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Séminaire BOURBAKI

33e année, 1980/81, n° 575 Juin 1981

THE WORK OF MAZUR AND WILES

ON CYCLOTOMIC FIELDS

by John COATES

Introduction

Let p be an odd prime number, pn+1 the group of pn+1-th roots of unity,
and F n the cyclotomic . Let ~(s) denote the Riemann zeta func-

tion. The remarkable connexion, perceived by Kummer in special cases, between the

arithmetic of the fields F and the rational numbers 03B6(-k) ( k odd and positive)
has been one of the most tantalising and inaccessible problems in number theory for

over a hundred years. We owe to Iwasawa [6], [7] several important contributions to

this problem, including a precise formulation of the problem in terms of his

r-modules attached to the tower of fields Fn (n = 0,1,...) , which has subsequent-

ly become known as the main conjecture on cyclotomic fields. In a discovery whose

importance it is difficult to overestimate, Mazur and Wiles [13] have recently pro-

ven this main conjecture by a beautiful generalisation of earlier work of Ribet [15]

and Wiles [22] on the construction of unramified extensions of the fields F via

points of finite order on the Jacobians of modular curves. The aim of the present

expose is to give a not too technical account of the key ideas in Mazur and Wiles’

proof. From lack of both space, and knowledge on my part, I shall say very little

about the subtle and difficult geometry of modular curves and their reductions, even

though this plays an essential role in Mazur and Wiles’ work. Indeed this subject
has considerable independent interest, and certainly merits a Bourbaki lecture de-

voted to it alone.

Notation

Throughout, p will be an odd prime number, and S. the p-adic integers. For

each integer N > 1 , ’~.,~.N will denote the group of N-th roots of unity. If L/K

is a Galois extension of fields, G(L/K) will denote the Galois group of L over

K . Put

and write A for the p-primary subgroup of the ideal class group of F . Let



The restriction map induces an isomorphism from the torsion subgroup of G onto

A , and we henceforth indentify these two groups. We then have

The cyclotomic character @ .: G  2Z~ p is defined by the action of G 
i.e. 03C3(03B6) = 03B603C8(03C3) for all a E G and [ ~ p~ . It is an isomorphism by the

irreducibility of the cyclotomic equation. We write ð and K for the respective
restrictions of @ to A and r . These give isomorphisms

where U denotes the group of p-adic units E 1 mod. p . In particular, $ gene-

rates the group of p-adic characters of A . Write j for the element of order 2

in A , given by complex conjugation for any embedding of F into ~C . A character

X of A will be said to be even (respectively, odd) if X(j) = 1 (respectively,

X(J) = -1 ). .

1. The main theorem of Mazur-Wiles

It is simplest to begin by stating the result of Mazur and Wiles for the field

F~ . The p-primary subgroup A~ of the ideal class group of F is defined as

follows. If n  m , there is a natural map A -~ A , and we let A = lim A ,
n m oo --~ n

relative to these homomorphisms. Thus A is a discrete p-primary G -module. It

is more convenient to work with the Pontrjagin dual

X = 

which is a compact G -module ; in general, if A and B are G -modules, we
endow Hom(A,B) with the G structure given by (~f) (a) - Let Y be

any compact G -module, which is also a S P -module. Recalling that G = A x r ,

we first decompose

(2) Y = ~~Y(~),

where x runs over the characters in A = (in other words, x runs

over the 81 for i mod. (p - 1) ), and where Y(X) denotes the submodule of Y

on which A acts via x (i.e. csn = x(a)m for all a E A and m E ).

Secondly, let A = Zp[[T]] denote the ring of formal power series in an indeter-

, 

minate T with coefficients in S . . For simplicity, take Yo to be the unique

topological generator of r with K(yo) = 1 + p , in the second isomorphism of

(I). Then, defining (1 1 + T)m = Yom for all m E Y (~ , it is not difficult to

see ([16]) that we can extend this by linearity and continuity to a continuous
action of A on Y (x) . The proof of the following theorem of Iwasawa (see [8]
for a convenient reference, but in fact he established it much earlier) is algebraic



in the sense that it depends only on global class field theory, and not on the

p-adic analytic theory of the numbers ~ ( - 2k - 1) (k = 0,1,...) .

THEOREM 1 (Iwasawa).- For each x = is a finitely generated
p 00

A-torsion -module, which has no non-zero finite A-submodule.

Similar algebraic arguments show that 0 for x = 03B8o , 03B8 , 03B8-1 , but

give no further information on the other components X for ~ ~ 03B8o , 03B8 , 03B8-1 .

However, Theorem I and the structure theory of finitely generated A-modules ([16])

immediately implies that, for each x ~  , we have an exact sequence of A-modules

0 ---, °° 
~) 

--, XX X --, 0 ,
where D X is finite, and I X is of the form

with r some integer > 0 , and f k non-zero elements of A .

The ideal ( jf f . ) in A is uniquely determined by X(X) , and we call any
1 X, 

~ ~ -~ 
oo 

’ -~

generator of this ideal a characteristic power series of X(~)~ . Thus a characte-
ristic power series of X is only determined up to multiplication by a unit in

A . The simplest way to specify a power series in A uniquely is to give its

values at any infinite subset of the points T = (1 + p}S - 1 E p71 , where s runs

over 7l p (note that the elements of A converge at these points). Iwasawa [6],

[7] had the remarkable insight to see that many of the open problems on the arith-

metic of the fields F would be a consequence of a (conjectural) description of

a characteristic power series of X(~)~ , for each odd character x in  distinct

from 3-1 , in terms of the p-adic interpolation properties of the numbers 03B6(-k)

(k = 1,3,...) . Here ~(s) denotes the Riemann zeta function, and we recall that

Euler proved that

03B6(-k) = - Bk+1 k + 1 (k ~ 1 , k odd) , ,

where B is the r-th Bernouilli number, defined by the expansion

Although it is not at all obvious, it is known that, given an odd character X in

A distinct from ~ ~ , there exists a unique power series L X (T) in A satis-

f ying

(3) 1) - C1 - 

for all positive integers k >_ 1 such that x = $k (i.e., writing x = $1 , for
all integers k >_ 1 with k = i mod. (p - 1) ). The following is Mazur and Wiles’

main result, which proves Iwasawa’s conjecture in the affirmative.

THEOREM 2 (Mazur-Wiles).- Let X E ~ be an odd character distinct from .

Define the odd residue class i mod. (p - 1 ) by x = 03B81 . Then the power series



satisfying (3) for all k > I with k * I mod. (p- I) is a characteristic

power series of 

Remarks.- (I) The.existence of the power series L (T) (for x odd in I ,
X

x # 03B8-1 ) is in fact equivalent to congruences on Bernoulli numbers which were

known to Kummer (see [17], p. 243). The study of these congruences was revived and

extended by Kubota and Leopoldt [11]. Indeed, it is plain that L ((I + p)-s - l) ,
X

when viewed as a function of the variable s in Z ,is the p-adic L-function
P

attached in [11] to the even character xS .

(ii) As will be explained in § 3, Iwasawa [7] gave a completely new construction

of the L~(T) in terms of the classical Stickelberger elements for the tower F_ .
His construction has the great merit that it immediately suggests a link between

L (T) and the -module X(~)~ . Specifically, Iwasawa’s construction together

with the classical theorem of Stickelberger on the factorisation of Gauss sums

shows that L (T) must annihilate ( x odd, x # 03B8-1 ).
X "

(iii) Recall that r~ denotes the number of direct summands occurring in the

A-module G~ . Let (H ) denote the hypothesis that we can choose r~  I for
x p

all odd characters x in I . If (H ) is valid, Theorem 2 is an easy conse-
P

quence of Iwasawa’s work referred to in (it), and the analytic class number

formula [I]. But this approach breaks down completely if hypothesis (H ) does
P

not hold. While the numerical evidence is in favour of hypothesis (H ) , there
P

is little theoretical evidence to support its validity, beyond the fact that it

would greatly simplify the whole cyclotomic theory. It is striking that Mazur and

Wiles’ work gives no information at all about the values of r .
X

(iv) Although the work of Mazur and Wiles throws no light on the mysterious

question of determining the characteristic power series of the -modules X(03C8)~

when 03C8 runs over the even characters of A , we briefly recall our fragmentary

knowledge on this problem. Let (I ) (resp. (K ) ) denote the hypothesis that

X(03C8) = 0 (resp. A(03C8)o = 0 ) for all even characters 03C8 of A . Note that (K )
°’ P
is none other than the classical hypothesis that p does not divide the class

number of the maximal real subfield of Q(y ) .
P

Lemma 3,- h£e have the implications (K ) + (I ) + (H ) .
P P P

ve do not give the detailed proof of this well known lemma, but simply

remark that the first implication holds because the theory of 0393-modules shows

that, for any @ E I , = 0 implies that A(03C8) = 0 for all n > 0 . To
n

establish the second implication, one uses class field theory and Kummer theory
to prove that if X(03C8) = 0 for an even character 03C8 # S° , then r  I for the

" X
odd character X " 03C803B8-1 . Ve also note that it is unknown whether (I ) implies

P
(K ) . Since (K ) has been verified numerically in [21] for all p  125,000 ,
P P

We see that (I ) is also valid in this range. But there is little theoretical
P



evidence in favour of (Ip) , and the whole question seems inaccessible at present.

2. Consequences of the theorem of Mazur-Wiles

We begin by explaining how two long conjectured refinements of Kummer’s ana-

lytic class number formulae for the field Fo = Q( p) are consequences of Theorem

2. If S is a finite set, write # (S) for the cardinality of S . We write

I I for the p-adic valuation normalised by Ipl = p-1 . Note that we
can decompose Ao as a direct sum

Ao = Ao + Q:7 Ao ,

where Ao (resp. Ao ) is the subgroup on which j acts by +1 (resp. -1 ).

For x E ~ , let the number L(x,0) E  p be as defined in § 3 ; in fact, L(X,0)

belongs to the field obtained by adjoining the values of x to .

The first class number formula of Kummer asserts that

the product being taken over all odd characters in A .

THEOREM 4 (Mazur-Wiles).- For each odd character x ~ ’~ u~e have

This theorem is a refinement of (4) because it can easily be shown that

# (Ao‘g)) - (pL(~ ~,0)I - 1 . We stress that Theorem 4 seems inaccessible to clas-
P

sical methods on cyclotomic fields, althougher Stickelberger’s theorem gives the

partial result that L(X,0) annihilates for all odd characters X # 

The first person to obtain results in the other direction was Ribet [15] , who

introduced the key idea of constructing unramified extensions of Fo via.the

Jacobians of modular curves, and who proved that 0 when L(X,0) is

divisible by p, for any odd X # ~ ~ . We now outline the derivation of Theorem

4 from Theorem 2. Since has no finite non-zero r-submodule, we have

by Theorem 2. The construction of given in [7] shows that = L(X,0) .

But is dual to (A(~-1)~)0393 , and this latter group can be identified

with AoX ) by virtue of the following well known and elementary fact : for all

n  m , the natural map An -~ Am is injective, and induces an isomorphism
A 2014~ Although it plays no role in this argument, we recall that

it is still unknown whether the map An --~ Am is inj ective for all n  m .

Let Eo be the group of global units of the field Fo , and let Co be the

intersection with Eo of the subgroup of F~ generated by 1 - ~ , where

denotes a primitive p-th root of unity. We call Co the group of cyclotomic
units of Fo . The following facts were derived by Kummer from the theory of



complex L-functions attached to Fo/~ . Firstly, the index of Co in Eo is

finite. Secondly, if we write Bo for the p-primary sybgroup of Eo/Co , then

(5) # (Bo) - ~ (Ao) ,

where Bo denotes the elements of Bo which are fixed by complex conjugation.

THEOREM 5 (Mazur-Wiles).- For each even character x we have

# # 

See [5] for a proof that Theorem 5 is a consequence of Theorem 2.

We next briefly indicate one consequence of Theorem 2 for the higher K-theory

of S . For each integer m > 0 , let K 2Z denote Quillen’s higher K-group of

S . If m is even and positive, Borel has shown that K m 7l is finite. For

r > I , let w (Q) denote the largest integer N such that the Galois group of

(~(~) over ~ is annihilated by r .

THEOREM 6.- Let n be an odd positive integer. With the possible exception of its

2-primary subgroup, the order of K2nZ is divisible by 
Lichtenbaum had earlier conjectured that the order of K2n71 is precisely

t wn+~(~)~(-n) . The essential result in deriving Theorem 6 from Theorem 5 is the

following theorem of Soulé [19], [14] (which remains valid if we replace Q by

any totally real finite extension H of Q , 7l by the ring of integers of H ,

by H( p~) ). Let g = lim pn be the Tate module. Thus I is a

free S -module of rank 1 , on which G 
~ 

acts via the cyclotomic character @ .

If M is a G -module which is also a 2Z -module, we define, for each integer

k ~ 0 ,
(6) M(k) = M 8_ 7 ~Z

p 
... ~ZpJ ( k times) ,

endowed with the diagonal action of G~ . Soulé’s theorem asserts that, for each

odd prime p , and each odd positive integer n , there is a canonical surjection

--~ ( ~(n) ) ~° ,
where the group on the left denotes the p-primary subgroup of K2n7l. Presumably

this map is an isomorphism, but this is unknown at present for n > 1 . In any

case, a formal calculation using Theorem 2 shows that the order of the group on

the right is and so Theorem 6 follows.

3. Iwasawa’s construction of the p-adic L-functions

We first introduce the partial zeta functions for an arbitrary finite abelian

extension K of . By class field theory, K C for some integer N, and

we choose N to be minimal with this property. Let G denote the Galois group

of K over Q . If c is a rational integer prime to N , we write a for the



restriction to K of the automorphism of ~(~) whose action on ~ is given

by ~ r--~ ~c. For each (7 E G , we define the partial zeta function of a by

where the sum is taken over all positive integers m with 0 
= 0 . Now 

has an analytic continuation over the whole complex plane, and it is known that

~(?,-n) is rational for all n > 0 in ZZ . See [2] for a discussion of the

integrality properties of these numbers. For K = ~(~) and Q = ac , we have
the explicit formula

here Bn+i(x) denotes the (n+ l)-th Bernoulli polynomial, and (y) denotes the

fractional part of a real number y .

Let (respectively, ~[G] ) denote the integral (respectively, ratio-

nal) group ring of G . We now define the analogue of the classical Stickelberger
ideal which plays a central role in Mazur and Wiles’ work. Let E be

given by

Take S to be an arbitrary finite set of prime numbers which contains all primes

dividing both N and the integer w2(K) ( = largest integer m such that

)/K) has exponent 2 ). Then it is not difficult to show that, for each
m

positive integer c prime to S ,

(7) (agi - c2)fl(K)

belongs now to the integral group ring Z£[G] . For the proof of this and related

facts, see [I] and [2]. Ve then define 4f(K) to be the ideal in Z£[G] generated

by all elements (7) for c ranging over all positive integers prime to S (in

fact, al(K) does not depend on S ). Ve call (K) the Stickelberger ideal

(but we stress that 4(K) is only an analogue of the classical Stickelberger

ideal), and its paramount importance will be explained later in the exposE.
We now briefly indicate Iwasawa’s construction of the power series L (T)

X
in terms of the Stickelberger ideals. Take K = F = Q(y n+1) , and write G

n p n

for the Galois group of F over Q . Ve define S to be the ideal of the
n n

p-adic group ring Z [G ] generated by all elements (7) with the conditions on
p n

c given above. Now we have the canonical decomposition G = A x z , where 03A3
n n n

is cyclic of order which allows us to consider each G -module as a
n

0394-module, in particular. Moreover, if r denotes the projection of G 
n n n

and 03C6 E I , the map a - #(a)r (a) from G to the group ring
n n

induces an isomorphism



Lemma 7.- Let 03C6 E 0 be distinct from 03B8-2 . Then the isomorphism (8) maps S(03C6)n
to the principal ideal of Rn generated by -

Indeed, E Rn when (~ ~ ~ ~ , because we can choose a positive integer c

prime to w2(Fn) such that rn(a ) = 1 and a generates 0394 . The assertion of

the lemma is then clear from the definition of the ideal Sn . Next, let

cpn = (1 1 + T)p - 1 . We have a unique isomorphism of 2Z -algebras

such that the image of Yo in En is mapped to 1 + T mod. Passing to the

projective limit, we obtain an isomorphism lim Rn ~ A which maps Yo to

1 + T . Now it follows easily from properties of the partial zeta functions that

the (n = 0,1,...) define an element of lim Rn when (~ ~ ~"~ . Write
+

G03C6(T) for the corresponding power series in A. One can evaluate these functions

at the points T = (I +p) - 1 (where k is an integer > 0 ) using the congru-
ence given in Theorem 10 of [2]. We only state the result. For each X E ~ , we
define

for all integers k ~ 0 . If X = ~ is the trivial character, we have

L(~o,-k) = (I - p~) ~(-k) .
THEOREM 8 character in A from 03B8-2 . Then,

for each integer k ~ 0 , zje have

+ p)~ - 1) = L(~, -k- 1) .
The number is zero if and only if X and k have opposite parity

(since the corresponding result holds for the complex L-functions because of the

0393-factors in their functional . equation). In particular, C,(T) is identically

zero when 03C6 is odd.

COROLLARY 9.2014 Let x be an even character in A distinct from 03B8-1 . Then the

power series L (T) is given by
~

L~(T) = + p)-’ (1 + T) - 1) .

4. Reduction of the problem

The first reduction of the problem is based on the generalisation of the

analytic class number formula (4) to the fields Fn (n = 0,1,...) .

PROPOSITION 10.2014 J)-z order to prove Theorem 2, it suffices to show that, ycr each

odd X ~ A from 03B8-1 , L (T) divides a characteristic power series of
X(~)~ . 



By the Weierstrass preparation theorem, each non-zero f in A can be writ-

ten uniquely in the form f = where p. > 0, m(T) is a distinguished

polynomial, and u(T) is a unit in A . Then the degree /B. = of m(T) and

the integer p. = are invariants of f. Write c (T) for a characteristic

power series of X (y) . As is explained in [9], the generalisation of the analytic

class number formula (4) to the fields F implies that
n

03BB(c~) = 03A3 03BB(L~) , I (c~) I (L~) ,
where X runs over all odd characters in A distinct from 03B8-1 . Thus Proposition

10 is now clear.

Secondly, the construction of unramified extensions using the Jacobians of

modular curves, makes it imperative to replace the G~-module A by its twisted

version A (I) = A 8_ j , , endowed as before with the diagonal action of G .

Let

Z = Hom(A (1),Q /2Z ) .
00 °° P P

Thus Z (1) = X .

PROPOSITION 11.2014 In order to prove Theorem 2, it suffices to show for each

~ A distinct from 03B8-2 , G (T) divides a characteristic power series

of Z(03C6)~ .
Since 2~(1) = it is plain that if d03C6(T) is a characteristic power

series for Z" , then d,((l+p)~~(l+T) - 1) is a characteristic power series

for where B = (~ . ’ Hence Proposition 11 follows from Proposition 10 and

corollary 9.

The final reduction of Theorem 2 involves a technical ring-theoretic concept
for replacing the characteristic power series of a A-module when one works at a

finite layer F of the tower F . In general, let R be a commutative ring,
and M a finitely presented R-module. Take any finite presentation of M, say

(10) R~ -~ R~ 20142014. M 20142014~ 0 .

We define the Fitting ideal F R (M) of M to be the ideal of R generated by

all q x q minors of the matrix of e (if m  q , we put ~.(M) = 0 ). See [14]

for the basic properties of In particular, 3~(M) does not depend on the

choice of the presentation (10). We now use this notion with R given by the

Zp-group ring Rn =S-[En] under the isomorphism (9) ; here

con = (1 + T)pn - 1 . Recall that Sn denotes the ideal in 2Z-[Gn] generated by

the elements (7) with c ranging over all positive integers prime to 

For each ~ C A , we identify with its image in Rn under the isomorphism

(8).

Assertion On .2014 For each even character 03C6 ~ 03B8-2 in  , zje have



It is precisely this statement which Mazur and Wiles use the theory of modu-

lar curves to prove for all n ? 0 . In view of the construction of G~(T) given

in § 3, it is not difficult to show that the validity of for all n > 0

implies the sufficient condition for Theorem 2 in Proposition 11.

5. The work of Kubert-Lang

We owe to Kubert and Lang [10] the important observation that the Stickelberger

ideal defined in § 3 also arises naturally in the study of the cusps on the modu-

lar curve Xi(N) . In this section, we sketch that part of their work which is

used by Mazur and Wiles. Throughout, % will denote the upper half plane, and

?’ = !? U Q U (00} . Also N will denote an integer > I , and G = (T~/N~) X/~tl} .
We recall that ri(N) denotes the group

~ B ~ ~

which operates in the natural fashion on ? . Over the complex field E (see

[18], and also the discussion in § 6), we define the modular curve Xi(N)/!E by

We write j for the natural proj ection of ~* on By definition, the

cusps of are the elements of U ~ ~ ~) , and it is convenient to

describe them by the following notation. On the set V of all pairs of integers

(x,y) with (x,y,N) = 1 , we impose the equivalence relation defined by the three

conditions (i) (x’,y’) if x - x’ mod. N, y - y’ mod. N ,

(ii) (-x,-y), and (iii) (x + y,y) . Denote the equivalence class

of (x,y) by lx~ . Let now x, y be relatively prime integers. Then the map

ttN x Y ~ establishes a bijection between the set of cusps and the set of

equivalence classes of elements of V. By definition, the set of zero

cusps of is the set of all cusps of the form x , where (y,N) = I

(in fact, each such cusp can plainly be written in the form [0 y] , where

(y,N) - I ).

The group G = (~/N~) X/~ tl } acts as a group of automorphisms of 

Given Q E G , choose an integer m prime to N such that 6 is the image of

m in G, and choose m’ such that mm’ - 1 mod. N . Let m be an element of

SL2 (ll) such that

We then define the automorphism  ~ > of by  6 > (rtN (z) ) - ~ ( m (z) ) . .
An immediate calculation shows that  6 > operates on the cusps by



In particular, the set of zero cusps is given by

As a preliminary step to constructing functions on we recall some

classical facts from the theory of elliptic functions. Let L be any lattice in

E , and let a(z,L) be the Weierstrass a-function of L . Write

~(z,L) = a’(z,L)/a(z,L) , and for w E L , define

~(z +co,L) - ~(z,L) . .

We write n(z,L) for the extension of n(w,L) to E by R-linearity. Let

03C6(z,L) = e-1 2z~(z,L)03C3(z,L) .

For L fixed, note that 03C6(z,L) is not a holomorphic function of z , because

n(z,L) is not holomorphic in z . We now vary both z and L simultaneously.

Let a = be a fixed element in let T be a variable in the

upper half plane H, and let be the lattice Z03C4 ~ 7l . The function 

(which has nothing to do with n(z,L) ) is defined by 
"

We recall that, if ~= (~ ) ~ then there is p(~,) E j.,~..,2 such that

We now introduce the function

The following elementary proposition lists the properties which will

be used in the sequel. Recall that B2(x) denotes the secont Bernoulli polynomial.

PROPOSITION 12.- (i) 03C803B1(03C4) is a holomorphic non-vanishing function of 03C4 in the

upper half plane H, given explicitly by

(ii) For each M ~ SL2(Z), we have

(iii) = (Pi,{32) ~2Z2 , ~e~

~(T) = ,

where e(P) = 1 if P ~ 2 Z2 , and ~(03B2) = -1 otherwise.

COROLLARY 13.-- Let N Z?e an integer > 1 , and suppose NOL ~ Z2 . Then the

order of 03C8 (r) power series in q 1/N is given by
~~ L

N 2 B2({03B11}) .



We can now construct functions on X1(N)/[ , whose divisors have support

amongst the cusps. If o E G , one verifies immediately from (iii) of Proposition
12 that the function 03C803C3(03C4) = 03C8(0,m/N)(03C4)03C8(0,-(m/N))(03C4) depends only on a ;

here m is any integer prime to N whose image in G In the following,

p. : G -~ 7l will denote a function, which will always be assumed to satisfy

2 u,(o’) - 0 . We define

For 0 E G , put for the residue class of m2 modulo N, where m is

any integer whose image in G is J .

THEOREM 14.- ~(’c) is a function on if and only if

This follows immediately from Proposition 12. Indeed (i) shows that, for

any p. , ~.(r) is meromorphic at the cusps and (ii) and (iii) imply that, for
/-~B

all m=(a b c d) in P1 (N) , we have

whence the theorem is plain.
In view of Theorem 13, we def ine ~ to be the set of all functions

p. : : satisfying (12) and = 0. The next result is also an imme-

diate consequence of (ii) and (iii) of Proposition 12.

PROPOS ITION 15.- Assume that l.i, E’~ . Then, for each a E G ,

~.,(0>T) = ~ (T) ,
where p. is defined by 03C3(03C1) = (03C103C3-1) .

It is easy to derive the expansions of {1 1J. (p) at the cusps from (i) of

Proposition 12. We only state the result explicitly for the zero cusps. Since

Proposition 15 shows that it suffices to work with
rot {03C3>[0 1] , 03C3 ~ G }, Proposition 15 shows that it suffices to work with
1 Let K denote the maximal real subfield of Q( N) , so that we can also

identify G with the Galois group of K over ~ .

PROPOSITION 16.- Assume that u E 03B3 . In terms of the local parameter at (§]
given by t = e -2rt~ . /Nz , u(z) has an expansion of the form 

1,

(13) t - ~ °~G u(a)~(~~-1) (1 - 2u( 1 ) t + 
,

where w (t) is a power series in Z[[t]] .

As far as order of vanishing at the other cusps is concerned, we merely note

the following two facts :



However, if y ~ 0 mod. N , it is not in general true that the order in (15) is

zero. In other words, the support of the divisor ( ~(z)) is not in general
contained in 

Let 8(N) denote the group of all principal divisors ( ~(z)} with p.

running over 1f. If D is a divisor on write pro(D) for the part

of D whose support lies in The following result shows how the Stickel-

berger ideal ~(K) in defined in § 3 arises in the context of the modular

curve Let be the ideal of consisting of all elements of

degree 0 , and put
~(K)° =  (K) 

THEOREM 17 (Kubert-Lang).- 

This is an immediate consequence of Proposition 16, and the following ele-

mentary lemma.

Lemma 18.- ~ (K) ° _ ~ TPj- . .’ 

Now let P(N) denote the group of all principal divisors (f) , where f

is a function on whose zeros and poles lie amongst the cusps, and which

satisfies (14) and ( 15) at the cusps. Since the 2Z-rank of 8(N) is # (G) - 1 ,

it is not in general true that B(N) has finite index in P(N) .

THEOREM 19 (Kubert-Lang).- The torsion subgroup of P (N} /®(N) is annihilated by 2 .

The essential step in the proof is to deduce from the expansion (13) that a

relation fm - S~(~) , where f is a function on Xi(N)/E implies that m/2p.(l) . .

Proposition 15 then shows that for all a E G , and the conclusion of

the theorem follows from Theorem 14.

Let ~o(N) be the group of divisors of degree 0 on Xi(N)/E with support

in ~°(N} , modulo the subgroup of principal divisors with the same property. The
theory of Kubert and Lang described above does not in general give a simple des-

cription of 5o(N) as a S[G]-module in terms alone, because of the

fact may have zeros or poles at the intermediate cusps rxi where y

and N have a common divisor d with 1  d  N . (Note that the finiteness of
is already implied by earlier work of Manin and Drinfeld). At the end of

the expose, we shall say a few words about the beautiful manner in which Mazur

and Wiles’ work clarifies this problem, at least when N = pn+1 with n > 1 .

Note that when N = p > 5 , this difficulty does not occur since there are no

intermediate cusps, and the following result is a simple consequence of Lemma 7,

and Theorems 17 and 19.

THEOREM 20 (Kubert-Lang).- Let p >_ 5 and let C°(p) be the p-primary subgroup



of 6o(p) ’ Then, for each even x distinct from and 03B8-2 , we have

= 

6. Proof of Assertion On for n = 0 .

All the.techniques needed to prove Assertion ~o are contained in [22], but

the final argument is not given explicitly. We sketch the proof in this section.

Let Ji(p)/E denote the Jacobian variety of the curve Xi(p)/E . Let * be

a prime number different from p , and let 6p be as defined in § 5. The follo-

wing correspondences on induce endomorphisms of which we

denote by the same symbols :

Also, for 0 E G , the automorphism  ~ > of induces an automorphism
of which we again denote by  ~ > . Put

U*p = W-1UpW ,
and define % to be the algebra of endomorphisms of generated by the

TQ for all primes l ~ p , U* , and  6 > for all a E G . It is well known

that TT is commutative, and is a free finitely generated S-module.

In fact, the curve Xi(p)/C has a canonical model which is defined over Q

(see [18], Chapter 6), and which we denote by The elements of ’~-o (p)
are ~-rational points for this model. Moreover, writing for the Jaco-

bian variety of the endomorphisms in TT are all defined over ~ . The

involution W is not defined over Q , but only over the maximal real subfield

F6 of Fo = ~(~"~,p) . Write for the set of cusps of Xi(p)/E of the form

, , where x is an integer prime to p (we call these the cusps). Since

it follows that the oo-cusps are defined over F6. Moreover,
identifying G with the Galois group of F6 over , the Galois action of G

on is easily seen to be the same as the diamond action. denote

the group of divisors of degree zero on with support in J~(p) , modulo
the subgroup of principal divisor.s with the same property. As W ~  ~ > -  ~ >-~ ~ W

and W(~o(p)) - ~ (p) the theory of Kubert-Lang gives the structure of the finite

group S (p) c as a (neglecting the 2-primary part).

Finally, the explicit formulae given above shows easily that



Write for the group of p-power order in J~ (p) {~) . Let Gp
denote the Galois group of the maximal extension of ~ which is unramified

outside p . As Ji(p)/Q is known to have good reduction at all primes different

from p , the Galois module is unramified outside p , i.e. it is a

Gp-module. For each prime l ~ p , let cpQ E Gp denote a Frobenius element for

Q . Also we write CL for the image of L in 
P 

G = (?L/pTL) ."/{ tl) . The following
is a reformulation of a classical result of Eichler and Shimura (see [18], Chapter

7).

PROPOSITION 21.- On J1(p)[p] , , we have

T~ = tp~ + 
For the rest of this section, fix an even character x in  with ~ ~ 1 ,

~ such that p divides L(-I,X-1) . Write Coo for the x-component of the

p-primary subgroup of ~’~(p) . By Theorem 20, we have that as an abelian group

(16) 

Also c:Coo .

CRUCIAL DEFINITION.-, We let n be the annihilator of C~ in ’lr .

We also write %= for the associated maximal ideal in TT . For each

integer r with 0  r ~ oo , put ] for the set of points in 

which are annihilated by all endomorphisms a in the ideal r .
It is essential to work with a quotient of the abelian variety Ji(p)/Q .

Let Xo(p)/ be the modular curve ro (p) ~~‘ , where ro(p) is the subgroup of

consisting of all matrices ( ) with ad-bc = 1 and c - 0 mod. p .’

Again this curve admits a canonical model such that the natural map

Xi(p)/Q ---~ Xo(p)/ is also defined over ~ . Thus, writing Jo(p)/ for the

Jacobian of we can define the abelian variety A/~ by the exacteness

of the sequence

(17) 0 --~ --, -’~ A/~ -~ 0 .

The main reason for introducing A/Q is the following result [3].

THEOREM 22 (Deligne-Rapoport).- The abelian variety A/Fo has good reduction

everywhere (i. e. including at the unique prime of Fo above p ) .
The Hecke algebra IT also operates on A/~ . Write for the

G -module of points in which are annihilated by all elements of ~r . The
exact sequence (17) induces a G -isomorphism because X~l ’ .

We say that a G P -module N is of p-type if every finite submodule of N

has Jordan-Holder filtration whose successive quotients are all isomorphic to the

G -module up . . We omit the proof of the following proposition (see [13], [22]).



PROPOSITION 23.- Let C denote the maximal p-type submodule of A[m~] . Then
Q Zs finite.

We now define B/~ to be the quotient of the abelian variety A/Q by Q .

Since B/Fo is isogenous to A/Fo , it follows that B/Fo has good reduction

everywhere. We can now construct the exact sequence of G -modules whose study
P

leads to the proof of Assertion The canonical surjection of Ji(p)/Q onto

B/Q induces an isomorphism from Coo onto its image in B(Q) (which we again
denote by Ceo), because Now B/~ inherits an action of IT , and we

write B[n] for the points in B(Q) which are annihilated by all elements of

n. Clearly Cooc B[H] , and we define the G -module M by the exactness of the

sequence

(18) 0 --~ C~ ~--~ B[H] J - M -~ 0 .

Let W X denote the IF P -vector space of dimension 1 on which G P acts via X .

PROPOSITION 24.- Each simple sub-quotient of the Gp-module M is isomorphic
either to u, or to W .

P X

Proof.- An easy direct calculation shows that, for each a in and each

prime l ~ p , TQ(a,) - (Q + 03C3l>)(03B1) , where CL is the image of * in G. °

Since n annihilates M , we conclude from this fact and the Eichler-Shimura

relation given in Proposition 21 that

(19) (~PQ - Q) (~P~ - = 0

for all primes l ~ p . In particular, (19) must hold on each simple subquotient
of M , and Proposition 24 is then a consequence of the Brauer-Nesbitt theorem

and the Cebotarev density theorem (see [22]).

To study (18) further, we must use the detailed knowledge provided by alge-
braic geometry of the reduction of B/F6 at the unique prime 1g of F6 above

p . Write J:4 for the completion of Fo at ~ , 8’ for the ring of integers of

J~ , and k’f for the residue field of ~. We recall that the reduction of B at

y is an abelian variety which is defined as follows. Let B/8’ denote the

Neron minimal model of B/~ . Then is the special fibre of i . e .

B03B3/k03B3 = (B/Q) ~Qk03B3 ° By the universal property of the Néron model ’ ZT operates

on B/0’ and so also on the special fibre B«flk. We define J to be the sub-

group of which is annihilated by all elements in :IT. Recalling that Coo

is defined over ~, we can identify Coo with a subgroup of the 0-points of

(as is the Neron model, the canonical map from the 0-points of B/~’
to the $’-points ’ of B/~ is an isomorphism), and we write C °~~ for the image
of Coo under the reduction map from the 0-points of B/6’ to the k -points of
B03B3/k03B3 . Plainly C~,03B3 ci B [H] . The following is a key result. ° 



THEOREM 25.- (I) C ~,03B3 Z£ P 
; (it) C 

~,03B3 = B JII] .
Assertion (I) can be proven using analogues in characteristic p of the

arguments of § 5 (alternatively, as the ramification index of F over Q is
P

 p- I , one can invoke the specialisation lemma of Raynaud, namely Proposition
I,I on [12], p. 135). For the proof of (it), which depends on a detailed knowledge
of the geometry of B03B3/k03B3 , see 122].

PROPOSITION 26.- (I) As modules for the local Galois group G(F/F) , we have

B[Il] # c fl3M ; (it) As a module for the global Galois group G , M is of~° P
y - type.
P

Ppoof.2014 See [20], p, 160 for an explanation of the terminology and facts about

commutative flat group schemes of finite order over Q used in this proof. The

fact that B/l3/ has good reduction implies that the exact sequence (18) of

ext’ends to an exact sequence of commutative flat group schemes of

finite order

(20) 0 - C~/Q ---> B[fl]/tl’ - M/Q - 0

(the exact sequence of general fibres of (20) is just (18) viewed as 

dules). Moreover, we can identify the kP-points of the special fiber of C CO /0’
with C~,P , and the kP-points of the special fiber ’ of B[Il]/@ wi th B 8 [Il] .
It follows from (I) of Theorem 25 that C~/Q is étale, and from (it) of Theorem

25 that M/@ is connected. If we now compare (20) with the standard exact sequence

expressing B[II]/03C3 as an extension of an étale group by a connected group, we

conclude that (20) splits to give

(c_/w> © M/u> - B[u]/tr.

Assertio.n (I) of Proposition 26 is simply the statement that this decomposition
is valid for the general fibres. As M/tY is connected, no non-zero subquotient
of M/c’ is Etale. If M were not of y -type, Proposition 24 and the special i-

P
sation lemma of Raynaud ([12], p, 135) imply that the constant group of order p

over c’ is a subquotient of M/@’ , and so (it) also follows.

Lenma 27.- The action of G on M is given by the cyclotomic character 03C8 ,P
I.e, a(m) = @(a)m for all m E M and a E G .

P

PPoof.- Let K be a finite extension of Q containing Q(y ) , and such that the
P

action of G p on M factors through $= G(K/Q) . Let H be the kernel of the

character ~03B8-1 of £y. Since X is even, H # Q. Take a prime number * # p
such that the Frobenius element of g in g does not lie in H ° Ve claim

that the kernel of the endomorphism 03C6l - ~(03C6l) must be zero on M If this were

not the case, the fact that M is of -type would imply that there exists a
P

subquotient of this kernel which is isomorphic to y , , and this is impossible
P



because by our choice of £ . Hence (pp - X(cpp) is an automorphism

of M and thus by (19) ~)M = 0 , for all such . The assertion of the

lemma now follows from the Cebotarev density theorem and the fact that ~- is
plainly generated by 

If L is an abelian extension of Fn = ~(~L jy+i) ~ which is Galois over
we recall that there is a standard action of G(Fn/Q) on G(L/Fn) given by
0°x = here x E G(L/Fn) , a E and h is any representative
of a in G(L/Q) . Define the integer p > 0 by

(21) pp+~ - IL(-1 sX ~) 

THEOREM 28.- Le t ~ be the splitting field over F of the module B [ II ] (i.e.

the field obtained by adjoining to F P the coordinates of all points in B[II]).

Then is an unramified abelian p-extension, whose degree is the order of
M. Moreover, £ is Galois over 03A6 , and the action of  0394 x G(F P /Fo)
is given by (i) A acts via and (ii) G(F /Fo) acts via the character

K-1 modulo p03C1+1 . 

’

Proof.- The extension is automatically unramified outside p, and (i) of

Proposition 26 shows that it is also unramified at p . We construct a pairing

G(£/F ) x M --> C by (a,m) i--~ ow - w , where w is any representative of m
p 00

in B[II] . It is clear that this pairing is well defined and that the kernel on

the left is zero. The kernel on the right is also zero because of the definition

of the abelian variety B/03A6 as the quotient of A/03A6 by the maximal p -type

submodule of A[M~] . Hence, as C is a cyclic abelian group, we obtain an

isomorphism of G(F /Q)-modules
G(£/F ) Hom(M,C ) .

The final assertion of the theorem now follows from Lemma 27.

So far, we have proven nothing about the degree of £ over F or equiva-

lently the order of M . Indeed, up until now, we have not excluded the possibility
that M = 0 . The key to overcoming this difficulty was pointed out by Tate. Let

R be an arbitrary commutative ring containing S as a subring.

Lemma 29.- Let V be a faithful R-module, which is a free Zp-module of finite
type. Let I be an ideal of R such that V/IV is finite of order pm . Then

Proof.- By the elementary divisor theorem, we can choose a basis {ek : 1  k  r}
of V as a Zl -module such that IV = .phieiZ . Thus hi + ... + h = m . Buth. P h r i-1 1 P r

p lei E IV , and so p lei = 
1 

xi,kek , with E I . It follows that

det(xik - 0 . Since V is faithful, we conclude that

det(xik - P 6ik) = 0 , whence 



To apply this lemma, we take R = %,= lim %/lqfi% , , and I = Il,= U%, .
Before defining V , we recall that, if D is a p-primary abelian group, then

T (D) " /Z£ ,D) , fl " HOIII(D,Q /2Z ) .
P P P P P

Moreover, there is a natural identification T (D) = HomZp (D,Zl ) . If D is a

free Z£ -module of finite rank, it follows that D = Since B/0’

has good reduction, the G(F/F)-module B[%f] extends to a finite flat commutative

group scheme B[#lf]/fr . Write Bfl for the F-points of the gene-
ral fibre of the connected subgroup scheme B[fll]°/O’ ( [20] , p, 160) . Put BQ = U B% ,

r>I

and take v = = Hom(BO,q /z1 ) .
cx> cx> p p

Thus V is a free Z -module of finite rank, and we endow V with the
P

TM-structure given by (tf)(b) = f(tb) for t E TM , f E V , b E B° .
THEOREM 30.- v is a faithful %j-module such that V/IIMV has the same order as

M . Hence the order of M is at least p03C1+1.

The final assertion of Theorem 30 follows from the first assertion and Lemma

29, since it is clear that is the smallest power of p contained in 

Also V/IIMV is dual to

Bo~[IIM] = B[II]o = M

Thus it only remains to show that V is a faithful TM-module. As V is a free

Zl -module, it suffices to prove that
P

T = HomZ (V,Zl )
P P P

is a faithful TM-module. Let A£ be the analogous local Galois module for the

abelian variety A/Q . Since T (A°)  T (B°) and the canonical map
poop ~~’

°m- °m ~Z W iS injective, the proof of Theorem 3° will be complete once the

following result has been established.

PROPOSITION 31.- T (A°) © Q is a free TM © Q module of rank I .

The four ingredients used in the proof of this result are: (I) Q

is a product of fields; (it) T ©Q is free of rank 2 over TM ~Z Q ; ;
(iii) the p-divisible group over Q attached to A[117] is an extension of an

étale group by one of multiplicative type; (iv) a lemma of Serre asserting that

neither non-trivial étale p-divisible groups nor their duals can occur as sub-

quotients of the p-divisible group attached to an abelian variety defined over a

number field K , which has good reduction at the primes of K above p .

To complete this section, we note that Assertion @o for the character

03C6 = x-I is equivalent to the existence of an extension £/F 
p 

satisfying the

conditions given in Theorem 28 with the degree of £/F at least p03C1+1. ThisP
follows easily o.n recalling that the map - A-~ is injective, and that the

global Artin map gives a G(F /03A6)-isomorphism from A to G(L /F ) , where LP P P P P



is the maximal unramified abelian p-extension of F . -

7. Remarks on the proof of Assertion 03A6n for n > 0

This is essentially the content of [13], and the proof is long and diffucult.
The definition of the correct analogue of the abelian variety A = Ji(p)/Jo(p)
for n > 0 is by induction on n . Put *~o = A , and suppose that the abelian
variety &#x26;n-i has already been defined as a quotient ~n_~ : Ji(pn) --~ ~n-~ of

J1(pn) . Let r(pn+1,pn) be the group consisting of all matrices ( ,) in

with c 5 0 mod. pn+1 and a - d - 1 mod. pn. The modular curve

X(pn+1,pn) associated to r(pn+1,pn) can also be defined over .~ , and we have
the canonical maps

~ ~ .

The inverse image and norm map on divisor classes of degree 0 give rise to

respective homomorphisms.

Xl t J(pn+1,pn) ~ ~ nn*: -, Ji(pn) ,

where J(pn+1,pn) denotes the Jacobian of X(pn+1,pn) . Let ~n be the
subvariety of given by the kernel of ~t~n* . Mazur and Wiles

then define the abelian variety ~n over Q by the exactness of

0 --> a.n (~n) --> En) Qn --, 0 .

THEOREM 32 (Langlands [ 23 ] ) . The abelian variety Qn has good reduction everywhere

over the maximal real subfield of Fn ..

Let ~o (pn+~ ) be the image in of the group of divisors of degree

0 on with support in the set of zero cusps, and let 

be the image of this group on the abelian variety ~n . Write Cn(p) for the

p-primary subgroup of Cn . Via the diamond operators, we regard Cn(p) as a

module over the S -group ring of (Z/p~+~S) ~ /(±1) . By a remarkable combination
of the geometry of the reduction of ~n at the unique prime above p in Fn ,
and the ideas of Kubert and Lang, Mazur and Wiles [13] establish the following
result. 

_

A

THEOREM 33.- Let ~ be an even character in 0 distinct from ~ and 9~2 .

Then, in the notation of § 3, we have an isomorphism of Rn-modules

Cn(P) (~) ~ _ -

Roughly speaking, once these two deep theorems have been established,
the proof of for n > 0 follows fairly closely the proof of ~o . Certain

additional complications occur at the end of the proof because Cn is no longer
a cyclic group. Also it is of vital importance to prove the analogue of (ii) of

Theorem 25 when n -> 0 .



8. Final remark

Let F be a totally real finite extension of Q , and ~(F,s) the complex

zeta function of F . Siegel and Shintani have given proofs that the numbers

~(F,-k) ( k > 0 and odd) are rational, and Serre, Deligne-Ribet, and Pierrette

Casson-Noguès have established the existence of analogues of the interpolation

power series L X (T) for these numbers, where x is now an odd character of

G(F( p)/F) . It is natural to conjecture that Theorem 2 holds in this more general

situation, where A is now the p-primary subgroup of the ideal class group of

It seems that the methods of Mazur and Wiles generalize

to prove this conjecture when F is a totally real abelian extension 

However, the problem for arbitrary totally real F seems as inaccessible as ever.

Nothing is known beyond some weak information given by the analytic class number

formula (see [1]). 
’
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