an invariant entropy for a continuous selfmaps of
an arbitrary finite dimensional campact space Y , since Y embeds into same ®r.
1.4. Examples. (A) Take a linear map f : R » R and define the spectral nadius
Rad £ = lim [l£4]] 173
for £l = suf3 £ &) |

Let /\f—Af@A1f©...®Af be the full exterior power of £ . Then by

an easy argument, the entropy (for the standard cubical partition of ]Rn) satis-
fies,

ent £f|Y = log Rad Af
for every non-empty open bounded subset Y in ®r .

(B) Let f be an endamorphism of the torus ™ = R/Z" . It is easy to see
that

ent £ = ent T|Y

for the covering linear map ¥: R'>R®" and for every non-empty bounded open
subset Y < R' . It follows with (a) that

ent f = log Rad £,
for the 4nduced endomonphism £, on the real hamology H, T .
(C) Every holomorphic map £ : cP” > € has
ent f = log Rad £, . (%)

Furthermore, ent f|Y = ent £ for every subset Y c " whose camplement is non-
dense and invariant under £ . For example, if f on (I:P1 is given by a polyno-
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mial fo on (l:1c(l:P1 of degree d > O , then entf|Y=logd for
Y ={|z] <r}cC, provided |f(z)| >r for 2z >r

Notice that Rad f, equals the topological degree deg £ for every continucus
selfmap f of P with deg £ >0 .

The proof of (x) caonsists of showing that
(c1) ent £ > log deg £
and
(c2) ent f < log'deg £ ,
where log+t = max (O,log t) , which takes care of deg = O .
The first inequality is an immediate corollary of the following theorem by

Misiurewicz and Przyticki (see [M—P]1) .

1.5. Theorem. Let £ be a C'-smooth self-mapping of a compact manifold X , such
that the pull back £ (x) contains at Least A point for all x 4An a subset of
full measure in X . Then ent £ > logd .
The secand inequality (C2) follows fram the (dbvious) bound
Vol T, < canst at

f
for the 2n-dimensional volumes of the graphs T i € eP" x €P”? of the iterates
£

of f . (See 2.4.)

1.6. Elementary properties of the entropy.

The following list of facts (whose proofs are straightforward) gives same
idea on the dynamical significance of the entropy.

(i) For any two subsets in X ,
ent £]Y, UY, = max ent £|Y, .
1 2 . i
i=1,2

(ii) If Y, <y, then ent f|y, < ent £y, .

(iii) Take two continuous selfmappings of campact spaces, say fi X > Xi for
i=1,2 and let F : X > X, be a continuous map cammuting with fi . If F is

1
onto, then ent f. > ent f2 . If F is finite-to-one then, ent f1 < ent £

1 2

(iv) Suppose a continuous map f : X + X fixes a closed subset XO c X and
wanderns on the ccmple:pent Q= X\Xo . That is each point x € Q@ admits a neighbor-
hood U such that f£'(U) does not meet U for all sufficiently large i . Then
ent £ = O, provided X is campact.

2

Examples. (a) Let £ be a linear selfmapping of I1R“ with two real eigenvalues
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# +1 . Such an f wonders outside the origin but ent f|Y may be positive on
bounded subsets Y in ]R2 (see 1.4.A.). Next we extend f to a projective self-

mapping f of the projective plane P? 5 R® . This T fixes, besides the origin

in ]R2 , two points on the projective line P1 = Pz\ R2 corresponding to the two
eigenspaces (if the eigenvalues are equal f fixes p') and again f wanders
outside the fixed point set. Since P° is campact, ent = 0 by (iv) (campare
(C.2) above. (Notice that ent £|Y # ent E|Y for Y c R°c P? as the entropy in
R® defined with the standard cubical partition of R> does depend on the par-
tition and is not topologically invariant).

(b) Consider the map £ : JR2 > ]R2 given in the polar coordinates by

f: (p,0) > (20,d0) for same X > 1 and an integer d . This f cbvicusly
extends to a continuous selfmap f of the one-point campactification of R?
that is S > R® . The map f wanders outside the two (cbvious) fixed points.
Thus ent T =0 and T violates the inequality ent > log|deg| for l|d| > 2
(here deg T = d) as well as Theorem 1.5. This is due to the non-smoothness of
f at the origin O € ]R2 .

4

2. ENTROPY AND THE VOLUME GROWTH

2.1. Let X be a smooth Riemannian manifold (e.g. a submanifold in ®Y) and

f:X-+X a C1-sn‘ooth maps. Take an g¢-dimensional submanifold Y < X and define

logvol (£]Y) = Lim sup i~ 'log Vol(r ,|v)
i £

where T iIY c Y x X stands for the graph of the i-th iterateof f on Y
£

and Vol denotes the 2-dimensicnal Riemannian volume.

Notice that logvol can be bounded by the norm of the differential
Df : T(X) > T(X) ,

%
logvol (£]Y) < log® ||Df||

where lIn |l %€F sup e | T, 00|l
X

The same estimate (cbviously) holds with Rad Df instead of |[Df|| , where
Rad Df %€F 1im sup ||pgt]] /2
i

Observe that Rad Df < ||Df || and that Rad Df (unlike [[Df|) does not depend
on a choice of the Riemannian metric on X , provided X is campact.

2.2. YOMDIN THEOREM. [et £ be a Cr-smooth sel§-map of a compact C -manifold X
and Let Y < X be a compact cE-submanifold. Then
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logvol (£]¥) < ent(£]Y) + log® (Rad DE)*/T . (*)
In particularn, if £ and Y are C , then

logvol (£|Y) < ent(f|Y) < ent £ . (%)
2.3. COROLIAIRE. (Sofution of Shub entropy conjecture for C>-maps). 14 £ 45
C®-smooth then

ent £ > log Rad £, (*%%)
gon the spectral nadius Rad f, of the induced endomorphism on the neal homology,
£y s Hy(X) >~ H,(X)

PROOF. Consider pairs of closed forms W and wy, an X xX with
drac_;w1 +c1<agw2 = dim X and dbserve that
/i

1/1

Rad f, = Radf* = sup li{n supl f w1vw2' < lim sup (VolI‘fi)1
W, ,W.
1’

, e £l i

Remark. The spectral radius of £, on H,  is cbviously bounded by the volume
growth of the #-simplices of fixed triangulation of V under the iterates of f .
2.3.A. Example. If f wanders outside the fixed point set of f (see 1.6. (iv))
then every eigenvalue X of f, on H,(x) satisfies [A] < 1.

2.4. An upper bound for the entropy

Several months prior to Yamdin's result, Sheldon Newhouse [N ] found the follow-
ing converse to (*x) for Cz—selﬁnaps of campact manifolds,

ent £ < sup logvol (f Y) (*x%x)
Y
over all campact C®-submanifolds Y c X . A similar inequality for diffecmorphisms
was proven earlier by Felix Przyticki [P] .

2.5. Semicontinuity of the entropy

Using (****) and his main lemma (see 3.4) Yamdin shows that

lim sup ent £ < ent £
-0 T — o]
for every C®—continuous in 1t € [0,1] family of C°°—maps fT : X+>X of a

campact manifold X .

Example of non—-continuous entropy

Map the wnit disk in € into itself by f_: z > (1-92% for 1 €[0,1] .
Then ent fo = log 2 (see 1.4.C.) and ent fT =0 for >0 as fT wanders
outside the center of the disk for © > O .
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2.6. Yondin's inequality (*) is sharp. To see this, let Y cR’® be the graph of
the function Y = x*'° sin x_1 for x € [0,1] which is CY-smooth for all r and
e > 0 . Take the projective map f on P2 ) IR2 given by the linear map

(x,y) > (x,2y) of R’ . Then the length of £(V) 1is about
Y .

1

27" = (Rad DE)™C |, while ent f = O . This makes (x) sharp for ¢+ 0 . If one

insists on a C®- smooth Y and a C'-smooth f then one just appropriately
changes the smooth structure on P2 .

2.7. Several historical remarks

The relation between entropy and topology was discovered by Dinaburg [D] who
dbserved that the time one map f1 of the geodedic flow of a campact Riemannian
manifold Vv has ent f1 > O if the fundamental group ™ (V) has exponential
growth.This isseen by locking at the universal covering of V and applying the

following simple fact (campare 1.4.B) to the associated covering of the tangent
bundle of Vv,

(A) Let XX  be a Galois covering of a finite (cubical) complex X and
Let a continuous map f: X + X Lift to a continuous mp T:X % . 1§ a compact
subset Y <X projects onto X , then

ent T|Y = ent £ ,
where one computes ent T fon the induced cubical structure on X .

Notice that Yamdin's inequality (**) also yields ent f1

>0 for C -smooth
V  (Dinaburg's proof only needs the continuity of the geodesic flow). In fact, the
inequality ent f1 > 0 follows fram (**g\ for all C®-smooth V , where every two
generic point, are joined by at least C geodesic segments of length <x for
all x> 1 and same C > 1 . This lower bound on the nunber of geodesic segments
is satisfied for example, by those s4mply connected manifolds V for which the
Betti numbers bi of the loop space of V grow exponentially in i = 1,2,...

(see [G])

(B) Manning [Ma] proved that the spectral radius of £yt H, (X) > H, (X)
provides the (lower) bound

ent £ > log Rad f,|H, (X)

for every continuousmap £ of a campact polyhedron X (to see this apply (A) to
the maximal Abelian cover X + X) and Misiurewicz and Przyticki [M—Pz] sharpened
this inequality for X hamotopy equivalent to the n-torus,

ent £ > log Rad f, = log Rad A,f,|H, (X)
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(C) shub conjectured that ent f > log Rad f, is satisfied by C1-maps on all
manifolds (see (b) in 1.6. for a C°-counterexample). Now, this conjecture is
settled (besides tori) for C1—maps of the spheres st (by 1.5.) and for C*-maps
on all X by Yandin's (*x*x) .

3. REDUCTION OF YOMDIN THEOREM TO AN ALGEBRAIC LEMMA

3.1. CF-size of a submanifold

Fix an integer % = 1,2,.. and define the CcT-size of a stbset Y c R® as
the lower bound of the numbers s > O for which there exists a Cr-map of the
wnit f-cibe into R' , say h: [0O,1 ]2+IRn, whose image contains Y and such
that HDth <s . Here Dh is the vector assembled of (the campcnents of) the
partial derivatives of h of orders 1,2,...,r and the nomm refers to the
supremum over X € [0,112 '

[|D Al = suxpllDrh(x)ll .

Remark. We could use instead of [0,1]2 another standard f-dimensional manifold
(e.g. the unit ball in RY or the sphere Sz) which would give us an essentially
equivalent notion of cF-size.

3.2. It is cbvious that the C'-size is monotone increasing in r and in Yc r
and that the C1—size bounds the diameter and the 2#-dimensional volume (i.e. the
Hausdorff measure) of Y by

1/4

c'-size(¥) > max((vol v)¥* , ¢71/2

Diam Y) .

In fact, if £ and r equal cne and Y is a smoothark in K" , then the c¥-
size of Y equals the length of Y . The C2—size of such a Y measures, in a
way, the total curvature of Y but the precise geametric meaning of the cF-size
for max(2,r) > 2 is rather cbscure.

If a subset Y c R has Cr—size_<_1 and f: K> R" isa Cr—nap , then
by the chain rule the image Y' of f has
© cF-size ¥' < const ”Der , (1)
for same universal constant depending on r, ,m and n . In fact, (1) remains
valid if f 1is defined on a neighbourhood U > Y in K' which contains the
image of the implied map h : [0,1]* > R® . If CT-size(Y) < et 1/2 , then the
e-neigbourhood UE of Y will do.

Every Y c R' of cF-size < S can be subdivided into jl subsets of
cF-size < 8/j for all j = 1,2... . This is done by dividing [O,1]l into
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jl—cubes [O,j—1]£ and using the dbviocus scaling map [0,1]% [O,j_1]2
cube of this subdivision.

for each

3.3. ALGEBRAIC LEMMA. let Y < [0,1]1% ¢ R® be the zero set of (a system of some)
polynomials Pqre-e/B 0N [0,1% , such that dimY = & . For each r = 1,2,...

therne exists an integen Ny which only depends on n,r and deg yief . 51 deg p;, .
an4 Cr-mam hv : [0,111 +>Y for v = 1,...,NO , whose images cover all of Y and

HDrh\)H <1 for v =1,...,N_ . Furthermore,

(1) each h 45 akgebraic of degree < d' 4on same d' depending only on
r,deg Y and n ({.e. the graph of h 4An [0,1]2><]Rn 48 given by some poly-
nomials of total degree < d') ;

(ii) each h 5 a neal analytic diffeomorphism of the interior of [o,11*
onto its image and these images only meet at the boundaries of the cubes. That 4is,
A4 h\)(x) = hv,(y) , then X and y ALe 4n the boundary of [0,1]jl for all v
and V' =1,...,NO.

The proof is given in 4. To get same insight the reader may lock at the hyper-
bola xy = e in the square {0<x< 1, 0<y< 1} c]R2 for small positive ¢ ,
say e = 0.0001 and find h\) for r=2 and N=6.

3.4. MAIN LEMMA. Let Y be an arbitrany subset in the ghaph

Fg c®r¥ 5 [0,112 x R 04 a cF-map g : [0,1]’L->]Rm and take some positive
number e <1 . Then Y can be subdivided into N < Ce—2(1+|| argH)Wr

subsets of CP-size < CeDiam Y  , where 3.g denotes the vecton assembled of
the partial derivatives of g of onder r and where C = C(2,m,x) 45 a univer-
sal constant.

PROOF. With a change g(x) —>ag(ix)+b we can mke Y < [0,11* x [1/3,2/3)"

and we also can assume Diam Y = 1 . Then, using subdivisions of subsets of
cF-size <1 to 3% pieces of CF-size < j—1 , we reduce further to the case,where ¢ = 1.
Now, fix a smallé > 0 , say & = (m+2+r)_(m+2+r) and let k be the first integer
2 54“ 3, gll V¥ hen cover [o,11* by k* images of affine maps

A, ¢ [0,11% 5 [0,1]* of the form ) (x) =k_1x+av for v = 1,...,k . The
\Y

camposed maps A, 09 [0,1]1+IR have Har()\v o g) ikr||3r9H . Using this
we reduce the lemma to the case where . ||arg|| < ¢f . (Notice that exactly at
this stage we gain a lot for large r)

Now, we invoke the Taylor polynomial of g of degree r-1 at same point
xoc [0,1] . That is a polynamial map p : [O,1]’L—>]Rm of degree (of each camponent

of p) r-1 which satisfies, for ||arg|| < 5r and small § , by Taylor remainder
theorem,
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||ai(p-g)|| <1/3 for i=0,1,...,r .

Then we apply Algebraic Lemma to the part Yo of te graph of p 1lying in the
unit cube [0,1]1+m and get No maps h\) : [O,1]g->[o,1]£ x [0,1]m with
”Drhv”51 which cover Y_ . Denote by H\) and ﬁ'\) the [0,11* - ana
[O,1]m—ccmponmts of h\) correspondingly and dbserve that 'ﬁ'v =poh for
Inh, < T_ . Then we replace h = (H\),p ° H\)) by h! = ( Ev,go E\;)
llp—gll < 1/3 , the images of h' contain our Y . Finally, we estimate Dh' by

. Since

Ipne i< liopl + It b1l <

<1 +|D ((pg)o Bl -

since [[Dh |k 1 and [ID_(p-9)[[< r/3 , we cbtain with the chain rule,

[l Drh' || < c(a,m,x) ,

which is the required bound on the cF-size of the images of h\'} PRV 1,...,NO ’

covering Y . Q.E.D.

3.5. MAIN COROLLARY. Take an open subset Uc K", Let f : U->R" be a Ct-map
and Let Y ,cu be a subset of CF-size <1 and such that Y, 48 far grom the
boundary 3U of U . Namely, dist(Y_,30) > V& . Then the intersection Y, of
the image £(Y) < R® with evey cube oc RY  of unit séze (i.e. with diameter
vm) can be subdivided into N < C'|| Drf|| 4Ty, subsets of CT-size < 1 fon some
constant C' = C'(L,m,r)

PROOF. Let h : [0,1]* » K" be the map with |[Dh|| < 1 covering Y_ . By the
chain rule, the canposed map g = £ o h has [[D g|[< C"(2,m,r)|[D f|| and the
Main Lemma applies to Y =T_ N ([0,1]2 xo)c [0,1]2 x R" . Since Y maps onto
Y, under the projection [O,1]£ xR" > R" , the covering of Y by subsets of
ct-size < 1 (unsured by the lemma) induces the required covering of Y1 . Q.E.D.
Remark. BAn important special case is that of a £inear map £ which, in fact, is
sufficient for the proof of Yamdin theorem.

3.6. Suppose, themap f sends U into itself and such that dist(£(U),3U) > Ve,
Then 3.5. also applies to the pieces of Y1 of CF-size < 1 which are prcvided
by 3.5. Then by induction on i =1,2,... we came to the following conclusion.

Let BqreeerDy be arbitrhany undit cubes in U, Let u!l denote the pullback
of o unden the 4i-th Aiterate f- of £ and Y, be the £% image of the inten-

section Y, n o! n ué NeooN ui . Then Yi can be subdivided into

N; < (C'||Drf][£~/r+1)i subsets of CF-size < 1 . In particubar

vol ¥, < (C'[]Drf||£/r+1)i ) (%)
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3.7. A bound fon Vol £ (YO) . Let T be the restriction of the standard cubical
partition Hst of IR to the above U . Then one has with (*) and the notations

in 1.1.,

=1 i

i logVolfl‘(-Yo) < ent(n|Y;f,i) + /r log||D f||+c (%)
for same c = c(%,m,x)

3.8. The proof of Yandin theorem

First dbserve that it suffices to consider the case of maps f:U~>0U
satisfying the assumption in 3.6. because every manifolds X enbeds into same
R and every map X -+ X extends to the normal neighbourhood Uc R® of X
with the normal projection U - X . Furthermore, by scaling U to a larger set

AU for some Ao 2 1 onecan make dist(X,3U) as large as one wishes.

Next consider (rescaled) maps fj : jU »ju for j=1,2,..., defined by
fj (x) = jf(jx) and notice that

. _ . .
@ llagll =37 s £l
(ii) the partition 1T of JjU into unit cubes corresponds to the partition
n(j) of U into j-1—cubes.
(iii) the set jY_ can be subdivided into j' subsets of C'-size < 1.

Now, by the definition of ent f|Yo , for every € > O there exist an integer
k , such that

ent(m(3) [Y;£%,4) < k ent £[¥_ + ke

for all j and all sufficiently large (depending on jl and k) i . This is equi-
valent to

ent(H|on;f§,i) <kent £]Y_ +ke . (x%%)

Next, we choose Jj sufficiently large in order to make
k k
D £511 < (+e)l] D™ ||

2
which is possible by (i). Then we apply (**) to fk and the j pieces of on
of CF-size < 1 (see (iii)) and conclude that

i log 3oL (v, ) < k ent £[y_ + a/r log |DES|| +ke(i+ D v,
for all sufficiently large i . We make i + «» and dbserve that
lim sup i~' log Vol £5(Y) = k lim sup i~ log Volfh (v)

1> 1>

for all campact submanifolds Y < X . Therefore
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. -1 i 2 L
limsupi logVolf (YO) < ent leo ‘o log Hka ||+ e(1+ ‘f) +c/k .
e

Then we let k + « and e - O and obtain,

lim sup i~ log Vol fi(Y ) < ent £ Y+ ¢/r log’ Rad Df ,
ise

for all subsets Y c X with cF-size < 1 . Since every carpact g—dimensional
submanifold Y can be covered by finitely many pieces with cF-size <1 this ine-
quality holds true for all Y .

Now, to prove Yomdin inequality (*) in 2.2. with the volume of the graphs

T ilY instead of the images fi (Y) (we used graphs rahter than images mainly to
f
avoid the miltiplicity problem for non-injective maps) we dbserve that

rfi|y = Fl(I‘Id|Y) for F: (y,x) » (Y,£(x)) and that ent £|Y = ent £|(r 4]¥) .

Hence, the above inequality for F in place of f yields Yandin's (x) for £ .
Q.E.D.

3.9. Cr-entropy and semicontinuity

Let 9orIqreer9y ¢ [0,1]£->]R‘m be Cr-maps . Then a collection of maps
h1,...,hN : [0,1]2 > [0,1]2 whose images cover [0,111 is called an e-cover if
IIph [[<e and HDr(gj °h)|l<e forall j=0,...,i and v =1,...,N. Let

ent€ (go,...,gi) = log N for the minimal N for which an e-cover exists. Observe
that

ent < ent, < ky’ent
€ — § — €
-1

for k ¢ <86<e andall k=1,2,... .

Next, if {h\)} is an e-cover for 9o -9 and {huv} is an e-cover for
the camposed maps gj ° hv for 3=1,...,i, v=1,...,N, then {h\) ° huV} also
is an e-cover for 9o+ +957 provided ¢ < € 7 where €o = eo(l,m,r) >0 is a
universal constant.

Now let £ : X > X be a Cr—mapofa smooth campact submanifold Xc]Rm and
let g: [0,17% > X be Cl-smooth. Then the limit

lim sup i7 ent (g,fog,...,fig)
i €
does not depend on ¢ > O by the earlier discussim and is called Cr—ent/wptj
ent” (£ |g) . Obviously,
ent” (]g) = k entF(f]g)

for all k =1,2,... and

235



M. GROMOV

ent” (£|q) > ent f|g([0,1]£) ’

for all r =1,2,...
Then let
ent (£,1) = sup i ente(g,fog,...fiog)

over all g with ||Drg]| <1.If e e, for theabove el = e (2,mx) , then
cbviously
entg(f,i+j) < (i+j)_1 (i ents(f,i)+j ent (£,3)) .

for all i,j = 1,2,... . Therefore, there exists a limit

ent™ *(£) = lim ent (£,1)

isew €
for € < €, which does not depend an € and which is semicontinuous in f.
If £ i Ch-continuous in t € [0,1] , zhen
lim sup ent"’* £, < entr'z fO

0
Also cdbserve that

ent™* (£) > sup ent® (£]g)
g9
over all Cr—maps g: [O,1]£—>X .

Remark. There is the following topological version of a’ltrl . Take all Y c X
with CF-size <1, set

s(§5k,i) = sup ent(n(3) |¥;£5,1)
Y
(campare 1.2) and define
top® £ = lim inf lim lim sup s(j;k,i) .
r kro oo iow
Clearly
top:.f > sup ent f|Y
Y
over all CcF-submanifolds Y of dimension £ in X and
2 n
toprf < toprf = ent £
forall r=1,..., and 2 <n=dimX .

Now by applying the argument in sections 3.4-3.8 to the Cr-entropy directly
(without passing to volumes) one sees that

ent” (£]g) < ent(£|g([0,11") + £ log'RadDE

for all Cf-maps g : [0,11* > X and
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ent”™*f < top! £ + % log'Rad DE

In particular, if f is C -smooth, then

ent £ = lim ent™'" X
e r,n
for n = dim X and the semicontinuity of ent '~ implies that of ent f .

4. THE PROOF OF ALGEBRAIC LEMMA

4.1. First we prove the lemma for algebraic curves Y in the (x,y)-plane such
that the projection of Y to the x-axes is finite-to-one. Such a Y can be
cbviously divided into N < d‘1 segments whose projections to the x-axes are one-
to-one. Thus we reduce to the case where Y is the graph of a single valued func-
tion y = y(x) for x € [0,1] , such that ||y (x)||=sup |yx)| < 1.

X

Next, we subdivide [0,1] into smaller segments by the points where the
derivative y' of y equals 1 . We switch the roles of x and y at those
segments where |y'| > 1 and reduce the lemma to the case of functions y = y(x) ,
such that ||ly'|| < 1 . This proves the Lemma for r=1 since the map x »~ (X,y(x))
sends [0,1] into Y with || D, || < V2 and an dbvious subdivision into two
1/2-subintervals makes |lD1 | <1.

Now, for r > 2 , we assume,
e ll< s dy il 1o Iy ® V<

and divide [0,1] by the zero points of the derivative vy (x) . Then y™ (x)

(x+1) does not change sign) and the
(r)
(%)

is monotcne on every subinterval (where y
problem cbviously reduces to the case where vy is positive and monotone

decreasing on  [0,1] . This monotonicity and the bound ||y V|| <1 imply that
v ) < %1 for all x € [0,1] . Then a straightforward camputation shows that
the function z(x) = y(x°) has
(1) I

||z < 10" for i=1,...,r,

and the map x » (%,z(x)) with an additional subdivision into 10" segments

provides the proof of Algebraic lemma for plane curves Y .

4.2. Now, let Y be acurve in [0,1]"c R" = R x R . We may assume that the
projection of Y to IR is finite to cne. Then Y is the graph of (n-1) alge-
braic functions ¥4 (x) , ¥y (x) ... Yp-1 (x) . We assume, by induction, that the
1Yo have bounded derivatives of orders < r and use the above
change of variable, x #»x(t) to make the derivatives of A also bounded. Then
all functions zi(t) = yi(x(t)) ,1=1,...,n-1 have bounded derivatives (on same
subintervals) which dbviously yields Algebraic Lemma for Y .

functions Yqre-
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4.3. Consider a smooth vector valued algebraic function in ¢ variables, say

y = y(x1,. S 4 2) , such that the camponents of the partial derivatives of orders
< r in the first ¢-1 variables are bounded in absolute values by one and let
us make a change in the variable X, inorder to achieve a similar bound for all
partial derivatives. We assume by induction on r that the partial derivatives of
orders < s < r in X are bounded. We denote by y = ?(xv...,xl) the vector
valued function whose campenents are the partial derivatives of the orders < i.

in xj , where

[T e IR

i. =r and i < .
j13 i, <s

Let '171, "”§N be the campanents of y and assume by induction on the number of
camponents that

~

Y

II&;H <1 for v=1,...,M1<N.
Then, for every fixed value of x € [0,1] we consider the maximum set
S(xg) < Xy % [0,1]’7“-1 = [0,1]2_1 of the function
a'}?M
st— in the variables KireeesXg 4 o Then there cbviously exists a subdivision
of 2[0,1] into subintervals, say I and single valued algebraic functions
S ¢ Ik > [0,1]2-1 , such that

(a) the number of the subintervals and deg s, are bounded in terms of
deg Yy
(b) s (x,) € S(x,) for all k andall x, €T .

. ~ 2-1 ~ ~
Define S 2 L > [0,1] x[=-1,1]1 by S P X, v (sk(xz) LYM(X(XQ)) and apply
the construction of the previous section to each function Sk‘xsl) . This makes

di's?k (x,)

a‘x

the derivatives bounded for i = 1,...,r and all k which easily

2 3V

axz

implies a bound on

4.4. Now we prove Algebraic lemma by induction on ¢ = dimY for an algebraic set
Yc [0,1]n . We view this Y as the graph of an algebraic map y : [0,1]2+[O,1]n—£
and we assume, for every fixed X, € [0,1] , that there exists some change of varia-
bles KyreeerXy 4 providing a universal bound for the partial derivatives of

every branch of y in the changed variables KyreeorXg g4 - We asssume, moreover,
this change of variables be the piece-wise algebraic in X, and thus came to the
situation of the previous section. Since the constructions we use in 4.1. are piece-

wise algebraic for families of functions algebraicly depending on parameters, this
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induction does go through and the Algebraic Lemma is proven.

4.5. The above argument provides a (semi) algebraic cell decamposition of an arbi-
trary semi-algebraic set Y and the cells can be (cbviously) subdivided into

simplices without loosing the control over the partial derivatives, such that the
nunber of the simplices is bounded in terms of deg Y .

Recall, that a subset Y c K is called semialgebraic if it is a finite
union of pairwise non-intersecting subsets Y1,. ..Yk in Y where each Y, is a
connected camponent of the difference of algebraic sets, Y, < ANB, . The sum of
the degrees of the polynamials defining all A; and B, is called the degree of
Y.

Now we give a precise version of the previous remark.

TRIANGULATION LEMMA. There exists a constant C = Cln,r) , such that every com-
pact semialgebraic subset Y cR" can be triangulated into

N < (diam )" (deg v+1)© sdimplices, where fon every closed k-sdimplex & < Y there
exists a homeomorphism h, of the regular simplex X e RX with the unit edge
Length onto b  such that hA 45 algebraic of degree < (deg 1+ (ie. the
grhaph of h, 45 a subset in an algebraic set of dimension k and degree
ﬁ(dng+1)C) and negulan real analytic in the interion of each face of A
("Regularn" means non-vanishing of the differential of h, on non-zero vectons).
Furnthermone, ||DrhA|| <1 forall A . (0f cournse, just this inequality makes
the tuiangulation twuly interesting).

Using this lemma and the argument in §3 we arrive at the foilowing Corollary.

TRIANGULATION THEOREM. Let f be a Cr—/.sdﬂmap 0§ an open subset U c R", such
that ”Drf” <o and let Yc U be a compact semialgebraic subset. Then there
ex{sts a sequence of trhiangulation T, of Y where T, 41 A5 a nefinement of
T,,q forall i=1,2..., and such that

(a) The number N, of simplices of T, satisfies
lim sup i~ ' log N, < ent £|Y + £ log*Rad Df ,
F i= r
for ¢ =dAaimyY . (I§ Y 448 invardant under £ , then this inequality obviously
Amplies
2
log Rad f, H,(¥) < ent £ly + 2 log'Rad Df) .

(b) For every k-simplex A 04 T, thenre exists an algebraic homeomonphism
h : 8% 8 which has degree < a; and satisfies ||Dr(f30h) [l < e, forall j<i,

whenre
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i_1log 4, » 0 for i>e
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