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The Rational Homotopy theory of smooth, complex projective

Varieties

(following Deligne, Griffiths, Morgan, and Sullivan [2])

by John W. Morgan 

Seminaire BOURBAKI

28e annee, 1975/76, n° 475 Novembre 1975

The results on the rational homotopy types of smooth, projective

varieties (or more generally K~hler manifolds) were motivated by Sullivan’s

theory relating the differential forms on a manifold to its homotopy type.

K~hler manifolds present themselves as an example where interesting and highly

nontrivial properties hold for the differential forms. Here we examine the

homotopy theoretic consequences of these properties. We begin by recounting

Sullivan’s theory-first the general theory of homotopy types of differential

algebras, then a little rational homotopy theory for spaces, and finally the

connection between the two. After this we develop some of the properties of

forms on a K~hler manifold and deduce the results.

We begin our discussion of Sullivan’s theory [6] with the following

question: How much of the algebraic topology (or homotopy theory) of a smooth

manifold M is determined by its differential algebra of forms, ~,~(M) ?

(The differential algebra of forms is taken to mean the abstract graded commu-

tative algebra with its differential.) Of course, the first result that comes to

mind is de Rham’s theorem that the singular cohomology ring, H*(M; R) , is

so determined (being the cohomology of the differential algebra). There is,

however, more information available. For example suppose we have cohomology

classes, a, b, and c such that a.b = 0 and b.c = 0 . Pick closed represen-

tatives Q[., 03B2, and y for them. Both a 039B 03B2 and 03B2 A y are exact. Choose



forms p and ~ so that dp = a 039B03B2 and d~ = 03B2 A Y , Then

p A y - ( -1 )deg(a) a A ~ is a closed form. Its cohomology class is well

defined modulo the ideal generated by a and c , Its class in H*(M; 7R) /I (a, c )

is called the Massey product of a, b, and c and is denoted  a, b, c > , 0

This higher order product is not determined by the cohomology ring. But clearly,

if f : M -~ N induces an isomorphism on cohomology with real coefficients

then  f* a, f* b, f* c > = f’#’ ( a, b, c >) ,

EXAMPLE . M = S2 X S2X Sand N = total space of the S1 bundle over

TZ (= S1 X S1) with Chern class cl with f 2 1 , The cohomology rings

of M and N are identical: 
~’

H1 = ~t ® R , , H2 = lR H3 = IR , and cup product from Hl ® H1 to

H2 is zero. In M we can find closed one forms a and $ representing a

basic for Hl(M) so that a and $ have disjoint support. As a result

a n ~ - 0 as a form and  ~~t,~ , [a a , ~ ~~ > = 0 =  [a], [ ~~ , [ ~~ > .

To calculate these products in N we begin with a model for T2 .

Let A(x, y) be the exterior algebra on 2 one dimensional generators.

This maps to inducing an isomorphism on cohomology. When we lift

to N3 it still gives an isomorphism on Hl but x n y goes to an exact

2 form in N3 . In fact there is a 1-form 1~ in N3 so that x /~ y

and ~ - 1 , From this one sees easily that x~ and ~y generate

fiber S
H2 (N ; ~t ) . > d > .

Thus using the algebra of differential forms we distinguish these two mani-

folds even though they have the same cohomology ring.

There is, in a similar vein, a whole realm of higher order products

which, with real coefficients, can be read off from the algebra of forms.

All this information can be amalgamated in a "model" for the differential



algebra. The crucial notion is that of a Hirsch extension of differential

algebras. A Hirsch extension of G is a differential algebra 6 = ~ ~ A(V) , ,
(V is a finite dimensional vector space; means the free graded commu-

tative algebra generated by V in degree i > 0.) with the property that

d : V ~ (03B1)i+1 p Notice that if G is free as an algebra then so is B .

Also d induces a map d:V ~ e This map determines the extension

up to isomorphism.

A minimal model for an algebra ~~ is

1) 1’11 can be written as an increasing union of Hirsch extensions

ground ml C ..... , U 1ni - 1Z1,

2) d(x) is decomposable for all x E m , and

3) cp~ is an isomorphism on cohomology.

(An m satisfying 1) and 3) is a "model" for the space Property 2) makes it

minimal.)

If Hl(~~) - 0, (All our algebras are assumed to have Ho - ground

field.) then one can easily build such an m by successive approximations.

In general the construction is more complicated, and one can not dispense with

one degree before going to the next.

Theorem.- For any connected differential algebra with finite dimensional

cohomology in each degree, G , there is a minimal model m --2014~> ~~ ,

Such an  is uniquely determined up to isomorphism.



If f : N induces an isomorphism on rational cohomology, then

the minimal models of and ~~(N) will be isomorphic. Thus not all

of the homotopy information of a space will be captured in the minimal model

of its forms. All torsion and divisibility questions escape)as well as things

like perfect fundamental groups,since they have no effect on the rational coho-

mology. When one formally inverts maps inducing isomorphisms on rational coho-

mology what remains is rational, nilpotent homotopy theory. A space is replaced

by its rational nilpotent completion, [~9’]. To describe the nature of this let

us look first at the case of groups. If ~t is a group, let r n (n) be the

nth term in the lower central series; i.e. = n , ~ 
= 

Define to be 1T/I’n(Tf) , This gives us a tower of nilpotent groups,

each being a central extension of the previous:

This tower is the nilpotent completion of TT . Such towers can be tensored

with ~ to form the rational nilpotent completion of n . Ve tensor the

abelianization of TT , N~(Tr) , with ] in the normal manner. ° Suppose in-

ductively that we have N (n) ~ N (rr) S’ ~ which induces an isomorphism

on H~( ; ~) . The central extension 0 ~ 1

is classified by a ~ H~(N (n); T /r ,.) . Take the class 
.

a ~ 1 ~ (r /r .-,) ~ Q) = H~(N (TT);r /r ., ) 0 Q to form a

central extension 0 ~ ~ Q -~ 0 Q -~ N (-rr) 0 (~ -~ 1 .

The former sequence maps to the latter,and a comparison theorem shows that

on all terms the map is an isomorphism of cohomology with Q coefficients.

In homotopy theory there is a formally analogous situation. The role

of an abelian group is played by an Eilenberg-Mac Lane space, K(TT, n) with



rr abelian. A central extension is replaced by a principal fibration,

n) -~ E -~ B . Such a fibration is classified by its k-invariant,

k E Tt) . A tower of principal fibrations is a rational tower if

each n) which occurs has for group TT a finite dimensional rational

vector space. Given any tower of fibrations beginning from a point we can

replace it by a rational tower. Each K(n, n) is replaced by ~, n) .

If inductively B has been replaced by B ~ ~ so that B ~ B (g) ~ inducing

an isomorphism on rational cohomology then

E ~ B with k invariant k E n)

is replaced by (~,n) ~ E ® t~ ~ B ® ~ with k invariant

k ® 1 E (B ® ~; ~1, ® ~) - (B; Tr) 2) ~ . Once again the first fibration

maps to the second inducing an isomorphism of rational cohomology.

The rational nilpotent completion of a space is equivalent to all

the maps from the space to towers of rational principal fibrations. This in-

cludes, for instance, the rational nilpotent completion of the fundamental

group (by mapping to towers of (~, l)’s). If the space is simply connected,

then in the directed category of maps from it to rational towers there is a

final object - namely the Postnikov tower of the space tensored with ~ , . Thus

this "rational Postnikov tower" is equivalent to the rational nilpotent com-

pletion of a simply connected space.

To connect algebras with homotopy theory we associate to every

simplicial complex K, a rational differential algebra E*(K) . This differential

algebra consists of collections of forms m on 0 for each simplex (7

in K such that

1) in the barycentric coordinates for 

with Q coefficients, and



T - ;~ 
T 

whenever T is a face .

These forms are not continuous but can be integrated over piecewise linear

chains in K . The result of integration over a simplicial chain in K is

always a rational number. Thus we have a chain map E*(K) > C*(K; Q) .

It induces an isomorphism on cohomology. Now we can connect rational differential

algebras and towers of rational principal fibrations.

Lemma.- Suppose B is a simplicial complex and A* ~ E*(B) inducing an

isomorphism on cohomology. There is a natural one to one correspondence bet-

ween Hirsch extensions of A* and rational principal fibrations with base B . 0

The extension , d:V -~ H ~+2 (A)*} corresponds to the fibration

K(V*, ~,+1) --~ N --~ B whose k invariant is d E (B) ) - H ~ 4-9 (B; V3‘) .

Under thi s correspondence A~ ~ map s into E*(N) inducing an iso-

morphism on cohomology.

Applying this lemma repeatedly shows that a rational tower of

principal fibrations is equivalent to a sequence of rational Hirsch extensions.

Theorem.- The minimal model of E*(K) is equivalent to the rational nilpotent

completion of K in the following sense,

1) If nl(K) = 0 , then the minimal model for has a canonical de-

composition m2 ~ m3 ~ ... ~ mi = m (mk is the subalgebra generated in

degrees ~ k). This sequence of Hirsch extensions corresponds to the rational

Postnikov tower of K ,

2) In general, the subalgebra of the minimal model for E*(K) generated in

degree 1 has a canonical decomposition as a sequence of Hirsch extensions. This

decomposition corresponds to the rational nilpotent completion of nl(K) .
3) E ach possible decomposition of the minimal model of E*(K) into a sequence



of Hirsch extensions gives rise to a map from K into a tower of principal

fibrations. These form a cofinal subset of all maps from K into such towers.

We can compare the C~ differential forms on a manifold M with

the rational forms on some Cl-triangulation K of M via the piecewise

C~-forms on this triangulation. This gives the following result.

Theorem,- The minimal model of e*(M) is isomorphic to the minimal model

of E*(K) tensored with ~ ,

Corollary.- The minimal model for the C~-forms on M is the real form of

a rational differential algebra which is equivalent to the rational homotopy

type of M . 0

This completes our description of Sullivan’s theory. We now turn

our attention to the special case of interest - projective varieties or more

generally Kahler manifolds.

On any complex manifold M there is the operator J : TM -~ TM ,

J 2 = -1 which induces the almost complex structure. We define d c = 
Then dc2 - 0 , and dd = -d d , The operator J is actually part of an

Sl action on TM. This gives a decomposition of the complex valued differential

forms e*(M; (E) = ~ ~p’q(M) , It is the usual decomposition according to

type, e.g. are sums of forms which in any local complex coordinate

system are expressable as

This also decomposes d into a + a with a of type (1, 0) and § of



type (0, 1 ), with a2 - 0 = a2 , and aa - -aa .

The extra information we use about the projective variety is that

the underlying complex manifold carries a Kähler metric induced from the

natural one on . In this metric 2~- , [4], [7], j[8] .
c

Thus in this metric the complex Harmonic forms for d, d, a, and a are all

the same. This leads to results about the differential algebra involving the

complex structure but not the particular Kähler metric.

Lemmax 1) For a Kähler manifold every complex cohomology class has a represen-

tative which is closed under a and a , (The harmonic one for some Kähler

metric.)

2) If a class a E (B is exact, then a = d~ for some p E ® .

r ~ p r ~ p

These two conditions are equivalent to either of the following.

A) Let Fp(~~(M; (E)) = 0 ~r’S . This filtration leads to the Frohlich
~ 

r ~ p

spectral sequence ~3~ abuttinto H~’(M; . The spectral sequence collapses

at El , i.e. E . Furthermore the induced filtration on cohomology to-

gether with its complex conjugate induces a Hodge structure of weight n on

H , i. e. H (M, (E) = 0 U 
p+q=n

B) If a class a E ~~’(M) is closed under both d and d and is exact
2014201420142014 - c 20142014201420142014201420142014

under either then a = dd 6 for some 6 . .

(Of course in B we could replace d and dc by a and a .)

The results are proved by decomposing into types, using the equality of the

harmonic functions and the Hodge theorem that each cohomology class has a

unique harmonic representative ([4]). Condition B is called the ddc-lemma.
All our homotopy theoretic results emanate from these properties.



Before studying the full minimal model let us return to the case

of Massey products. Suppose we have classes a and b of types (1,.0)

and (0, 1) with a.b = 0 , Pick closed representatives a of type (1, 0)

and p of type (0, 1). Then  a, a, b> is represented by a A ~ where

c~ - a A fl ~ By the above conditions we can pick such an ~ of type (1,0) and

such an i~’ of type (0,1). . The form ~ - ~~ is closed. By adding an appro-

priate closed (1,0) form to T) and a closed (0,1) form to Q’ we can assume

that ~ - 1~’ is exact. Then a is cohomologous to d A ~’ . . But a A ~

is of type (2, 0) whereas a, A i~’ is of type (1,1) . This implies that both

must be exact.

This line of argument can be embellished to a systematic study of

the minimal model. There is however a more direct argument. Consider the dia-

gram of differential algebras

Applying the dd lemma repeatedly one shows in a straightforward fashion that~ 
Ker d Ker d

both maps induce isomorphisms on cohomology and that d : 1m d c
c c

is the zero differential. This proves the following theorem.

Theorem.- The minimal model of the differential forms on a compact Kähler

manifold is isomorphic to the minimal model of its cohomology ring with 0

differential.

Corollary~ On a compact K~.hler manifold all Massey products vanish.

Proof. Massey products clearly vanish in a differential algebra with d=0 ,

and they are invariant under maps of differential algebras inducing isomorphisms

on cohomology.



Now applying Sullivan’s theory of differential forms and homotopy

theory we deduce consequences.Let M be a compact Kähler manifold.

Corollary- If M is simply connected, then its rational Postnikov tower

can be read off from its rational cohomology ring. In particular one can de-

duce the rational homotopy groups and the rational k-invariants of the space

from the cohomology ring,

Corollary.- In general the rational nilpotent completion of is

determined by H1(M; 03C6) and the cup product map H A H1 ~ H .

Corollary.- The tower of rational nilpotent Lie algebras associated with

TIl(M) is the same as the tower of nilpotent comple tions of a graded Lie

algebra. In the graded Lie algebra the generators have weight -1 and the

relations weight -2 . Thus the relations are homogeneous quadratic relations.

(In case of a Riemann surface this Lie algebra can be taken to be

Perhaps a word is in order on why all the results are stated over

Q when we were working with the real C -forms. The results on the C -forms

yield immediately from Sullivan’s theory the "real versions" of all the above

corollaries. But it is an elementary fact from linear algebraic groups that

such results automatically descend to the rationals. This is similar to the

result that a finite dimensional filtered algebra over Q which can be split

into a graded algebra over R or 03A6 can be split into a graded algebra over

~ .

Lastly, these results have their generalization to smooth open va-

rieties just as Hodge structures can be generalized to give mixed Hodge



structures on the cohomology, ~1*]. However, the generalizations are not as

strong as the results here. As a sample we offer the following.

Theorem 1,t is an open smooth variety, then the tower of rational

nilpotent quotients associated to is the same as the Lie

algebras of a graded Lie algebra. The generators have weights -1 and -2 and

the relations have weights -2, -3 and -4 .
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