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THE WORK OF GROSS AND ZAGIER ON HEEGNER POINTS

AND THE DERIVATIVES OF L-SERIES

By John COATES

Séminaire BOURBAKI

37e année, 1984-85, n° 635 Novembre 1984

1 - Introduction.

The problem of determining the group of rational points on an elliptic
curve defined over Q is one of the oldest and most intractable in mathematics.

It remains unsolved today, even though a vast variety of numerical examples have
been successfully conputed in the literature. The most difficult part of the pro-
blem is that of constructing rational points, when numerical or theoretical evi-
dence suggests that such points should exist. A typical case, which goes back to
the Greeks and the Arabs, is the question of deciding whether a given positive
integer B is the area of a right-angled triangle with rational sides. It can ea-
sily be shown that the answer is affirmative if and only if the elliptic curve

has a rational point of infinite order (or equivalently a rational point (x,y)
with y ~ 0). There is overwhelming evidence that (1) always admits a rational
point of infinite order when B is a positive integer which is congruent to 5,
6, or 7 mod 8. Indeed it is well known that the conjecture of Birch and

Swinnerton-Dyer predicts that the rank of the group of rational points on (1) is
odd if and only if B is congruent to 5, 6 or 7 mod 8. An answer to even this

special problem about the construction of rational points seems beyond the present
resources of mathematics.

It has been known since the 19-th century that one can construct solutions
of Pell’s equation, using either the values of circular functions or the values of
Dedekind’s n-function. The great credit for the first successful attempt to use
the values of elliptic modular functions to construct rational points on elliptic
curves is due to Heegner [11], who, in the same paper, applied similar ideas to give
the first effective determination of all imaginary quadratic fields with class num-
ber 1. After a period of obscurity and neglect, Heegner’s ideas were taken up and
extended by Birch [ 1 ] , [ 2 ] , [ 3 ] . The importance of these papers of Heegner and
Birch is that they establish, for the first time, the existence of rational points



of infinite order on certain elliptic curves over (B, without actually writing
down the coordinates of these points and naively verifying that they satisfy the

equation of the curve. We call these rational points provided by the Heegner-Birch
construction Heegner points on the elliptic curve (the precise definition will

be given later). However, it was already clear in this initial work that these

Heegner points were not always of infinite order. In an effort to clarify this

difficulty, Birch and Stephens made extensive numerical calculations (which were

published only partially and after a long delay in [4 ]), and were led to the fol-

lowing two striking conjectures :

(i) the Heegner points on an elliptic curve over 03A6 are of infinite order

if and only if the group of rational points on the curve has rank equal to 1;

(ii) if the Hasse-Weil L-series of the elliptic curve vanishes at s = 1,

there is a closed formula for the value at s = 1 of its first derivative as a pro-

duct of a standard non-zero period term and the canonical Neron-Tate height of its

Heegner points.

2 - Statement of results.

We now describe the work of Gross and Zagier [8 ], [ 9 ], which goes a long

way towards proving the conjectures of Brich and Stephens, and in some sense goes
further. In fact, both the construction of Heegner points and the main result of

Gross and Zagier are really statements about modular forms (consequently, the appli-
cations only concern those elliptic curves over (C, which occur as isogeny factors

in the Jacobian variety of the modular curve X.. (N)). From now on, N will denote

an integer > 1, and we recall that Xo (N) is the curve over 03A6 which parametrizes

equivalence classes of pairs (E1 ~ E2) of generalized elliptic curves, which

are linked by an isogeny a, whose kernel is cyclic of order N. Following Birch

[ 3 ], we define a Heegner point on Xo (N) to be a pair (E1 ~ E2), where the

endomorphism ring of both E1 and E2 is iscmorphic to the same order 0 in an

imaginary quadratic field K. To guarantee the existence of a plentiful supply of

Heegner points on Xo (N), we can vary both the imaginary quadratic field K and

the order 0 of K. However, for simplicity, we shall only consider in this report

those Heegner points which satisfy the following hypothesis :

Hypothesis A. (i) 0 Zs the maxima2 order of K;

(ii) the discriminant D of K is prime to N;

(iii) every prime factor of N splits in K.



Condition (iii) implies that there exist 2r integral ideals n of K such that

0/n is a cyclic abelian group of order N; here r denotes the number of distinct

prime factors of N. It is then easy to see that the Heegner points of X..(N) are

those of the form ~ > where n is an integral ideal with
-~ ZZ/NS, and a is an arbitrary integral ideal of K. In fact, such a point

depends only on K, n, and the image of a in the ideal class group of K. The

Heegner points of XO(N) are rational over the field H = K ( j ( 0 ) ) , where j is

the classical j-invariant of a lattice in the complex plane. By the theory of com-
plex multiplication, H is the Hilbert class field of K (= the maximal unramified
abelian extension of K), and the Artin map defines an isomorphism fran the ideal
class group ClK of K onto the Galois group G of H over K . The action of G

on Heegner points can be made quite explicit; in particular, G permutes simply and

transitively those Heegner points attached to a fixed n with 0/n ~ Z;/NZ;.

The principal result of Gross and Zagier gives a closed formula for the va-
lue at s = 1 of the first derivative of an L-series formed fran the Rankin product
of two modular forms. We take the first modular form 

1 
a. qn (q = ) to

be any element of the vector space generated over IC by the primitive cusp forms
(i.e. newforms in the sense of [16]) > of weight 2 for the subgroup rO(N) of

SL~ (S) (recall that 1~ (N) consists of all matrices (~ ~) with c = 0 mo N).
The second modular form is the following 0-series, which is attached to the imagina-
ry quadratic field K and an arbitrary element o of the Galois group G of H

over K. Let C(o) denote the ideal class of K which corresponds to o under the
Artin isomorphism. Pick an integral ideal a in C(o), and a Z-basis 03B21, S2 of
a. Then the quadratic form

has integral coefficients and discriminant D (= the discriminant of K), and its

equivalence class under the action of SL2 (ll) depends only on Q. Let w be the
number of roots of unity in K, and E the Dirichlet character modulo D of the

quadratic extension K/Q. Hecke [10] ] showed that the 8-series

is a modular form of weight 1 and character E for r~(D), i.e. it is holomorphic
at all points of the compactified upper half plane, and satisfies



for all y = a) in r 0 (D) . For each integer n > 1, write r (n) for the

number of integral ideals in the class c(Q) with norm equal to n, and let

r (0) = w 1. Since = r -1 (n) (because complex conjugation maps an ideal

class to its inverse), we have 6Q(z) _ 03A3 r0(n)qn. The partial L-series stu-
n=1

died by Gross and Zagier is defined in the half plane R(s) > 2 by

where is the Dirichlet L-series of e, with the Euler factors at the

primes dividing N removed from its Euler product. As we shall explain later,
Rankin’s method shows that L (f,s) has a holomorphic continuation over the whole

complex plane, and that it vanishes at s = 1. The novelty of Gross and Zagier’s
work is their proof of a remarkable closed formula for the first derivative at s = 1

of L~(f,s) in terms of Heegner points attached to K on X..(N). The Heegner

points intervene in this formula via their canonical heights, a fundamental arith-

metic notion due to Neron and Tate, which we do our best to recall briefly. Assu-

ming that N is such that X~(N) has genus g > 1, let J be the abelian variety
defined over (B which is the Jacobian of X,.(N), i.e. .. the group J((B} of m-ra-
tional points on J can be identified with the group of (S-rational divisors on Xo (N)
of degree 0 modulo linear equivalence. We can construct an embedding

defined over (B into projective space of dimension 2g-1 as follows. Recall that

a theta characteristic 0 on X..(N) is a divisor class of degree g-1 over Q

such that 20 is the canonical class on X~ (N). Let W denote the image of the

(g-1)-th symmetric power of X~(N) in the group of divisor classes of X~(N) of

degree g-1. Then 0 = W-0 is an ample and symmetric divisor on J, I and the class

of the divisor 20 in the Picard group of J is independent of the choice of 0

and is defined over 0. The linear space H~(J,20) has dimension Q = 2g, and gi-

ves rise to the embedding (4) on choosing a basis of this space. For

each finite extension F of Q, let Mp, denote the set all places v of F, nor-

malized so that the restriction of v to Q is the n -th power of the corres-

ponding valuation of t~ , where n is the local degree of v . The canonical

height of a point P E J (F) is then defined by the limit



It can be shown that this limit exists, and defines a positive definite quadratic
form J (F) 8 Let  , >F : J (F) x J (F) ~ ]R be the symmetric
bilinear form attached to ,i.e. ,

The existence of the bilinear form  , >F enables us to construct cusp forms of

weight 2 for via the following elementary lenra. For each integer m > 1,
write T~ for the m-th Hecke correxpondence of Xo (N), which is defined by the
formula

where x = (E1 ~ E2), where the sum on the right is taken over all subgroups
C of order m in E1 which are disjoint form ker a, and where

xc = E2/a (C) ) . This correspondence induces a 03A6-endomorphism of J,
which we also denote by Tm. Let IF denote the commutative 03A6-subalgebra of

(J 0 (N) ) * ~, which is generated by the m for all m > 1.

Lerma 1. Given any 03A6-linear map 03C6 : 03A0 ~ C, there is a 
cusp form g03C6 of

weight 2 for r 0 (N) whose Fourier expansion is given by g03C6 = 03A3 03C6 (T Moreo-
+ m=1 

m

ver, for each t E we have

The proof will be postponed to.paragraph 3. Let 00 denote the rational point on

X~(N) given by the cusp at infinity (recall that, classically, one identifies
the complex points of X0 (N) with the quotient of the ccnpactified upper half pla-
ne by r~ (N) ). Write x for a Heegner point attached to K on Xo (N) , and
for the point in J(H) given by the divisor class of (x) - (oo). For each a E G,
lama 1 shows that



is a cusp form of weight 2 for It’is not difficult to show that, up to
the addition of an old form of weight 2 on r~ (N) , RQ (z) depends only on N, D

and 0, and not on the choice of the particular Heegner point x. We normalize

the Peterson inner product for r~(N) via .

the integral being taken over a fundamental domain for the action of r~(N) on

the upper half plane H. We can at last state the principal result of Gross and

Zagier.

Theorem 2. Let f be any element of the ~-vector space generated by the primi-
tive cusp forms of weight 2 for r~(N). For each Q E G, we have

where 2u denotes the number of roots of unity in K.

Gross and Zagier’s proof of Theorem 1 is a long, difficult, and almost miraculous

calculation, much of it in the spirit of the best 19-th century mathematics. In
the latter part of this report, we shall only have time to sketch some of the main
ideas underlying this calculation.

While Theorem 2 is of the utmost technical importance for the proof, its
arithmetic significance lies in a number of remarkable corollaries, which involve
L-functions with Euler products. Let

which is finite ddjnensional over (E by the Mordell-Weil theorem. The canonical

height pairing gives rise to a Hermitian inner product on V, which is defined by

Moreover, V is endowed with a natural action of both the Galois group G and

the Hecke algebra ’B’. Write G (resp. for the group of all complex charac-
ters of G (resp. TT ). The action of 1f is self-adjoint with respect to the
above inner product, and commutes with the action of G. Hence we have the corres-

ponding decompositions



n

into isotypical components. An important subset of IT is given by the primitive
normalized cusp forms of weight 2 for r0(N) (i.e. newfonns of weight 2 for 
whose first Fourier coefficient is equal to 1 ) . If f = Z a 9 is such a 

n=1 ~
the corresponding character of ’If sends T to a for all Suppose for
the rest of this section that f is such a primitive normalized cusp form of weight
2 for r 0 (N). For each x E G, we put

This L-series always admits an Euler product (the Euler product attached to the ten-
sor product of the two l-adic representations of the Galois group of 03A6 over Q

associated with f and with the induced representation of X). Moreover, it is well.

known (see [ 6 ] ) that we have the functional equation

where A (f , X, s) = (ND)s (2~r) 
2s r(s)2 L (f , X, s) . In particular, L (f , X, s) has a

zero of odd multiplicity at s = 1. Recall that x denotes a Heegner point on

X~(N), and ~ the point in J(H) given by the divisor class of (x) - (oo). Put

Theorem 3. Let f be a primitive normalized cusp form of weight 2 for 
Then

- 

__i_i 1

where is the projection of 03BE~ to the f-isotypical component of
V = J (H) ® ~, and where h denotes the class number of K.

We note that is equal to the period integral

Put R = h L To derive Theorem 3 f rom Theorem 2, w~e must show that
oEG

(f,R)N = (f,f)N  03BEf,~, 03BEf,~ >H. This is a purely f ormal calculation using Lemma 1
and the Galois invariance of the height pairing. We omit the details.

While Theorem 3 can be applied quite generally to the simple Q-isogeny fac-



tors of J attached to an arbitrary primitive cusp form, its most striking applica-
tion is to elliptic curves over Q which occur in this manner. Let E be an ellip-
tic curve defined over Q, and, for each prime p (of good or bad reduction), let

Np denote the number of points on the reduction E of E modulo p which are ra-

tional over 21 / p. Put

Recall that the Hasse-Weil L-series of E over W is defined by the Euler product

where N denotes the conductor of E (see [13]). Write L(E,s) = We

shall say that E is a modular elliptic curve over ~ if f(z) _ ~ a q is a
n=1 ~

primitive cusp form of weight 2 for If E is modular, then the function

v

is entire, and satisfies the functional equation

It is a major open question as to which elliptic curves over (B are modular. Weil

and Taniyama have conjectured that every elliptic curve over ~ is modular, and

this has now been verified nunerically for some small values of the conductor

N  500. In theory it is always possible to decide in a finite number of steps whe-
ther a given elliptic curve is modular, but in practice this becomes very difficult

once the conductor is at all large. The only general class of elliptic curves over

~ which are known to be modular are those with complex multiplication (e.g. the cur-
ve (1) for all B We now give the most important consequences of Theorem 3

for modular elliptic curves over Q. If E is such a curve, we write E(K) for

the group of K-rational points on E, and L(E/K,s) for the Hasse-Weil L-series

of E over K.

Theorem 4. Let E be a modular elliptic curve over ~ of conductor N. Let K

be an imaginary quadratic field of discriminant D such that (D,N) = I and each

prime factor of N splits in K. Then L(E/K,s) vanishes at s = 1, and, if this
zero is simple, E(K) contains a point of infinite order.

cx>

To deduce Theorem 4 from Theorem 3, let L(E,s) = Z so that
n=1



f(z)= 03A3 anqn is a primitive cusp form of weight 2 for 03930(N). Take x to be

the trivial character ~0 of the Galois group G. Let L (E (~),s) = Z 
~here e denotes the character of K/Q. Then 

~ ~

Hence, if L(E/K,s) has a s:i.nple zero at s= 1, Theorem 2 shows that ~ ,Xo 
is

non-zero in J(K) a(E, whence, on picking a non-zero homomorphism from J to E,

it follows that the image of ~~ . in E(K) a{E is not zero, as required.
,XQ

If E is an elliptic curve over Q, we write

for the canonical height pairing on E (the definition is entirely analogous to

that for J, the analogue of the embedding (4) being given by the x-coordinate

on a Weierstrass equation for E over Q).

Theorem 5. Let E be a modular elliptic curve over 03A6 such that L(E,s) vanishes

at s = 1. Then there exists a rational point P in E(~) such that

where a denotes a non-zero rational number, and S~E denotes the real period of a

non-zero differential of the first kind on E over ~. In particular, if L(E,s)

has a simple zero at s = 1, then E (Q) contains a point of in finite order.

To derive (8) from Theorem 3, vae first note that a deep theorem of Waldspurger [14] ]

proves the existence of (infinitely many) K satisfying the conditions of Theorem

4 and such that L(E(E),1) ~ 0. Since we can clearly suppose that L(E,s) has a

simple zero at s = 1 (otherwise take P = 0 in (8)), it follows that, for such a

choice of K, has a simple zero at s = 1, where Xo denotes the trivial

character of the ideal class group of K. Hence Theorem 3 shows is

non-zero in J (K) On the other actually lies in J((B) This

follows easily from the fact that fI2wN=f, where wN (z) _ -1 / (Nz) , which in turn

follows from the fact that L(E,s) has a simple zero at s =1. The equation (8) is

now established by choosing a non-zero homomorphism from J to E and applying the

functorial properties of heights, as well as the known algebraicity properties of

L(E(~),1) .
Needless to say, (8) is in adcord with the algebraicity properties predicted

by the conjecture of Birch an Swinnerton-Dyer. However, the real importance of Theo-

rem 5 is that it provides the first major step towards the affirmative solution of



the problem of constructing rational points on elliptic curves over (B. Even in the

function field analogue, a result of this kind was not known previously. It should

also be stressed that Theorem 5 is very useful numerically, since L’ (E,1), when it

is non-zero, can easily be calculated using a standard rapidly convergent series.

On the other hand, the limitations of Theorem 5 are also plain. When L(E,s)
has a zero at s = 1 of multiplicity > 1, Theorem 5 provides no information about

the existence of rational points of infinite order on E. Even when L(E,s) has a

simple zero at s = 1, it still has not been proven that the rank of is equal
to 1. Finally, it is not always easy to prove theoretically that L(E,s) has a sim-

ple zero at s = 1, when this is predicted by the standard conjectures. For example,
for each prime ps 5 mod 8, the standard conjectures predict that the L-series of

the curve

should have a zero at s = 1 of multiplicity exactly 1. It wDuld be interesting to

prove this, since it is not always easy to find a rational point of infinite order

on this curve by elementary descent theory. When p = 877, it is shown in [5] l that

a generator modulo torsion of the group of rational points on (9) has x-coordinate

which gives sate idea of the limitations of using naive calculations to find ratio-

nal points of infinite order.

Theorem 6. There exist modular elliptic curves E over 03A6 such that L(E,s) has

a zero at s = 1 of multiplicity 3.

Let E be a modular elliptic curve over Q such that the sign in the functional

equation of L(E,s) is equal to -1. If the point P constructed in Theorem 5 is

zero in E((B) it follows that L (E, s) has a zero at s= 1 of multiplicity > 3.
In fact, Gross and Zagier prove that P is zero for the curve

which, as we would expect, is known to have rank 3. Goldfeld’s work (which has been

so beautifully sinplified by Oesterle in his Bourbaki report of last June) shows

that Theorem 6 enables us to solve the major classical problem of effectively deter-

mining all imaginary quadratic fields with given class number.



3 - An indication of the proof of Theorem 2.

We first say a word about the proof of Lemma 1. Let S be the vector space

over ~ of cusp forms of weight 2 on with rational Fourier coefficients.

The algebra IT acts faithfully on S, because S can be identified with the co-

tangent space to the origin of the Jacdbian The assertion of Lemma 1 is an

almost immediate consequence of the following fact. The pairing IT x S 2014~ QD which

associates to each pair (t,g) the first Fourier coefficient of t(g) is a perfect

pairing of (~-vector spaces (use the definition of the pairing and the fact that the

action of IT on S is faithful).

Two basic ideas underly the proof of Theorem 2, namely Neron’s [ 12 ] decompo-

sition of the global height of J/H as a sum of local components, and Rankin’s me-

thod for analytically continuing the function La(f,s). The proof is very indirect,

and can be fairly described as showing that Theorem 2 is true because no other al-

ternative is possible. Indeed, after two beautiful and ingenious confutations, one

of an arithmetic nature involving local height calculations on X~ (N), and the other

of an analytic nature involving Rankin’s method, Gross and Zagier succeed in proving

that both terms appearing in Theorem 2 reduce to the same explicit, canplicated, and

mysterious expression. We only have space to indicate a few of the salient features

of these remarkable calculations, without going into any detail. To simplify the for-

mulae, we assume henceforth

Hypothesis. D = - p where p > 3 is a prime with p = 3 mod 4.

Neron’s theory (see also [ 7 ]) proves the existence, for each place v

of H, of a unique local symbol  a,h >v with values in R, which is defined on

pairs of relatively prime divisors a,h of degree 0 of Xo (N) over the comple-
tion of H at v. This symbol is characterized by being bi-additive, symmetric,

continuous, and given by

and h is the divisor of a function g. In [7 ], it is ex-

plained how to extend the definition of this local symbol to a pair a,b of divisors

of degree 0 which are not relatively prine, and, at least in theory, how to compu-
te this local symbol. The connexion between the local symbols and the global height

pairing is simply

where a,b are arbitrary divisors of degree 0 on X0(N) over H, and a, 6 are



the points in J(H) given by their corresponding divisor classes. Now take x to

be a Heegner point on attached to K, and let a= (x) - (00), b = (x) - (0 ).

Since the class of (O)-(oo) is known to have finite order in J(H), it follows

that, for all integers m > 1,

where, as before, £ denotes the class of a in J(H). Unfortuneately, we do not

have space to go into the highly interesting calculation of the local symbols
 >V which is carried out in [ 9 ] (we only note that the divisors a and

m b~~ are relatively prime if and only if r~ (m) 
= 0). The final result is as fol-

lows. Recall (see [15], Chapter 15) that the Legendre function of the second kind

satisfies the differential equation

where q runs over the prime factors of N. Put

where C denotes Euler’s constant. Write S(m) for the function whose value is 1

or 2, according as p does not or does divide m. Let p(m) denote the sum

p (m) = ~ c. Finally, ~(s) denotes the Riemann zeta function.
clm

Theorem 7. For each integer m > 1, the value of the height pairing  ~, m ~c >H
is given by



Ve new sketch the analytic arguments used to calculate L~(f,1) via Rankin’s

method. The Eisentein series

has a holarorphic continuation as a function of s over the whole complex plane,
and, as a function of z, G~ (z,s) is a non-holomorphic modular form of weight 1

and character e for r 0 (p). Classical arguments yield the following integral re-

presentation for

Proposition 8. = and M=Np. Then

Recall that, for each (possibly non-holomorphic) ncdular form g of weight 2 for
the trace of g to F~ (N) is defined by

where W denotes a set of representatives of the right cosets of r0(M) in 1~ (N).
Supposing henceforth that s is real, we put

whence it is clear from Proposition 8 that

Since L (f, s) vanishes at s =1, we conclude that

Although it is technically quite difficult, one can explicitly calculate the Fourier
series of ~ ( z ~ . Define

Proposition 9. 



Let m (resp. S ) denote the space of non-holomorphic modular forms (resp.
holonorphic cusp forms) of weight 2 for 1~ (N). Recall that the holonorphic projec-
tion operator is the unique linear map --~ S satisfying

In order to give an analytic formula for the effect of TT on the Fourier coeffi-

cients of a modular form, we are obliged to introduce the subset N of ~t consis-

ting of all such that, for each there exists ~ > 0 such that

A new major technical difficulty arises because the form ~(z) in M does not be-

long to N. The ingenious argument used to overcame this difficulty is as follows.
For each positive divisor e of N, let

where Z" denotes summation over all pairs of integers (c,d) modulo ±1, satis-

fying (c,d) =1, e~c, and (c/e, N/e) = 1. This Eisenstein series can be continued

over the whole s-plane, and we define

Proposition 11. Let

Then 03C6 ~ N and 03A0 (03C6) = 03A0 (03C8).

In view of (13), and the fact that f belongs to the space generated by the primi-
tive forms of weight 2 for r 0 (N), the proof of Theorem 2 is now completed by the



following (again technically difficult) calculation of the Fourier coefficients of

Proposition 12. Assume that 03A0(03C6) = Z m q . Then, for each integer m > 1 with

(m,N) = 1, we have that p 403C0 cm is given by the expression (11) of Theorem 7.

Acknowledgement. I am grateful to B. Gross, D. Zagier, and P. Colmez for their help

in the preparation of this report.
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