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THE HEAT EQUATION IN RIEMANNIAN GEOMETRY

[after PATODI, GILKEY, etc.]

by M. F. ATIYAH

Séminaire BOURBAKI 436-01

26e année, 1973/74, n° 436 Novembre 1973

1. Heat Equation approach to the index theorem.

As explained in the preceding lecture the idea of

using the heat equation to solve the index problem is

as follows. Let D : C~ t X , E ) -~ C (X,F) be an

elliptic operator on the compact manifold X. Using

metrics on E,F and X we may form its adjoint D

and the self-adjoint operators

00

For t > 0 the heat operators e e have C

kernels so that their traces are well-defined. Now

except for their zero eigenspaces the operators Ap and

Ap are conjugate (Ap = D-10394FD), while their zero-

eigenspaces coincide with the null spaces N(D*)
~

of D and D respectively. Hence, for all t > 0,

(1.1) Tr e 
-t0394E 

- Tr e 
-tAp " 

= dim N(D) - dim N(D*) = index D.

But we have asymptotic expansions as t -~ 0 for the terms

on the left, namely

where n = m = order If bk are the

coefficients of the corresponding expansion for ~F we

deduce from (1.1)



Now the point about the expansion (1.2) is that the

coefficients ak are locally computable. More precisely

we have

where ak(x) is a C measure on X given (in principle)

as an explicit function of the coefficients of DE. In

terms of a complete orthonormal set {~n} of eigenfunctions

of with eigenvalues the ak are defined by an

asymptotic expansion

(as t ~ 0). Thus we derive, in principle, a general

formula

where is the measure associated to bk.

This approach to the index problem was put forward

in [1] but it was not until the recent work of Patodi [6]

that any progress was made. The difficulty lies in the

fact that the ak are very complicated functions of the

coefficients of ~F. In particular they involve many

derivatives. Patodi’s contribution was to show that,

in the particular case D = d + d : : even forms + odd forms

(so that index D = Euler characteristic of X), remarkable



cancellation took place between a0 and Pr. so that

finally (1.4) reduced to the Gauss-Bonnet formula.

Subsequently Gilkey [5] gave an alternative proof

of Patodi’ s result based on an intrinsic identification

of the integrand in (1.4). This was later extended to

cover the important case of the Hirzebruch signature

theorem. [2] presents a simplified version of Gilkey’s

argument and generalizes it to cover more general

operators arising in Riemannian geometry. This provides

enough examples of the index theorem so that the general

case can be deduced from them by topological arguments

(K-theory). Here we follow the presentation in [2] .

§2. The Hirzebruch signature theorem.

Suppose now X is a compact oriented Riemannian

manifold of dimension 2l~ , and let 

d : ; 03A9i ~ 03A9i-1 be the exterior derivative on forms and

its adjoint. Then d + d acts on the space Q of

all forms and anti-commutes with the involution T

defined by

where : : : 03A9P ~ 03A92l- p is the duality operator. Thus

d + d switches the ±1-eigenspaces St+ of T and hence

is of the form A ~~ ‘~ 0 where A : S~+ -~ S~- is called

the signature operator. One verifies easily Cusing Hodge

theory) that, if k - 2k, index A - sign CX) is the

s ignature of the quadrat ic f orm on The heat



equation method of §1 then gives us an integral formula

Here w is a measure depending skew-symmetrically on

the orientation of X (because reversing orientation

takes T into -T , hence A into -A) and hence may

be regarded as a 4k-form canonically associated to the

metric g on X. The explicit results for second-order

operators assert that is given by a universal

polynomial in the gij, their derivatives of various

1J
orders and Cdet g) 2. Moreover under a change of scale

in the metric g ~ k2g Ck a positive constant)

A ~ k g and so the constant terms in the expansion of

e-tA A, j, are unaltered. Hence wCk2g) = wCg).
Now the main discovery of Gilkey was that these

qualitative properties are enough to identify

it as a Pontrjagin form. More precisely we have

THEOREM (Gilkey) Let w (g) be any differential form

functionally associated to a Riemannian metric g and

such that

(i) w(g) is given in local coordinates by a

universal polynomial in gij’ their derivatives

_i
of all orders and (det 

Then ..., p~) where pi(g) > are the

coefficients of the characteristic polynomial of the

curvature matrix ~L :



Applying this theorem to the form w(g) in (2.1)

we deduce that

for some suitable polynomial f. Computing sufficiently

many examples (products of complex projective spaces)

then enables us to identify f with the Hirzebruch

L-polynomial (after normalizing the pi by appropriate

powers of exactly as in Hirzebruch’s original proof.

Thus Gilkey’s theorem plays in local Riemannian geometry

the part played by Thom’s cobordism theory: it

characterizes the Pontrjagin numbers.

We now indicate how Gilkey’s theorem is proved.

There are three steps of which the first two are classical

and well-known:

(1) By using geodesic coordinates we argue that w(g) must

be a polynomial in the components of the curvature tensor
~ 

_i
and its covariant derivatives together with (det g)

(2) By the theorem on tensorial invariants of the

orthogonal group we deduce that w(g) is a linear

continuation of basic ’monomials’ of the form

Here each R denotes a covariant derivative (of
i

order si) of the curvature tensor, Eq means that we

contract all but q of the suffixes and * indicates

that we skew-symmetrize the q suffixes left (so as to

get a skew-symmetric q-tensor where q - deg w).



(3) The homogeneity condition (ii) on w(g) implies

that we only need monomials m(R) with q = 2r + e~

where E = EE1 is the total number of covariant derivative

indices. If E > 0 this implies that in some factor R Qo
we must skew-symmetrize at least three out of the first

five indices. The Bianchi identities then show that

m(R) = 0. If e = 0, so that m(R) involves only

the curvature tensor itself (and no higher derivatives),

a similar calculation shows that we must use precisely

two suffixes in each R Qo for contraction. The symmetries
1

.of R show that we may take these as the first two

suffixes. It is now clear that m(R), as a form, is

an exterior product

and so is a Pontrjagin form.

Note The square root factor involving det g allowed in

the hypothesis of the Gilkey theorem turns out to be

illusory in the end. However it is necessary to allow

for it because it appears, a priori, in the heat equation

formula. This point was in fact overlooked in [2] as

pointed out by Colin de Verdiere. In fact in the Gauss-

Bonnet theorem (det g)2 enters into the final formula

but that is because we have there a measure independent

of orientation (so not a form) and so the theorem on

’tensorial’ invariants has to be modified. However the

characterization of the "Euler form" is more complex than



that of the Pontrjagin forms and we shall avoid it.

§3. The general index theorem.

If £ is a complex vector bundle over X with a

hermitian inner product and a unitary connection we can

define an elliptic operator A~, acting on forms with

coefficients in £ , which generalizes the signature

operator A of § 2 . To compute index A~ by the

heat equation method we need to extend Gilkey’s theorem

to include auxiliary vector bundles. Essentially the

same proof as before enables us now to characterize

the mixed Pontrjagin-Chern forms of (g,E) as the only

functorially defined forms satisfying the analogues

of (i) and (ii) in the Gilkey theorem: we now require

invariance also under change of scale in the inner

product of ~ .

Again the explicit polynomial in the Pontrjagin

classes of X and the Chern classes of £ must be found

by computing some suitable examples.

We now have sufficiently many explicit examples to

deduce the general index theorem. Roughly speaking every

elliptic operator can be deformed into a generalized

signature operator A~. More precisely we recall (see [4])

that every elliptic operator P defines via its symbol

an element Op E K(TX), where K denotes the K-theory

with compact supports and TX is the cotangent bundle

of X. The stability of the index under deformation,



and the existence of (pseudo-differential) operators

with given symbol, imply that P’-~ index P induces a

homomorphism

Now K(TX) is a module over K(X) in such a way that

Moreover, modulo 2-primary groups, K(TX) is a free

K(X)-module with generator aA. Hence (3.1) is

determined by its values on aA , for all £ . Thus

the generalized signature theorem implies the general

index theorem for X even-dimensional and oriented.

The other cases follow easily by passing to the oriented

double covering and multiplying by a circle.

Included in the general index theorem is the

Riemann-Roch theorem for compact complex manifolds. For

KHhler manifolds it can be given a direct treatment on

the lines of the signature theorem. One uses the Dirac

operator of the associated SpinC-structure. It should be

emphasized that this is still essentially a theorem about

Riemannian manifolds: it is not necessary to try to

extend the Gilkey theorem to complex Hermitian manifolds.

The first heat equation proof of the Riemann-Roch theorem

is due to Patodi [7].

§4. Further developments.

The heat equation proof of the signature theorem (and

others of the same type) gives more information than previous

proofs, in that the integrand is given an analytical



interpretation. In other words we have a local version

of the signature theorem, from which the global version

follows by integration. Not surprisingly this local

version gives rise to interesting results for manifolds

with boundary [3]. To explain these results let us

consider a compact oriented 4k-dimensional Riemannian

manifold X with boundary Y and assume that, near

the boundary, X is isometric to the product Y x I.

We define sign (X) now as the signature of the quadratic

form induced by the cup-product on the image of H 2k (X,Y)
in H2k(X). Then the difference

(where L denotes the L-polynomial in the Pontrjagin

forms) need not vanish but, as an easy consequence of the

signature theorem for closed manifolds, it depends only

on Y (as oriented Riemannian manifold). Heat equation

methods enable us to identify this invariant of Y as

a ’spectral invariant’, that is as a function of the

eigenvalues of the Laplacian on forms. Precisely define

the self-adjoint operator B on even forms on Y by

where ~ runs over the eigenvalues of B (with

multiplicities counted ) . Note that B2 is just the

Laplacian A so that 12 runs over the eigenvalues of 0 .



For Re(s) large (4.1) converges absolutely. One

proves that n(s) can then be continued meromorphically

to the entire s-plane, that s = 0 is not a pole and

finally that

There are similar results for the other operators

arising in Riemannian geometry. Moreover as a

consequence of these Riemannian cases one deduces,

by topological methods, that for any elliptic self-

adjoint operator the n-function analogous to (4.1)

is finite at s = 0.

Formula (4.2) has many interesting extensions and

applications for which we refer to [3].



11 

References

1. M.F. Atiyah and R. Bott, A Lefschetz fixed-point

formula for elliptic complexes I, Ann. of Math.

86 (1967), 374-407.

2. M.F. Atiyah, R. Bott and V.K. Patodi, On the heat

equation and the index theorem, Inventiones Math.

19 (1973), 279-330.

3. M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral

asymmetry and Riemannian geometry, Bull. London

Math. Soc. 5 (1973), 229-234.

4. M.F. Atiyah and I.M. Singer, The index of elliptic

operators I, Ann. of Math. 87 (1968), 484-530.

5. P. Gilkey, Curvature and the eigenvalues of the

Laplacian for elliptic complexes, Advances in

Mathematics (to appear).

6. V.K. Patodi, Curvature and the eigenforms of the

Laplace operator, J. Diff. Geometry 5 (1971),

233-249.

7. V.K. Patodi, An analytic proof of the Riemann-Roch-

Hirzebruch theorem for Kaehler manifolds,

J.Diff. Geometry 5 (1971), 251-283.


