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Séminaire BOURBAKI
24e année, 1971/72, n° 400

400-01
Novembre 1971

SIMULTANEOUS APPROXIMATIONS OF ALGEBRAIC NUMBERS

[following W. M. SCHMIDT]

by Enrico BOMBIERI

I. Let o, ,02 veesy @ be real numbers. Dirichlet's theorem in Diophantine

Approximation states that

THEOREM (Dirichlet).- For every N 2 1 there is

I < N-1/n 1/n

v llao s n 7

q, 1< q<N, such that

|l aer,

where || H denotes the distance from the nearest integer.

COROLLARY.- Let 1 ’ Oy ,...,an be real numbers, linearly independent over @ .
Then there are infinitely many integers q such that

1/n 1/n

Moy Il s 0”77 ,eesy Nlao ll = a 77 .

In 1955, after previous work by Thue, Siegel, Dyson, Gel'fond and Schneider

it was proved by Roth that

ROTH'S THEOREM.- Let ¢ be irrational algebraic and let € > O . There are only
finitely many integers q such that

lqoll s 717 F .

Now Roth's theorem has been generalized by W. M. Schmidt to the case of simul-

taneous approximations.

SCHMIDT'S THEOREM 1.- Let 1 1Oy eees O be algebraic real numbers, linearly
independent over Q , and let ¢ > O . There are only finitely many integers g
such that

-1-¢
la I < q .

oo I .
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COROLLARY.- There are only finitely many integers q such that

/o~

- 1, - €
llao, Il < q veees llao Il = q /n .

Schmidt also proves a dual version of this result

THEOREM. 2.- Let Oy ey 0 be as in Theorem 1, and let € > O . There are only
finitely many n-ples of non-zero integers q1,...,qn such that

||q1a1 Foeee + qnan“ < |q1 . qn|_1_E .
COROLLARY.- Let ¢« be algebraic, k a positive integer and € > O . There are
only finitely many algebraic numbers ¢ of degree < k such that

lo - wl < H) ™"

where H(w) is the height of @ (maximum coefficient of an irreducible integral

defining polynomial of w).

If kX =1 this reduces to Roth's theorem ; a weaker result, with an exponent
2k + ¢ instead of k + 1 + € has been proved by Wirsing [3] with a different

method.

Schmidt's proof of these results uses Roth's method, but the extension is not
straightforward and many original ideas are needed. In order to present Schmidt's

arguments, it is therefore worthwhile to sketch Roth's proof.

II. Roth's Proof. For a neat exposition of Roth's proof we refer to Cassels [1].

Roth's theorem is obtained combining the following two results

PROPOSITION 1.- Let @ be algebraic, let ¢ > 0 and let r1,...,rm be positive
integers.
For m 2 mo(a, g) there is a polynomial

P e Z[x1,...,xm]



400-03

not identically O of degree < Ty in Xy such that

I‘1+...+r

(i) Irl s c, "

(i) DJP(a,a,...,OI) = 0

if J = (j1,...,jm) and n
(2.1) hz1 jh/r‘h < (L -¢e)m.

Here |P| is the sum of the moduli of the coefficients of P and DJ is

J 3
the usual differential operator (a/ax1) L (a/axm) ™ . The constant c,

depends only on o .

The proof is simple. Considering the (ry+1) ... (r +1) coefficients of
P as unknowns one has a system of homogeneous linear equations DJP(oz) =0.

Now if @ 1is algebraic of degree s , the equation

1

J
7D Plot youey @) = Q

splits in a system of s 1linear equations in the coefficients of the polynomial
Tyt eeer T
P , with integral coefficients < C2 where 02 2= Cz(a) . Since equa-
1

tion (2.1) has at most

(r1 +1) ... (rm+1) solutions, we get a system of

e m
< — (ry+1) «.. (rm+ 1) equations in (ry+1) ... (r +1) unknownswith inte-
e/ m
Pyt eeedT
gral coefficients < C2 . This is easily solved using Dirichlet's box

principle, provided <L, that is m 2 mo(a , €) , obtaining a non-zero

em
solution satisfying (i).

Now let ahz ph/qh be m approximations to @ such that

(2.2) lo - p /el < @,

let P be the polynomial of Proposition 1 and let v = (v1,...,vm) be such that,
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if we write

we have

QByyreeeB ) £ O
r, r
Then Q(B) = 0(31""'Bm) is a rational number with denominator < P

therefore
-r -r

la®)] = q, ! eee Q. m

Now assume that
}Z v /T < em.
h'=1 h h
Then Q is not identically 0 and Q(«¢) = O , therefore

lae)| = la(8) - e(@)| = =3+ 107*V p(@)| lo - 817

Ty+ eoet+ T
< C31 ™ max lee - B|J

where the max 1is over the n-ples J such that

GGy + v/, 2 (4= e)m .

np~ls

h'=1

If there are infinitely many approximations satisfying (2.2) one can take

r r2 rm
q1 n.qz ~ cee ~ qm and more precisely

r1 very large
log q1
r, = L ry IEET;— + 1 h=2,.00,m
h
q1 very large
and now
J - kj1 - kjm
la - B| = 9, eee Qo
-kr, T Jh/rh
< 9 .
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Since
m m

hz1 jh/rh 2 ($-¢e)m- z vh/rh 2 (4 - 2¢)m

h=1
we deduce
Pi+eeetr  —k(F-2e)mr
1 2z
le(e)l s c, ™ q, T
On the other hand,
-r -r ~T, = eee-T - mr
1 m 1 m 1
2
o) 2 a, ' ia M2, a .

If we choose q1, q2,... rapidly increasing then r1 , T are rapidly

PRRLE
decreasing and we may ensure that Ty+eees rm < 2r1 . Hence, letting q -
we find

m 2 k($ - 2&)m
and

k(3 -2¢) s1 .

Since ¢ 1is arbitrary, k < 2 and Roth's theorem follows,

The difficulty consists in showing that th/rh is small without putting con-
ditions of the sort " q, is not too large compared with a4, ", Now using an

ingenious inductive method, Roth obtains

PROPOSITION 2.- Let 0< 6 < 16 " , let P e Z[x1,...,xm] of degree <1 in

Xy, and not identically O , let

Grh 2 Thet h=1,e00,m -1

and let B, = ph/qh be such that

’ Sr =10
m

(1) 6r1 log q, > log|P|

(ii) 6 log q, > m , r, log q 271, log q, .

Then there is v = (v1,...,vm) with

DVP(B,,.-+1B,) £ O



400-06

m
-m

m 2
h§;1 \)h/rh < 10 % .

It is clear that, taking & sufficiently small, Proposition 2 is sufficient
to complete the proof of Roth's theorem along the lines mentioned before.
The proof of Proposition 2 is rather intricate, and because of lack of space

and time, we cannot give an indication of the ideas involved in it.

III. Schmidt's Proof. The index. In the previous argument, instead of working

with polynomials of degree < r in x we could work with polynomials in pairs

h h
of variables Xy 0 Yy h=1,...,m and homogeneous of degree Ty in the pair
X0 Yy - Instead of asking that a derivative DJP should vanish at a point

(81,...,Bm) we could introduce the linear forms
Ln = *n~ B
and ask that P belong to the ideal in R[x1,y1,...,xm ,ym] generated by poly-

nomials

i1 i

m
L1 cee Lm
with ih > jh for h=1,...,m . This remark leads Schmidt to the following
definitions.
Let R = R[x11,...,x1e HES ;xm1,...,xme] be the ring of polynomials in mé
variables and let L,,...,L be linear forms (not O) of the type
1 m

L, = Lh(xh1""’xh8) .
For ¢ 2 0 let I(c) be the ideal in R generated by all LJ where
J = (j1,...,jm) satisfies

‘m

}z j./r 2 c,

nE a

where Tyyeee,r =~ are positive integers.,
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DEFINITION.- The index of P with respect to (L1,...,Lm ;r1,...,rm) is the

largest ¢ with P e I(c) and c =+ if P is identically O .
We have
ind(P + Q) 2 min (ind P, ind Q)
ind PQ = ind P + ind Q .

If J is a ¢m-uple

J = (311""'316; .o ;jm+1""’jme)

one puts
m

O/r) = hl (g + vee + 3, )/

and

p() _ L%

One gets easily

ind P) 2 ind P - (3/0) .

The first step in Schmidt's proof is to obtain the analogue of Propositions 1

and 2. We have
PROPOSITION A.- Let Lj = aj1X1 + eee + ajéxé ,y J=1,...,¢ , be independent linear

forms, with algebraic integers as coefficients. Let

th = Lj(xm,...,xhe)

and let g > 0 .

For m 2 mo(a, €) there is a polynomial
P € z[x”,...,xmg]

not identically O , homogeneous of degree Ty in Xpqreeo1¥p, such that
R
5 H
(i1) ind P 2 (6—1 - e)m ,

(1) lp| = ¢

with respect to (L.lj ,...,‘Lmj; r1,...,rm) for j=1,...,¢ . Moreover, if we
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write
1 - 2dG) U ome
77 = I 24 et g
we have
P4 oo+l
()] = o "
for all J , j and dJ(j) = 0 unless for k = 1,...,¢
m
-1
1ii) | jo./r - & m| < eéme + ¢(J/r) .
n& hk "h

The proof of Proposition A is rather similar to that of Proposition 1.

Proposition 2 can also be extended, and one gets

m
PROPOSITION B.- Let 0 < § < 0;2 , O0<T1<1, let P e Z[x11,...,xme] be not
identically O , homogeneous of degree Ty in xh1,...,xhe , let
érh b3 rh+1 , h=1,e0e0,m = 1
and let Mh = mmxh1 + e + mhexhg

be non-zero linear forms whose coefficients are integral and have no common factor.

Let also

and assume

(i) §Tr log|M1| > 1oglP|

1
(ii) 8T 1og|Mhl > m, r, logiMhI z Tr, 1og|M1I for h=1,.0.,m .

Then the index of P Wwith respect to (M1,...,Mm ;r1,...,rm) satisfies
oM
ind P < 1d" & .

The ideas in the proof are the same as Roth's, but the technical difficulties

are of course much dgreater,

conclusion that may be drawn from Propositions A and B is, except in case

¢ = 2 substantially weaker than Schmidt's theorems. In Roth's case, one takes
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& =2 , L1=X1—dx

and in Schmidt's case one would take

2 ’ 2 2

L.=X,-oX, , J=1,0e,6-1 , L, =X,.

Hqwever, in order to conclude the proof, one eventually has to consider many

other sets of linear forms.

IV. Schmidt's Proof. The theorem of the next to last minimum.

Let K be a symmetrical convex body in Rn centered at the origin and let
V(K) be its volume. For X\ > 0 1let MK be the corresponding homothetic convex

body. The successive minima x1,...,xn are defined as follows :

ki = inf{ kl MK contains i linearly independent points of Zn} .
A basic theorem of Minkowski states

SECOND THEOREM OF MINKOWSKI.- We have

2n n
aTOS N e N v(k) = 2.

We need another definition. Let

Myo= BygXy + oee By %,
be independent linear forms with algebraic coefficients. Let S Dbe a subset

of {1,2,...,¢} .

DEFINITION.- {M1,...,M6 ; 8} is regular if
(1) for j € S the non-zero elements among Bj1""’ej€ are linearly inde-

pendent over Q@ ;

(i1) for every k < ¢ there is j € § with B ix £ 0.

Now let L1,...,Lg be again linear forms with algebraic coefficients and let

sc{1,2,...,¢} .
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DEFINITION.- {L1,...,Le ; S} is proper if {m, 1e-+sM, 3 8} is regular, where

the Mi are the adjoint forms of Lj .
Now Schmidt proves

THEOREM of the next to last minimum.- Let {L1,...,Le; S} be proper and let

Alyeee,A

1 be positive reals such that

1

Ap oo By=1 A2 if jes.

¢
. £
The set in R
L.(x)| s A, = 1,e00,2
|J()l 3 ’ J ’ ’
is a symmetric convex body centered at 0 ; let x1,...,xé denote its successive

minima,

For every & > O there is

Q, = Qo(é;L1,...,Le;S)

such that

-8

A,_q>0Q

-
provided
Q 2 max(A1,...,Ae; QO) .
This is a consequence of Propositions A and B. The proof of the theorem is

obtained through various reduction steps.

c.
a) It is sufficient to prove the result when Aj =Q I and c1,...,cé are

fixed constants such that

Cy * eee ce =0 , |cj| <1 for all j , cj 20 for jes.

This is easy, because one can show that if one modifies slightly the A,
b.
(say by a factor Q J , with |bj| < 8/2 ) then the minimum M,y 1is modified

C-
by a factor of that order of magnitude. Thus one may suppose that Aj =Q J

where the cj belong to a finite set depending only on §

10
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b) We may suppose that the coefficients aij are algebraic integers., In fact

if q 1is a common denominator for the aij y the successive minima of

-1

|qu| < Aj are q times the successive minima of lL.] <A, .
J J

Now assume the theorem is false. There is b > O and an increasing sequence

01 y 02 yeese going to infinity and ¢é-uples Yppr++ 1Yy, Of linearly indepen-

dent points of Zg such that

c.-b
J
ILj(yhk) | < Qh

for j=1,ue0y8 , k=1,.00,6 and h=1,2 ,... .

We let Mh , h=1,2,... be the (unique up to sign) linear form with integer
coefficients without common factor, such that
Mh(yhk) =0 for kK =1,.04,8 .

Let us assume that Q1 is large, take (as in Roth's proof)

log Q
rh=r1T—Ql + 1
og h

where r is very large and let P be the polynomial of Proposition A. Then,

1
using property (ii) of P (the lower bound for the index) Schmidt shows that
P has index
ind P 2 CBbm
with respect to (M1,...,Mm; r1,...,rm) , for some constant
= > 0.
Cq 08(5)

The proof goes as follows.

Let
¢
N
n L 3 nk

be a linear combination of yh1,...,yhe with integral coefficients ay with
c.-b
|ak| < Of . If we use Proposition A and ILj(yhk)| < QhJ we get

11
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m . .

T 4eest T 3 (e, =b) +eeut 3, ,(c,=-D)
1 J ey 1 m h1' ™1 hée' ¢
3!_|P (y1,...,ym)|s (C9Q1) max L Qh

and, by (ii) and (iii) the max is over the j's such that (iii) holds. By the

choice of r the product is

n
mr, ~be(e ' - ¢e)mry +be(I/r)r, + Kr,
sCpy 4

where m m

K= g z S/ Th t e S 2 Ine/ T

h=1 h=1
Now using (iii) and Gy + eee+C,=0, !cil <1 we find
2

K s Cyme+ ¢ (3/r)

therefore

mr, -bmr, +C, [em+ (J/r)]r
1 J € 1 1 13 1
7 1P ey s (€00 o

if (J/r)<cC,,bm, Q

14 4 is large enough, for ¢ sufficiently small.

Now the left hand side of this inequality is an integer, therefore

J
P (y1,...,ym) = 0
for ’
y, = an la | < Qf
h WLy Sk % 1

ay integral, and all J with

(3/r) < Cy bm .

It is not difficult to show that this implies that the restriction of

J .
P (x11,...,xm6) to the linear space M1(x11,...,x1e) =0 ,...,Mm(xm1,...,xme)= 0

vanishes identically, since it vanishes on sufficiently many well-distributed

integral points of this linear space ; the required statement about the index of

P with respect to M,,...,M follows easily.

1 m

Now one would like to apply Proposition B and show that if the r, are rapidly

12
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decreasing then for every ¢ > 0O

ind P £ &gm
with respect to (M1,...,Mm; r1,...,rm) thus getting a contradiction. In order
to be able to do this one needs first that the Ty be rapidly decreasing, which
means the Qh rapidly increasing and this can be done by taking a subsequence

of the Qh . But one also needs inequalities for the r and the logth| and

h
one should show that

log Qh < logIMhl < log Oh .
It turns out without much difficulty that this follows from the condition that

{L1""’L€; S} be a proper system, and this ends the argument.

V. Schmidt"s Theorem. End of the Proof.

Let Lj = aj1X1 + ses + ajexg be linear forms of determinent 1 and let E
be the corresponding automorphism of Re . For 1 € p < ¢ the exterior power
P
A E defines an automorphism of
¢
P ¢ (5)
AR ~ REP .

Expressing APRe by means of a standard basis of Re one obtains a set of (ﬁ)

linear forms L§F> indexed by ordered p-subsets o of {1,...,8} ; explicitly

’

(P) _
LG' B E U *p
where
dpr = e 5)ico, jer -

Let A1,...,Ae be positive numbers with
A1 e Aé = 1,

let also

13
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and consider the convex set K(P) :

1Pl s ay Card(o) = p .

This is called the p-compound of the set K(1)

ILj(x)l < Ay J=lyenest .

Let VyreensV be the successive minima of K(p) and x1,...,xe those of
)

K(1) . Put also
k6 T jec xl ‘

MAHLER'S THEOREM.- There is an ordering cj of the o such that

v, < A
o
y 3

For Mahler's proof, see Mahler [2].

_<\Jj, all j .

Now Schmidt's idea is to apply the previous theorem to get a non-trivial lower

bound for v P and then use Mahler's theorem to deduce a non-trivial lower bound
() -1

P
for the first minimum X1 .

One needs a lemma.

Lemma 1.- Let Lj ’ li be as in the theorem of the previous section. Then if

A, ... A =1 and

1 ¢

MA > Q'5/2‘/Z , ies
we have

Ny > xeo'é
provided Q = max(A1,...,Ae;Q1) .

(Note that the condition A, 21 for ieS isnot needed.)

14
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The proof goes as follows., Put
2 1/
e-2he-1)

P o= o/ i=thene-1 o, = p,y -

]

f (A eeer

By a general result of Davenport there is a permutation {pj} of {1,...,¢}

such that the successive minima A' of

-1
ILi(x)| < ppi A, = Al

satisfy
A, K '« Y

Pk A Pihy

note that A
pJ J

s for j=1,.0.,¢ -1, and

p1 ...pe = 1.

If Ai <1 for some i € S then since

A = Ai"; 2 Ap7 = MAp Q_G/Mp:
we have '
o, 2 g~ 8/2¢
therefore
)\eki_1 cee ny > er‘5/2 .

By Minkowski's theorem, )»1 .. ')‘é < 1 and we deduce

x, , > xeo'f’/z.

2-1
Now suppose Ai > 1 for every i € S . Then we may apply the theorem of the

next to last minimum and find

-68C
Al

Apy 2 Q
provided

QC = max(A{,...,Aé;Qz) .
By Davenport's lemma one has 2_1 <« P therefore s >0 &C and as before we
get

¢Co
)\4_1 > )‘(ZQ

15
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hence the result (taking a smaller § if necessary). It remains to show that if
Q= max(A1 ,...,Ae ; 01) then for some C we have QC > max(A‘I',...,Aé ; 02) . This
is easy :

-1 -
A =
max Ai < P,y_q max Ai = )\4_1 p, max Ai

-1 -2
S Aygdy max A, & )7 max A

2-1
i < ceed €1
(since A A ¢ )

¢-1

< ()\1 max Ai)_e (max Ai)e+1

< ¥/2+ ¢+

?

whence the result with C = 2¢ .

The proof of Schmidt's theorem now ends as follows. Firstly one proves

Lemma 2.- Let 1, Oy see sy y be real algebraic linearly independent over @ .

Write

i
tal
[
Q
>

L;(x) ise-1,
Le(X) = X
and for 1 < ps< ¢ -1 let S(p) be the set of ordered p-uples €O C {1 yeees ]

with ¢ e ©.
(p) - (p)
Then the forms LO_ together with S form a proper system.

Now let A,... A =1, A >1, O<A <1 ,1i=1,...,6-1 and let
1 i

¢ ¢
N reeeaky, be the successive minima of |Lj(x)| < Aj . One now proves that
(5.1) Moz Q7 6
for Q 2 max(Ae , 03)
and some Qy = Q3(a, 8) .

The theorem of the next to last minimum gives the result for \ and so our

-1
statement is true if ¢ = 2 ., Now suppose ¢ > 2 . We shall show that

16
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3 -8
(5.2) Ngep > Appay Q

for p=1,2,00,6 -1, Q=2 max(Ae , 94) and the result will follow.

Let o= {1,...,p - 1, ¢} . We shall prove that

1/p -8
x1A0_ > Q .

1 . .
In fact, let B, = Ar/Aé/p »ieoc. since Aj...A =1 wehave A 21 and
Ae -3 Be > 1 , Bi <1 for i=1,.00,p-1, B1 "'Bp—1B€ =1.
Z

By definition of k1 there is a non-zero integral point x° e 2° with
o .
|Li(x)| S MA; i=1,000,2

and by Minkowski's theorem X1 < 1 . Hence X1Ai <1 ,i=1...,6-1, and

thus the last coordinate xz of x° is not O . Hence the vector
y° = (x?,...,x;_1 ,XZ) is not O and regarding L, , i€ {1,000yp-1, ¢} as

forms in p variables we get
o _ 1/p
lLi(y )| < MA; = MALTE, .
Hence the first minimum Py of

L, s8B, ie{1,.00,p-1, ¢}

satisfies
1/p
W "‘1"‘0-/ :

Since B1°'.BP—1B£ =1, Be >1, Bi <1 for i=1,...,p-1, and since

p< ¢ -1 we may use induction and apply (5.1). We get

u1 > Q- $

provided Q = max(Be ,05) ; since Bé < Ae , it suffices Q > max(Aé 'QS) .

Clearly the argument applies to every O € S(p) , hence
1/p -5
AL > Q
for all o€ S(p) . By Mahler's theorem the first minimum v of the p-compound

"
LéP) of the linear forms Lj satisfies

17
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VN, P A A, eee A 2 xp
1 172 P 17
therefore

- pb (p)
\J1A°_ > Q for c e S .

Hence taking a smaller § if necessary, we may apply Lemma 1 and Lemma 2

and get
-8
(5.3) v(e)_ > v(e) Q
P P
provided
Q = max(AG_, 06) where Card ¢ = p .

Since Ao_ < Ae , it suffices Q 2= max(Ae , QG) . By Mahler's theorem again,

we have
Voo T A pitteopra it My
&
Vo, L IRV U
-1

124

and by (5.3) we deduce (5.2). Clearly (5.2) implies A > xeo‘ and since

Ay oeee )\g » 1 by Minkowski's theorem, we have also )\e >1 and (5.1) follows,

by taking a smaller § if necessary.

Schmidt's Theorem 1 is almost immediate from (5.1). In fact, by definition of
first minimum, (5.1) implies that the inequalities

-8 -5 -5
(5.4) |X1—a1xe|50 A geees Ixe_1—qe_1xe‘so Ae_1 , Ixel $Q A,

are insoluble if A1 <1 ,...,Ae_1 <1 ,A, >1 and A

Q = max(Ae,Q3) ,

P 1...Ae=1 , for

unless all the xi are O . By Liouville's theorem, there is C such that

-C
x; - ayx,l > x|

if xe is large enough ; now take

5
S L I

18
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-1
A, = (A1 ...Ae_1)
so that
Ce .6
Ae < |xel Q .
If Q> max(|xelce Q% , 03) and if
&
A = Ixi - aierQ <1

we deduce that we must have (the inequalities (5.4) are insoluble)

x,l > e, ,
hence
Ix1 - X, ...[xe_1 - ae_1x£||xe| > 8
Since the only restriction on Q 1is
c
Q > ngl
for some C , we deduce that the inequalities
1
aey Il +oe llaw,_y Il a' %8 < 4
Moo, )l < ¢ i= 1,000,061

have only a finite number of solutions.
Clearly the conditions ||qai||< q_E are not restrictive, because if say

llaw, Il = 7% it is sufficient to shov that
q1+(£-1)e

oy Il oo llae,_, |l < 1

has only a finite number of solutions, and Schmidt's theorem follows by an

obvious inductive argument.

The proof of Schmidt's second theorem is essentially identical and therefore

will be omitted.

19
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