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Seminaire BOURBAKI

29e annee, 1976/77, n° 506 Juin 1977

ON THE ENRIQUES CLASSIFICATION OF ALGEBRAIC SURFACES

by A. VAN DE VEN

1. Introduction

Among (for the moment : complex) algebraic curves R the rational ones are charac-

terised by the fact that their genus g(R) vanishes. The genus can be interpreted

as the dimension of the space of holomorphic 1-forms on R . Is it possible to

characterise rational surfaces - i.e. surfaces birationally equivalent to the pro-

jective plane P2 - in a similar way ? This question was raised at the end of the
last century, after Noether, Picard, Castelnuovo, Enriques and others had already

developed a considerable theory of algebraic surfaces.

If we denote the dimension of the space of holomorphic i-f orms on the (smooth,

connected) surface X by g.(X) , i = 1 , 2 , then a necessary condition for a sur-

face to be rational is that g1(X) = g2(X) = 0 . It was discovered by Enriques that

this condition is not sufficient. But Castelnuovo showed that it is still possible

to give a simple criterion for the rationality of a surface X . In fact, let ~X
be the canonical line bundle on X , i.e. the determinant bundle of the covariant

tangent bundle of X . Then the n-th plurigenus P (X) of X is defined by :
n

In particular we have P1(X) = g2(X) . The P n (X) are birational invariants of X .

It is immediate that for a rational surface X all P (X) vanish. Now Castelnuovo

proved : ([4])

THEOREM 1.1 (Castelnuovo criterion).- An algebraic surface X is rational if and

only if g~ (X) - P2 (X) - 0 .
A little bit later Castelnuovo and Enriques found other theorems of this type.

For example, if we define a ruled surface as a surface birationnally equivalent to

the product of P 1 and a curve, then Castelnuovo and Enriques stated

THEOREM 1.2.- An algebraic surface X is ruled if and only if P~2 (X) - 0 .

This result implies that the algebraic surfaces X with P (X) = 0 for all n
n

are exactly the ruled surfaces.

Now the idea of the Enriques classification is, that -more generally - you can



say quite a lot about a surface X , once you know the behaviour of P (X) for
n

n - - . In fact, the Enriques classification divides algebraic surfaces X into

four classes, according to the behaviour of P (X) . Thus the first class is the
class of surfaces X for which all P (x) vanish, the second class contains all

n

surfaces with P n (X) either 0 or 1 , but at least one Pn(X) ~ 0 , and the sur-

faces in the third and fourth class are characterised by P (X) - 0(n) and

P (X) - 0(n ) respectively. (It has of course to be proved that every surface fits

into one of these classes. Observe in any case that if P (x) ~ 0, P (X) ~ 0 ,
then P n+m (X) Z P n (X) + P m (X) - 1.) We have already seen that the surfaces in

the first class can be described rather explicitly. It will be explained later that

the same holds for the surfaces in the second and third class ; about the surfaces

in the last class much less is known.

To the best of my knowledge, the Enriques classification appears for the first

time in an article of Enriques : Sulla classificazione delle superficie alge-

briche ... I. Rend. Lincei XXIII, 206-214 (1914). You also find it in the survey

by Castelnuovo and Enriques : Die algebraischen Flachen vom Gesichtspunkte der

birationalen Transformationen aus. Enzykl. Math. Wiss. II, 1, Teubner, Leipzig

(1915), and in Enriques book [6].

In the years around 1960 several algebraic geometers treated the Enriques clas-

sification in a more modern way, in particular Zariski, Safarevic and their pupils
(~13~). There were important contributions to the case of characteristic p ; for

example, Zariski ([19~) proved the Castelnuovo criterion for that case, and

M. Artin studied the so called Enriques surfaces for all characteristics = 2 .
About the same time, Kodaira ([7], [8~) - using topologicals and analytical tools
like sheaf theory, vanishing theorems, deformation theory - not only made things

precise, but enriched our knowledge about the surfaces in the second and third

class enormously. A major contribution was of course also his treatment of the non-

algebraic surfaces.

Finally, Mumford - partly in collaboration with Bombieri - gave a beautiful

unified treatment for all characteristics ([10], [ 3~ ) .

It should be emphasised that the extension to characteristic p (including
p = 2 and 3 !) is far from easy, and that this extension could only be completed

with the help of an intensive use of the language of schemes and the etale homology.



2. The complex case. Preliminaries

In this and the next section we shall study smooth, complete complex algebraic sur-

faces. Such a surface is minimal, if it contains no exceptional curves, i.e. irre-

ducible curves which can be blown down to smooth points. Exceptional curves E are

characterised by the fact that they are non-singular rational with E2 = -1 . Every
surface can be obtained from a minimal one by successive blowing up a finite number

of times. This minimal model is uniquely determined if the surface is not ruled. In

the sequel we shall practically always consider minimal surfaces only.

In this talk the word "fibre space" will be used only for smooth surfaces fi-

bred over smooth curves. Thus a fibre space is a triple (X , f , Y) , where X is a

smooth surface, Y a smooth curve and f : X - Y a surjective morphism. The fibre

space is called (relatively) minimal if no fibre contains an exceptional curve. It

is called an elliptic fibre space if almost all fibres are elliptic curves. Someti-

mes a surface admitting at least one such elliptic fibration is called an elliptic

surface.

I shall use the following notations :

0’X : structure sheaf of X

Qy : sheaf of regular i-f orms on X (with (Y = 0’ X )
1i, JC ,..: vector bundles on X

: : the dual bundle of 1~

;~~ : canonical line bundle on X (with sheaf of sections f X
: ; 

x(X,~) : : Euler characteristic h~ ( 1~~ + 

q(X) : h~ (X , 6‘~~ , the irregularity of X

p (x) : h2 (.X , the geometric genus of X

P n (X) : h°(X , ~~ n~ , the n-th plurigenus of X (n ~ 1)

e(X) : topological Euler characteristic of X

D , E ,... : divisors on X or divisor classes

DE : intersection number of D and E

~X(D~ : line bundle corresponding to D



nK~ : n-canonical divisors or -divisor classes (hence ~~ n - 
Furthermore, we shall make use of the following tools (see for example [ 9~ ~ ~

(i) (special case of Serre duality) hl(’~’? _ h2-i(’’~ ~ ® ~~~ . In particular
we have 

(ii) (in the complex case) in particular q(X) = 

Furthermore, ~ b r (X) the r-th Betti number of X .

q=r

(iii) (Riemann-Roch formula for line bundles) :

(iv) (Todd formula) :

(v) (special case of Stein factorisation) If f : X - Y is a fibre space, then

there exists a smooth curve Y’ , and regular maps g : X - Y’ ,

h : Y’ - Y , with g connected and h finite, such that f = h o g .

We shall need furthermore

THEOREM 2.1 (Algebraic index theorem).- Let A be the a-dimensional linear sub-

space of H2(X, R) , generated by the algebraic curves. Then the restriction of the

intersection form to A is of signature ( 1 a- 1 ) .

Using some linear algebra, one can derive from this (~ 2~ , p. 345)

PROPOSITION 2.2.- Let D be a divisor on X with DE z 0 f or all non-negative

divisors E . Then D2 z 0 .

Of importance will also be the A lbanese torus A lb(X) ; however we shall only

use that there exists an abelian variety A lb(X) of dimension q(X) and a regular

map f : X - A lb(X) , such that f(X) is not contained in any (translated) proper
subtorus of Alb(X) .

Then I recall that for every irreducible curve C on X the adjunction formula

KC + C2 = 2 rr(C) - 2
holds, where the virtual genus of C - is at least equal to the actual

genus of C . The virtual genus Tr(c) = 0 if and only if C is non-singular ratio-

nal, and rr;C) - 1 if and only if C is non-singular elliptic, or rational with

one ordinary double point, or rational with one cusp.



Let for a moment X be any connected compact complex manifold, and let d~C~
again be the canonical line bundle of X . If we take for ~ ~ o the trivial line

bundle on X then ~_ r(X, is in a natural way a graded ring, the cano-
ns 0

nical ring of X . The Kodaira dimension Kod(X) of X is defined as follows :

Slightly more down to earth Kod(X) can be defined by means of the rational

maps, associated to , n ~ 1 (see for example [15], Ch. II, § 6). We always

have that - ~. ~ dim X . Kod(X) is a birational invariant of X .

Iitaka and others (see [15]) have developed a classification theory for compact,
complex manifolds, based on the Kodaira dimension. From this theory emerges the cen-

tral position of the following conjecture p. 132).

CONJECTURE C (Iitaka).- Let X and Y be smooth connected compact algebraic

varieties, of dimension n and m respectively, and let f : X - Y be a regular,

connected surjective map. Then
Kod(Y) + Kod(F) ,

where F is a general fibre of f .

Up to now only a few special cases of C 
n,m 

have been proved, in particular

the case 
1 (Viehweg [18]). The case C ~, ) 1 follows from the Enriques classi-

fication. Conversely, this classification becomes much easier once an independent

proof of C 2,1 is available. Three such proofs have been given : one by Ueno (~ 1 ~~ ) ,
and two by Viehweg ([18]), one of the last two being of course a specialisation of

Viehweg’s argument for the case C . Since I shall base my approach to the

Enriques classification on C2,1 ’ I shall give a short sketch of the simplest of
the three forementioned proofs, i . e . Viehweg’s second proof.

Let f : X - Y be a fibre space, such that the general fibre is connected and

has genus g ~ 1 . In this situation we can consider :

(i) the relative canonical bundle KX/Y = KX ~ f*(H-1 Y) ; t .

(ii) the Weierstrass divisor W / = W , inducing on the general fibre the
Weierstrass divisor, and containing no component of any fibre of f (For g = 1

the divisor W = 0 ).



Let S be the union of the singular fibres of f , i.e. those fibres in which there

lies at least one point where f is not of maximal rank. Then we have

PROPOSITION 2.3.- There exists a line bundle 0 on Y , a non-negative divisor E

on X with S , and natural numbers N , M such that

Moreover, 0 and if deg( ~ ~ - 0 , then e3 is trivial modulo torsion.

C~ ~- ~ ’ follows immediately from this result.

As to the proof of the relation above, after suitable blowing up, this is first

brought back to the case where all fibres are reduced by applying (a simple case of)
the stable reduction theorem. This case on its turn is brought back to the case where

all fibres are reduced, where f is minimal (no fibre of f contains an exceptio-

nal curve) and where IV = 03A3kiKi , the K. ’ s being sections of f . In this last

case a more precise formula - holding more generally for every case where all fibres

are reduced - is used, namely :

( is known to be locally free here), where E is again a non-negative

divisor with support in the singular fibres. This formula is proved by establishing

explicitly an isomorphism between the bundle on the left hand side and the one on

the right hand side outside of the finitely many points where f is not of maximal

rank. It turns out that the statement about the degree of QD in Proposition 2.3 will

be proved as soon as it is proved for the special case under consideration, where

 = A f*(X/Y) . For this purpose an explicit formula for is given,

from which it follows that 0 and deg(~) = 0 if and only if all fibres

of f are smooth. For g ~ 2 the proof is completed by applying a theorem of

Parshin, concerning exactly in this smooth situation (~11~, Prop. 5).
For g = 1 a special argument is needed.

3. The complex case

It will be clear by now that the division of algebraic surfaces X into four clas-

ses, mentioned in section ~, is the division according to the value of Kod(X) ,
which can be - - , 0 , 1 or 2 (we don’t need the interpretation given for the

last two classes in section 1). Taking into account that curves Y have



Kod(Y) = - - , 0 or 1 if they have genus 0 , 1 or ~ 2 respectively, we obtain

from C2,1 and the Castelnuovo criterion already some important information.

Let X be a minimal algebraic surface with 0 . Then we have the follo-

wing table :

Next we want to study cases b’) and c) of the case Kod(X) = 0 . But first a

more general remark.

PROPOSITION 3.1.- If on the minimal surface X there is a non-negative divisor D

with KD  0 , then Kod(x) = - - .

Proof. We may assume that D is an irreducible curve. Suppose that Kod(X) ~ 0 .

Then there exists for some n a positive n-canonical divisor Since

(2-c.C.)D 0 , we have that D is contained in Z- c.C. , hence for some a > 0

we have that (03A3ciCi - aD)D ~ 0 , ,i.e. D  0 . From the adjunction formula we

find KD = D = -1 , = 0 , i.e. D is an exceptional curve, contradicting

the fact that X is minimal.

From Proposition 3.1 and Proposition 2.2 we derive

PROPOSITION 3.2.- If 0 , then K2X ~ 0 .
By Riemann-Roch the case K- > 0 leads to Kod(X) = 2 , hence for



0 or 1 we find K~ _ ~ .
We return to the case b’) of KOd(X) = 0 . Applying Riemann-Roch to ~Xn ,

n z 2 , we find that there is a positive canonical divisor for all n Z 2 ,

hence exactly one such a divisor. Observing that 3D(2~ - 2D(~~ we see that there

is also a positive canonical divisor, hence p 
= 1 . But applying Riemann-Roch as

before to we would find 2 for n z 2 , contradicting Kod(X) = 0 .

Therefore case b’) is excluded.

Now the case c) of Kod(X) - 0 . Since ~ = 0 , and 2 , we find from

the Todd formula

and e(X) = 2 - 4q + b2(X) that q(X) = 2 , and e(X) = 0 . From q(X) = 2 it

follows that there is a surjective map f : X -* Alb;(x) , and e(X) = 0 implies that

f cannot blow down any curves. Hence : f : X-Alb(X) is a (ramified) covering.
If f is unramified, then X is an abelian surface (and f an isomorphism). If

n

f is ramified, then let ~ r.R. be the ramification divisor on X ; it is a 
’

i=1 1 
~ ~

n

canonical divisor, hence K(03A3 r.R.) = 0 , and since 0

by Proposition 3.1, we have that KR. = 0 , i = 1,...,n . If were strictly posi-

tive, then we would find by Riemann-Roch that 2 for large k ,

hence P k (X) z 2 for large k , contradicting Kod(X) = 0 . Therefore 0 and

by the adjunction formula we find that 1 . Since every map from a rational

curve into a torus is constant, it follows that there are elliptic curves on A lb(X),
hence Alb(X) admits a homomorphism onto an elliptic curve, hence also X admits

a map onto an elliptic curve. Then Stein factorisation and C- 1 yield that X is

an elliptic fibre space over an elliptic curve, with a positive canonical divisor.

So for Kod(X) = 0 we are left with two cases, both of them elliptic fibre

spaces over elliptic curves. To clarify these cases we need some general results

on elliptic fibre spaces. A profound study of these structures is one of Kodaira’s

most important contributions to the theory of surfaces (~ 7~ , II, III). A central

role is played by the following formula for the canonical bundle of a (minimal)
elliptic fibre space.

THEOREM 3.4.- Let f : X- Y be a (minimal) elliptic fibre space. Then



where f is a line bundle on Y of degree ~(X , ~~) - 2x(Y , 0-) , and where
... , Fk are the multiple fibres of f , of multiplicity ... , ak respectively.

Here a multiple fibre means the following. Every component of a fibre has a cer-

tain multiplicity. If the GCD of all components of a fibre is g2 2 , then the fibre

is called multiple of multiplicity g .

Theorem 3.4 is already sufficient to show that the case c) of Kod(X) = 0 with

ramification over Alb(X) is impossible. In fact, I have shown before that such a

surface is an elliptic fibre space over an elliptic curve, with a positive canonical

divisor. Since x(X, 0’K) - 0 , Theorem 3.4 implies that there must be multiple fi-
bres, but this gives immediately 2 for n large enough, a contradiction.

I shall not treat in detail the last remaining case of Kod(X) = 0 , that is

case d). Here you start by proving that there exists another elliptic fibration

g : X- P~ . Using this fact you then prove the following
THEOREM 3.5.- Every surface X in class d) of Kod(X) = 0 is of the form

E X E1 / G , t where E and E~ are elliptic curves, and where G is a finite

subgroup of Eo , acting on Eo x E1 1 by

a : G - being an injective homomorphism, such that the two elliptic fibra-

tions are the obvious ones : E E / G and E 

These surfaces are the hyperelliptic surfaces. As early as 1909 Bagnera and

de Franchis made a complete list of these surfaces (compare ~3]~ II, p. 37).

We still have to consider the cases Kod(x) = 1 and Kod(X) = 2 .

In the case Kod(X) = 1 , we know that there exists an index n ~ 1 , such

that P (x) ~ 2 . This means that there is a 1-dimensional linear system
no

IF + D- ! , A E P , of n -canonical divisors, where F is the fixed component.

Let us assume for simplicity that for general X the divisor D- is irreducible.

We have noK2X = K(F+ D ) = 0 and since 0 by Proposition 3.1 1 we

find = KXF = 0 . On the other hand, we also have

(F + D03BB)2 = F(F + I),) + FD, + D203BB = noKXF+FD03BB+D203BB= FD, + D203BB = 0 . Now FD 2: 0 ,

D203BB ~ 0 , hence D203BB = 0 , and the linear system )D ) r has no base points. By Bertini’s



theorem it follows that in general D~ is non-singular. Then the adjunction formula

yields that almost all Dx are elliptic.

For the case that the general D~ is reducible the argument is a little bit

more complicated, but the result is the same.

THEOREM 3.6.- The (minimal) surfaces X with Kod(X) - 1 are exactly the (minimal)

elliptic surfaces for which the canonical bundle is of positive degree (for every

projective embedding of X ).

Finally, the surfaces X with Kod(X) = 2 are by definition the surfaces of

general type.

Now a word about what is known concerning the surfaces in the different classes.

Kod(R) - - ~- . Every minimal rational surface is either the projective plane or

Proj(OP ~ Op (k)) , k = 0 , 1 , 2 , .... The classification of non-rational ruled
1 1

surfaces is equivalent to the classification of rank 2-vector bundles on curves

of genus ~ 1 (compare [13], ch. V, § 7) .

Kod(X) * 0 . The classification of abelian surfaces is classical, the classifica-

tion of hyperelliptic surfaces has already been described, for polarised K3-
surfaces there is a well known conjecture about the period map, of which at least

one half (i. e. the injectivity) has been proved ([ 14~ ) . As to Enriques surfaces,
M. Artin proved in his thesis the following result ([1], Theorem 3.1.1).

THEOREM 3.7.- Let X be an Enriques surface, defined over an algebraically closed

field k of characteristic ~ 2 , and let ~ - (~o,...,~3) be homogeneous coordi-

nates in P3 . Then there are linear forms L1(S) , L2(S) , L3(~) and a quadratic

form tp(03BE) , such that X is the minimal smooth model of the surface

c4L2L3So + c6L21L22L23 = 0 , where

M = aso + bL, , 1 a , b , c 1 ,..., c,- b 6k . °

Conversely, such a surface is in general an Enriques surface. The Enriques

surfaces, thus obtained, have in general the edges of a tetrahedron as double locus.

Recently, Horikawa has treated the classification of Enriques surfaces from

a different point of view. See [20J. *

Every Enriques surface is elliptic (~ 1~ , ~ 13~ ) .

Kod(X) = 1 . For the classification of elliptic surfaces see Kodaira ([7], in par-



ticular III) and Deligne-Rapoport (~ 5~ ~ .

Kod(X) = 2 . For a survey of what is known about surfaces of general type I refer

to my talk at the preceding Bourbaki seminar ([17]), and to [21].

4. The case of characteristic p

In this section 1 summarise the main results of the papers (10] and ~3~ by Bombieri
and Mumford.

Quite independent of the characteristic there is always the division into four

classes, according to whether the Kodaira dimension is - - , 0 , 1 or 2 . For

Kod(x) = - - the result is the same as in the classical case, and the same holds

by definition in the last case (but you can say less about the surfaces of general

type). As to the case of Kodaira dimension 1, you get, but only in characteristic

2 and 3 , apart from elliptic surfaces also quasi-elliptic surfaces, i.e. fibre

spaces with almost all fibres rational with a cusp. The main differences between

the classical case and the case of positive characteristic occur for Kodaira dimen-

sion 0 , but again for characteristic 2 and 3 only. I now describe this case

a little bit more in detail.

Let X be a smooth surface, defined over a closed field of any characteristic.

Let again p g (X) = h2(X 6’X~ - but let q(X) = dim Pic(X) (for the classi-

cal case this makes of course no difference). From the Todd formula

we find 

where b. is the i-th Betti number of X .
1

Observe the term A = 2hO,1(X) - b~ , which vanishes always in the classical
case, but which need not to vanish in general. Using the theory of the Picard

scheme, Bombieri and Mumford show : b. == ~~ 2pg , ® e’ven. Once this

is known, it is easy to list all possibilities :



The surfaces with b2 = 22 are defined to be the K~-surfaces (this is in
accordance with the usual definition in the complex case). It is shown that no sur-

faces (always minimal, of Kodaira dimension 0 ) with b2 = 14 exist, and also that

the surfaces with b2 = 6 are exactly the abelian varieties. The surfaces with

b2 = 10 are all defined as Enriques surfaces. It turns out that there are three

types :

(i) those with h0’1 - 0 . These are called the classical Enriques surfaces ;

( ii ) (only present if char(k) = 2 ) those with 
1 
= 1 , for which the Frobe-

nius operation F : H1 (X , OX) ~ H1 (X , 0’X) is bijective. These are the

singular Enriques surfaces ;

(iii) (also only present if char(k) = 2 ) those with h ’ =1 1 and for which

F : H1 (X , ø’x) - H1 (X , is zero. These are the supersingular Enriques

surfaces.

As to the existence of the three classes for p = 2 (for p ~ 3 see

Theorem 3.7), Bombieri and Mumford give a nice example of a family containing at

the same time classical, singular and supersingular Enriques surfaces.

Finally, as to the surfaces with b2 = 2 , these are either hyperelliptic in

exactly the same sense as before, or quasi-hyperelliptic (which occurs only in

characteristics 2 and 3 ) . These last surfaces are the surfaces of the form

ExC/G , where E is an elliptic curve, C a rational curve with a cusp, and G

a finite subgroup scheme of E , acting by

g(e,c) = (e + g, a(g)c)
with a : G - Aut(C) an injective homomorphism. Such a surface has one elliptic

and one quasi-elliptic fibration. Again the authors give a list of all possible

hyperelliptic and quasi-hyperelliptic surfaces.



Once the Enriques classification is available, it becomes easy to prove results

like Theorem 1.2 for all characteristics. Another example of this type is provided

by

Example 4.1. A (minimal) surface X is of Kodaira dimension 0 if and only if

K 
X ~ 

12 
is trivial.

As to the proof, the only thing you have to show is that for a (quasi) hyperel-
liptic surface 12K = 0 . This can be done by applying a generalisation of Theo-

rem 3.4 to the second fibring (over P~ ) of the surface. This extension of Theo-

rem 3.4 (see [3~, II, Thm 2) is also in the non-classical case of central importance ;
the main new feature is the appearance (for positive characteristic) of wild fibres

among the multiple fibres ; these wild fibres F are characterised by the property

that dim r(F, 0’F) z 2 .
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