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AND THE TOPOLOGY OF 4-MANIFOLDS
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§ 1. The result

(1.1) THEOREM (S.K. Donaldson [8]).- Let X be a compact, smooth, simply connected,
oriented 4-manifold such that the intersection form Q on H2(X,T~) is positive de-

finite. Then there exists an integral basis for H2(X,~) such that

Q {u, u) - u ~ + u2 + ... + ur .
This theorem should be contrasted with

(1.2) THEOREM (M.H. Freedman [9]).- Let Q be any unimodular quadratic form over ?l .

Then there exists a compact, simply connected, topological 4-manifold X such that

Q is equivalent to the intersection form on 

There are sufficient examples of definite unimodular forms (see [17]) to see

that Donaldson’s theorem imposes strong restrictions on smooth 4-manifolds.

(1.3) Proof of Theorem (1.1)

Let r = rank and 2n = # ~{u E H2 (X, T~) ~ Q(u,u) = 1} . The proof con-
sists of constructing (as in § 3- § 7) an oriented cobordism between X and n co-

pies of (EP~ . Let p of these have the canonical orientation of the complex

structure and q = n - p the opposite orientation. Then

(i) By the cobordism invariance of signature,
r = Sign X = (p - q) Sign 4lP2 = p - q _ n .

(ii) Let I Q(u,u) = 1} , then Q(x.,x.) but

by the Cauchy-Schwarz inequality IQ(xi,xj))  1 if i ~ j . Hence 

is orthonormal and n _ r .

(iii) From (i) and (ii) n = r and is an orthonormal basis for
n n

H2(X,]R) . Thus for u E u = = with u. and

is a basis for Hence Q(u,u) = 



§ 2. Background

(2.1) Let X be an oriented riemannian 4-manifold. A 2-form a E Q2 is said to

be self-dual (resp. anti-self-dual) if *a = a (resp. *a = -a ) where

* : Q2 -~ Q2 denotes the Hodge star operator.

Let G be a compact Lie group and P a principal G-bundle over X . A con-

nection A on P has curvature F(A) E Q2(g) where g denotes the vector bun-

dle associated to P by the adjoint representation. For any bundle V associated

to P a connection A defines a differential operator d : -~ 

The metric on X defines the formal adjoint d* : ---> The Bianchi

identity, satisfied by all connections, is dAF(A) = 0 . The Yang-Mills equations
are dAF (A) - 0 .

A connection A on P is said to be self-dual if F(A) = *F(A) . In this

case d!F(A) = *d A *F(A) = *dAF(A) = 0 by the Bianchi identity, so a self-dual

connection automatically satisfies the Yang-Mills equations.
The Yang-Mills equations describe the critical points for the Yang-Mills func-

tional (or action). 

The self-dual connections give the absolute minimum for compact X which, if

G = SU(2) , may be expressed via the Chern-Weil theorem as - 8n2c2(P) where

C2(P) is the 2nd Chern class of the associated rank 2 vector bundle.

The Yang-Mills functional and Yang-Mills equations are invariant under (i)

conformal changes of the metric on X (ii) automorphisms of the principal bundle

P ("gauge transformations").

(2.2) The initial mathematical development of the study of self-dual connections,

motivated by the interest of mathematical physicists, concentrated on the case

X = S4 and an explicit description of all solutions was possible [2] using the

twistor approach of R. Penrose and R.S. Ward [6] which converted the problem into

one of holomorphic bundles on {EP~ .

More recently the self-duality equations have been studied on more general

4-manifolds. There are three major lines of thought which have spurred this pro-

gress :

(2.3) If X is a Kahler manifold, the space of anti-self-dual 2-forms Q~ = Q6,1 ,
the space of primitive 2-forms of type (1,1). A vector bundle with an anti-self-

dual connection is then automatically endowed with a holomorphic structure (see

[3]) and is moreover stable in the sense of Mumford and Takemoto (see [8], [11]).

Converse results have been conjectured and in some cases proved ([13], [8]).

(2.4) The analysis of self-dual connections has been pushed forward by the funda-



mental results of K.K. Uhlenbeck ([20], [21]). Amongst these is the following remo-

vable singularity theorem : If A is an SU(2) connection (on the trivial bundle)

over the punctured ball B4B~0} , self-dual with respect to some smooth riemannian

metric on Bq and with finite action ; then there is a bundle automorphism

g : --~ SU(2) such that g(A) extends smoothly over B4 .

(2.5) The existence of self-dual connections is assured under very general circum-

stances by a theorem of C.H. Taubes [19] : Let X be a compact, oriented, rieman-

nian 4-manifold with positive definite intersection form Q , and let P be a

principal SU(2) bundle over X with c2(P)  0 . Then P admits an irreducible

self-dual connection. Taubes’construction makes use of an implicit function theorem

which involves L estimates on curvature. It should be noted that anti-self-dual

harmonic 2-forms may certainly obstruct the existence of self-dual connections, as

can be seen by considering 4lP2 with opposite orientation. There are no stable

rank 2 bundles on 4lP2 with c2(P) = 1 [16] and hence by (2.3) no anti-self-dual

connections. Taubes’hypotheses and result are the starting point for Donaldson’s

theorem.

(2.6) As an example of a self-dual connection, take X = R‘~ and G = SU(2) . Then

in terms of a quaternionic coordinate x E1H =]R‘’ and using the isomorphism

SU(2) ~ Im IH the l-instanton [7] solution of the self-duality equations is given

by

and action 8n2 .

(2.7) PROPOSITION.- Let A be a self-dual SU(2) connection on ~t4 with action 8rr2 .
~ 

Then up to a gauge transformation and a translation of A is equal to A~ for
some À E R .

Proof.- By conformal invariance and stereographic projection A is defined on

S4B{x} , and by the removable singularity theorem is defined on a bundle P --~ S4 .

Now use [3] § 9 or [2] or [6].

§ 3. The moduli space

(3.1) The cobordism in the proof of (1.1) is modelled on a moduli space of self-

dual connections whose general structure is described next.

Let X be as in Theorem (1.1), and given a riemannian metric. Let P be a

principal SU(2) bundle over X with C2(P) = -1 . Using the covariant derivative
of a fixed smooth connection Ao on P , one may define Sobolev spaces Lq(V) of

sections of any associated vector bundle V .

Let ~3 denote the affine space of connections on P differing from Ao by



an element of L3(S~~(g)) , , and let § denote the group of L~ sections of PXAdG
(c End V for some faithful representation). Then $ is a Banach Lie group of

gauge transformations acting smoothly on ~ by g(A) = A - Let J5 denote

the quotient space with projection p : ~ -~ ~ , and p(A) = [A] .

(3.2) Recall that a connection on P is reducible if its holonomy group is a pro-

per subgroup of SU(2) . Since X is simply-connected and P is topologically

non-trivial, the only possible reduction is to U(I) c SU(2) . Let rA denote

the subgroup of covariant constant sections with respect to the connection A .

Then A is reducible iff U(I) . The equivalence classes of irreducible con-

nections form an open subset ~* c: 3~ .

(3.3) PROPOSITION.- (i) ~ is a Hausdorff space in the quotient topology.
(ii) ~* is a Banach manifold with charts constructed from the slices

T = o f the action of as. °
(iii) p : -~,~* is a principal bundle with a connection defined by

the slices.

(iv) If A is reducible., r acts on T. and the map TA,E/rA ~03B2 is a homeomor-
phism to a neighbourhood of [A] smooth away from the fixed point set.

Proof.- Standard methods (see [3], [12], [14]) using Banach space inverse and im-

plicit function theorems.

(3.4) Let denote the subspace of equivalence classes of self-dual connec-

tions on P . vt is the moduli space. If A is reduced to a connection on a

principal U(I) bundle Q c P , then (since = 0 ) its equivalence class is

determined by its curvature F(A) E Q2 . If A is self-dual, F(A) is a self-

dual closed 2-form, hence harmonic. By Hodge theory F(A) is determined by its co-

homology class The reduction to U(I) is well-defined modulo the Weyl

group, so [A] E ~ is determined by XC1(Q) . Since C2(P) = -ci(Q)2 = -1 there

are n distinguished points representing the reducible self-dual connec-

tions, where 2n = # I Q(u,u) = 1) . From (2.5) there are also irredu-

cible connections.

(3.5) If A is a self-dual connection on P , then there exists an elliptic com-

plex [3] ] 
.._

where dA is the projection of dA onto the anti-self-dual 2-forms. Let HÀ
(0 _ p _ 2) denote the associated harmonic spaces, then by the Atiyah-Singer

index theorem (see [3])



(3.6) PROPOSITION.- Let A be a self-dual connection on P .
Then there exists a neighbourhood U of 0 E HA and a smooth map  : U -~ HA

that:

(i) if A is irreducible, a neighbourhood of [A] ~ H is diffeomorphic to
~_~(0) c HA .

(ii) i f A is reducible, a neighbourhood o f [A] ~M is diffeomorphic to 03C6-1(0)/0393A.
Proof.- The connection A + a is self-dual iff

Restricted to a slice TA E the derivative DC of 03A6 at A is the Fredholm

operator d~ : Ker dA ( c L3 (S2~ ( g} ) ) -~-~ L2 (S~2 (g) ) , and so 0 is a Fredholm map ( [ 1 ],
[18]). After a local diffeomorphism C may be represented as C(x) = 
The argument is analogous to the methods applied to moduli of complex structures
[10].

(3.7) As a consequence of (3.5) and (3.6), if A is irreducible and HA = 0 , then
~ is a smooth 5-manifold in a neighbourhood of [A] . A particular case when this
holds for all irreducible A is when the underlying metric on X is self-dual

with positive scalar curvature (see [3]). Note that if A is reducible, r acts

on HI by complex multiplication (bi(X) = 0) so that if HA = 0, 
from the index theorem and dim HA = dim rA = I .

§ 4. A key result

(4.1) An important tool in understanding the global structure of the moduli space
is the following : (see also [15]).

(4.2) PROPOSITION.- Let Ai Ebe a sequence of self-dual connections on P . Then
there is a subsequence such that either :

(i) each Ai is gauge equivalent to Ai ~ A converging in C~ to a self-dual connec-
tion A~ on P , and hence [Ai ] --~ [A ] E ~.
or

(ii) there is a point x E X and trivializations Pi of PIK on the complement K of
any geodesic ball about x such that S (the trivial flat connection) in
COO (K) .
Proof.- The proof uses two lemmas :

(4.3) Lemma.- Given L, C > 0 let {f i} be a sequence of integrable functions on X
with fi >_ 0 and J L . Then there exists a subsequence, a finite set

C x and a countable collection {Ba} of geodesic balls in X such that
the haZ f-sized balls cover and for each a , lim  C .

Proof.2014 Elementary : the 1 s are characterized by the property that each lies in



no ball with 

(4.4) Lemma.- Let hi be a sequence of metrics on B‘’ , sufficiently close to the
Euclidean metric, and converging in C (B‘’) to h . Let lifi. be a sequence of connec-
tions on the trivial bundle over B4 with Ãi self-dual with respect to hi . Then

there is a constant C (independent of h. and Ai) such that if C ,

there is a subsequence such that A. (gauge equivalent to A.) converges in C 
to A j a connection which is self-dual with respect to 

Proof.- Consequence of ([21] Theorem (1.3)).

(4.5) To obtain (4.2) first consider a geodesic coordinate system X on a geodesic

ball B c X of radius r . Thus X defines a diffeomorphism X : t B4r ~ B from

the euclidean ball of radius r to B . Pulling back the metric h , and putting

it on the Euclidean unit ball by dilation gives a metric

h = x*h(rx) = + r20(lyI2))dy.dy..
Choose r small enough that the metric r-2hr on B4 satisfies the condition for

(4.4). By conformal invariance each lifi. is self-dual with respect to h .
Now in Lemma (4.3) take the constant C from (4.4), f. 1 = |F(Ãi)|2 and

L = 8r2 . Thus from (4.4) on each ball 2 Ba some subsequence converges (after

gauge transformations) to A (a). By a diagonal argument the convergence may be
achieved simultaneously for all a .

The gauge transformations introduced in the above process give rise to connec-

tion matrices A. (a) ~ A (a) in C (2 Ba) and transition functions

satisfying : 

(4.6) Ai(a) + 

The compactness of SU(2) gives a uniform bound to dgi in (4.6) and so one can

find a uniformly convergent subsequence. Repeatedly applying (4.6) gives conver-

gence in C , and using a diagonal argument one obtains a subsequence
~ 

for all (a,6) simultaneously. This represents a self-dual connection on a bundle

Q over . Furthermore, if K c is compact then by

induction on the number of balls 1 2 B03B1 covering K (see [21] Sect. 3) one obtains

isomorphisms Pi : QIK --~ PIK such that pi : Ai --~ A~ in C (K) .

(4.7) Let B~ be a small punctured ball centred on x. (1 ~ j ~ ~) . Since

8n2 , by Fatou’s lemma B. ~IF( ~)I2d~ _ 8n2 . Hence by the remova-
ble singularity theorem (2.4) the connection Aoo and bundle Q extend over X .

By the definition of x. , J lim |F(Ãi)|2d  > 2 C for all balls B. hence for a

sufficiently small ball J



(4.8) On the other hand, since all connections are self-dual these integrands are
Chern forms. They may therefore be evaluated mod. 803C02Z by boundary integrals
(Chern-Simons invariants). Hence by uniform convergence on the boundary 3B. ,r r 

(4.9) However, since 0 and 8n2 the only possibi

lities from (4.7) and (4.8) are : 
(i) Q = 0 or

(ii) lim IF(Ã.) I 2du = 8n2 and ] IF(A ) |2d   803C02 and hence Q is trivial

and A~ flat. Thus Proposition (4.2) follows.

. (4.10) The proposition shows that a self-dual connection on P can only degenerate
by having its curvature concentrate in the neighbourhood of a point. An example is
the instanton A. in (2.6) as ~, -~ 0 .

§ 5. The boundary of Jf;

(5.1) Let 6: be a bump function approximating and dominated by X[_1,1]
and set RA(x,s) where d(x,y) is the geodesic dis-
tance in X . Then define

(5.2) A. (A) = ~x with RA(x, s} = 4n2}
where K is chosen so that À(A1) = I for the instanton Donaldson introdu-

ces this convenient but ad hoc function as a measure of the concentration of curva-

ture : if 6 is replaced by then h(A) becomes the radius of the smal-

lest ball containing half the action. In any case a ball of radius ~,(A) contains

more than half the action and hence any sequence [A.] without convergent sub-

sequences has À(Ai) ~ 0 from (4.2). It is thus a measure of the distance from

the boundary.

(5.3) PROPOSITION.- There exists Ào > 0 such that if A is a self-dual connection on
P with 03BB(A)  then the minimum in (5 . 2) is attained at a unique point x (A) EX.
Proof.- Take a small geodesic ball of radius r centred on a minimum x for A,
and pull back the metric and connection as in (4.5) to the Euclidean ball of radius

r/~,(A) . For each sequence of connections with ~,(Ai} --> 0 , the pulled-back connec-
tions Ai satisfy I by construction and applying (4.4) and (4.2) there
is a subsequence converging to a self-dual connection on :IR4 . From the classifica-
tion (2.7) and normalization this is the instanton Since 03BB(Âi) = 1 , from



(4.2) every subsequence converges and since the limit is unique, Ai -Ai as

- 0 . Now the function RA has a unique non-degenerate minimum so for suf-

ficiently small 03BB(A) , so will RA . Any two minima for A must however be sepa-

rated by a distance of at most 2A.(A) , since the ball of radius ~,(A) about each

contains more than half the action, thus a unique minimum for RA implies a unique

one for RA . °
Note how the connectedness of the moduli space for R4 is essential for this

argument.

(5.5) PROPOSITION.- (i) is compact.

(ii) JtÀo is a smooth manifold.
(iii) p is a smooth covering map.

Proof.- (i) Immediate from Proposition (4.2).

(ii) As A.(A) - 0 , [A] --~ $ in from (4.2). Then using an

argument of Taubes [19], HA = 0 . The result follows from (3.6).
(iii) p is smooth because the minimum of RA is non-degenerate, and proper by

(4.2). Thus one only needs to check that the derivative of p is an isomorphism.

Taubes’implicit function theorem provides an inverse.

(5.6) PROPOSITION.- p is a diffeomorphism.

Proof.- This is the most technical part of Donaldson’s proof, and involves delicate

curvature estimates. The idea is to show that any two self-dual connections A , B

with x(A) = x(B) and A.(A) = A.(B) sufficiently small may be joined by a short

path in ~ (see [8]).

§ 6. Perturbation of cJ~

(6.1) If HA = 0 for all self-dual connections then dl is a smooth manifold

except at the n(Q) points corresponding to the reducible connections. This may

not be true in general and there may be a subset K c c~$ (compact from (5.5)) for

which 0 . A perturbation of ~ is then necessary to obtain a manifold.

(6.2) Perturbation around the reducible connections is dealt with in a straightforward

manner : the finite-dimensional map (})(x) in the decomposition C(x)= 

is modified by a nearby map with surjective derivative. Then, as in (3.6) a neigh-

bourhood of [A] is diffeomorphic to E~/S~ - a cone on One may assume,

then, that 

(6.3) The group Z}/±1 1 acts on the Banach spaces and and



associated to the principal 1 bundle over ~* one obtains vector

bundles ~3 c ~2 with norms and connections. There is a canonical section

0 = F_(A) of E2 and one seeks perturbations a E C~(B*, E3, such that 0 + a
vanishes non-degenerately.

(6.4) PROPOSITION.- There exists a E supported in a neighbourhood of
K , such that (03A6 + 03C3)-1(0) is a smooth 5-manifold.
Proof.- Covering K with a finite number of slices TA E and shrinking, take open
sets U2 with K c Ui and Ui c U2 , and let a be a bounded section of 1f3
supported in U2 . Then K = || (03A6 + 03C3)(A)||L23 ~ R) is compact. This follows

from the fact that U2 is covered by a finite number of slices and on each one
03A6(A) = dAa + 2[a,a] + Q(A) with d*a = 0 and ~a~L23  ~ . Thus L3 bounds onC(A) = A + y[a,a] +o(A) with A = 0 and  e . Thus L3 bounds on

a(A) , a and (~ + ~)(A) give an L~ bound on (dA + d*)a and so by ellipticity
an L~ bound on a . Since L~ c L~ is compact the statement follows. Thus if

~ + a vanishes non-degenerately in so do nearby sections @ + a’ in the to-

pology of uniform convergence of a and its derivative on compact sets.

The space of such non-degenerate perturbations is also dense : at each point
take a slice on which there is a decomposition @ + a = L + ~ where L is linear

and § finite dimensional. By compactness, take a finite subcovering and modify
0+0 by substracting a regular value of ~ , , extended by a bump function. By
Sard’s theorem such perturbations can be made arbitrarily close in L~ norm to

0 + (j .

The section 0 itself vanishes non-degenerately outside By the density
argument choose a perturbation o sufficiently small that 0 + a (by the openness
argument on U2BUi ) vanishes non-degenerately on U2BUi . Then 0+0 is non-

degenerate everywhere. Let (~ + Q)-~(p) , a 5-manifold with n quotient sin-

gularities and boundary X .

§ 7. Orientability of ~r~

(7.1) On the manifold ~~ n * one must consider the Stiefel-Whitney class
wi(Ker O(~ + Q)) . The singular points can be avoided by using the gauge transfor-
mations ~o c ~ which are the identity at a fixed point xo E X . These then act

freely on i6’ to give quotient ~-"-~ %. Over 9lcf, n gives a principal SO(3)
bundle, so nj5* is orientable iff its pull back to fl ~*) is.

(7.2) The vector bundle Ker 0(~ +c3) restricted to any compact subset

Y c fl ~*) defines an element of KO(Y) . This is the index cZass [5] of the

family of Fredholm operators dA + dA + which by considering the deforma-
tion dA + dA + t(Vo)A , 0 ~ t S 1 , is independent of a. Since w~ factors



through KO, the orientability can be decided by considering ind(d*+d.) E KO(Y)
where Y is a loop. Since this is now defined for all equivalence classes of con-

nections, the loop may be deformed in 

(7.3) If SU(2) is embedded in SU(3) in the standard way, the Lie algebra bundle

g of the associated SU(3) connection A splits as where V is

a complex rank 2 bundle and R a trivial bundle, all preserved by the connection.

Thus w1(ind(di + = + and so the loop may be deformed in the

space 3 of equivalence classes of SU(3) connections.

(7.4) PROPOSITION.- = 0 .

Proof.- Since the group ~o of SU(3) gauge transformations preserving xo acts

freely, The principal bundle P is trivial on the complement

of a point and in particular on the 2-skeleton of X . Since H2(SU(3)) = 0 any

element of ~o can be deformed to one which is the identity on the 2-skeleton.

Collapsing the 2-skeleton of X gives a sphere S4 . The homotopy type of ffo on

S4 is independent of c2(P) (see [4]) , so the question reduces to the trivial

bundle. But = 0 , so ~o is connected.

Thus JbO f1 ~* is an oriented 5-manifold which, putting in the boundaries of

the quotient singularities provides the cobordism of Theorem (1.1).

§ 8. Examples

(8.1) Let X = S4 , with the canonical metric. Then any self-dual connection on P

is gauge equivalent to f*A where f : is a conformal map and A is

the canonical connection on the quaternionic Hopf bundle. Since isometries of Ep1

preserve A , the moduli space is SO(5,1)/SO(5) ~ hyperbolic 5-space. This is the

ball B5 with boundary S4 . There.are many ways of proving this ([2], [3], [6]).

(8.2) Let X = P2 with its canonical metric. In the non-compact component of

any connection is gauge equivalent to f*A where f : tP2 --> Hp2 is equivalent

under the action of SU(3) on lllP2 to a map of the form

in affine coordinates. When a = 0 this is the standard embedding P2 ~ HP2 and

gives the reducible connection. The moduli space is a cone on P2 where a is

essentially the distance from the vertex. This was proved by Donaldson (unpubli-

shed) using the algebraic geometry of the flag manifold F3, and the Penrose/Ward

approach.



§ 9. References

[1] ABRAHAM R., ROBBIN J. - Transversal mappings and flows, Benjamin, New York

(1967).

[2] ATIYAH M.F., HITCHIN N.J., DRINFELD V.G., MANIN, YU I. - Construction of ins-

tantons, Phys. Lett. 65A(1978), 185.

[3] ATIYAH M.F., HITCHIN N.J., SINGER I.M. - Self-duality in four-dimensional
Riemannian geometry, Proc. R. Soc. (Lond.) A362(1978), 425-461.

[4] ATIYAH M.F., JONES J.D.S. - Topological aspects of Yang-Mills theory, Commun.

Math. Phys. 61(1978), 97-118.

[5] ATIYAH M.F., SINGER I.M. - The index of elliptic operators IV, Ann. of Math.

93(1971), 119-138.

[6] ATIYAH M.F., WARD R.S. - Instantons and algebraic geometry, Commun. Math. Phys.

55(1977), 117-124.

[7] BELAVIN A.A., POLYAKOV A.M., SCHWARTZ A.S., TYUPKIN Y.S. - Pseudoparticle so-

lutions of the Yang-Mills equations, Phys. Lett. 59B(1975), 85.

[8] DONALDSON S.K. - D. Phil. thesis (Oxford) (1982).

[9] FREEDMAN M.H. - The topology of four-dimensional manifolds, J. Differential

Geometry 17(1982), 357-453. 

[10] KURANISHI M.- A new proof for the existence of locally complete families of

complex structures, Proc. Conf. on Complex Analysis, Minneapolis, Springer-

Verlag, New York, (1964), 142-156.

[11] LÜBKE M. - Stability of Einstein-Hermitian Vector bundles, Preprint (Bayreuth).
[12] MITTER P.K., VIALLET C.M. - On the bundle of connections and the gauge arbit

manifold in Yang-Mills theory, Commun. Math. Phys. 79(1981), 457-472.

[13] NARASIMHAN M.S., SESHADRI C.S. - Stable and unitary vector bundles on a com-

pact Riemann surface, Ann. of Math. 82(1965), 540-567.

[14] PARKER T.H. - Gauge theories on four-dimensional riemannian manifolds, Commun.

Math. Phys. 85(1982), 563-602.

[15] SEDLACEK S. - A direct method for minimizing the Yang-Mills functional over

4-manifolds, Commun. Math. Phys. 86(1982), 515-527.

[16] SCHWARZENBERGER R.L.E. - Vector bundles on the projective plane, Proc. Lond.

Math. Soc. 11(1961), 623-640.

[17] SERRE J.-P. - A course in arithmetic, Springer-Verlag, New York, (1973).

[18] SMALE S. - An infinite dimensional version of Sard’s theorem, Amer. J. Math.

87(1965), 861-866.
[19] TAUBES C.H. - Self-dual Yang-Mills connections on non-self-dual 4-manifolds,

J. Differential Geometry 17(1982), 139-170.



178

[20] UHLENBECK K.K. - Removable singularities in Yang-Mills fields, Commun. Math.

Phys. 83(1982), 11-30.

[21] UHLENBECK K.K. - Connections with Lp bounds on curvature, Commun. Math. Phys.

83(1982), 31-42.

Nigel J. HITCHIN

St. Catherine’s College
GB - OXFORD 0Xl 3UJ


