SÉMINAIRE N. BOURBAKI

MAX KAROUBI

Cobordisme et groupes formels

Séminaire N. Bourbaki, 1973, exp. nº 408, p. 141-165

http://www.numdam.org/item?id=SB_1971-1972__14__141_0

© Association des collaborateurs de Nicolas Bourbaki, 1973, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

COBORDISME ET GROUPES FORMELS

(d'après D. QUILLEN et T. tom DIECK)

par Max KAROUBI

0. Introduction

Soit \mathfrak{P} "l'ensemble" des variétés compactes sans bord de classe \mathfrak{C}^{∞} . Deux compacte variétés V_0 et V_1 sont dites cobordantes s'il existe une variété à bord W de classe \mathfrak{C}^{∞} telle que $\mathfrak{d}W=V_0\cup V_1$ (réunion disjointe). Le quotient de \mathfrak{V} par la relation de cobordisme est en fait un anneau gradué (pour la réunion disjointe, le produit et la dimension des variétés) qu'on appelle l'anneau de cobordisme réel (ou non orienté) $N_*=\bigoplus_{p\geq 0} N_p$. Thom a montré [10] que N_* est une algèbre de polynômes sur $\mathbf{Z}_2=\mathbf{Z}/(2)$, soit $\mathbf{Z}_2[\mathbf{x}_2,\mathbf{x}_4,\mathbf{x}_5,\ldots]$, engendrée par des éléments \mathbf{x}_1 de degré i pour chaque entier $\mathbf{i}\neq 2^{\mathbf{j}}-1$. On pourrait de même considérer l'ensemble des variétés "stablement presque complexes" (i.e. celles dont le fibré tangent stable est muni d'une structure complexe). On obtient alors un nouvel anneau gradué $U_*=\bigoplus_{p\geq 0} U_p$ qu'on appelle l'anneau de cobordisme complexe. Milnor a démontré [7] que cet anneau est une algèbre de polynômes sur \mathbf{Z} , soit $\mathbf{Z}[y_2,y_4,y_6,\ldots]$, engendrée par des éléments y_{2i} de degré 2i.

Quillen et tom Dieck ont montré récemment que les théorèmes de Thom et Milnor sont des conséquences simples de certaines relations entre les opérations de Landweber-Novikov, les opérations de Steenrod en cobordisme et les groupes formels. Leurs techniques ont permis de démontrer aussi le corollaire 3 de cet

exposé, suggéré par Conner et Smith [4].

Nous allons tâcher de décrire ces nouvelles idées en nous inspirant essentiellement de la méthode "géométrique" de Quillen [9] et de quelques remarques dues à tom Dieck [11]. Pour fixer les idées, nous travaillerons dans le cadre du cobordisme complexe (qui est plus difficile) et nous esquisserons à la fin de la rédaction les modifications nécessaires pour l'étude parallèle du cobordisme réel.

1. Notations et rappel de notions classiques

Soient X , Y et Z trois variétés (1) et soient $f: Z \to X$ et $g: Y \to X$ deux applications. On dit que f est <u>transverse</u> à g ou que f et g sont transverses si, pour tout couple (y,z) tel que f(z)=g(y)=x, on a $f_*(T_Z(Z))+g_*(T_Y(Y))=T_X(X)$. Nous admettrons les deux résultats suivants :

- (i) Quels que soient X, Y, Z, f et g, il existe une approximation f_1 de f (pour la topologie C^{∞}), aussi fine qu'on le désire, qui soit transverse à f;
- (ii) Si f_0 et f_1 sont deux applications transverses à g qui sont homotopes, il existe une application $f: Z \times R \to X$ telle que $f(z, \alpha) = f_{\alpha}(z)$, $\alpha = 0$, 1 et telle que $f_t(x) = f(x, t)$ soit transverse à g (²).

Si f et g sont deux applications transverses, le produit fibré $Y \times_X Z$ est naturellement une variété et les applications canoniques $Y \times_Y Z \to Y$ et $Y \times_Y Z \to Z$

 $^(^1)$ Sauf mention expresse du contraire, les variétés considérées seront C^{∞} , sans bord, paracompactes mais non nécessairement compactes et les applications entre variétés seront C^{∞} .

⁽²⁾ En fait, pour **ce** qui **va** sui**vre** (§ 2), on pourrait se limiter au cas où g est un plongement modulo quelques artifices classiques. Dans ce cas, ces assertions sont bien connues [10].

sont différentiables de classe C^{∞} .

Pour tout espace X , on désigne par K(X) le groupe symétrisé du monoîde des classes d'isomorphie de fibrés vectoriels sur X [2]. En fait, il y a deux "K-théories" suivant qu'on considère des fibrés vectoriels réels ou complexes, On les notera KO(X) et KU(X) respectivement lorsqu'il sera nécessaire de préciser. La projection de X sur un point induit un homomorphisme $Z \to K(X)$ dont le conoyau est la K-théorie réduite $\widetilde{K}(X)$ qu'on note aussi $\widetilde{KO}(X)$ ou $\widetilde{KU}(X)$. Si X est de dimension finie, tout élément de $\widetilde{K}(X)$ peut s'écrire comme la classe d'un fibré vectoriel à l'addition d'un fibré trivial près [2]. Soit r un élément de $\widetilde{KO}(X)$ représenté par un fibré vectoriel réel E. Une structure complexe sur r est la donnée d'un fibré vectoriel réel trivial θ et d'une structure complexe c sur $E \oplus \theta$. On convient d'identifier deux structures complexes (θ,c) et (θ',c') s'il existe un fibré trivial θ " de dimension convenable tel que les deux structures complexes évidentes sur $E \oplus \theta \oplus \theta' \oplus \theta''$ soient homotopes.

2. Définition de $U^*(X)$

Soit $f:Z\to X$ une application entre deux variétés. La différence $\mathbf{v_f}=\mathbf{f^*TX}-\mathbf{TZ}$ définit un élément de $\widetilde{KO}(Z)$ appelé "fibré" normal stable de f. Une orientation complexe de f est une structure complexe sur $\mathbf{v_f}$. L'application f est de dimension f lorsque dim $\mathbf{T_f(z)}(X)$ - dim $\mathbf{T_z}(Z)=\mathbf{v_f}$ pour tout point \mathbf{z} de \mathbf{Z} (1).

Considérons "l'ensemble" $\mathcal{U}^n(X)$ des triples (Z,f,X) où $f:Z\to X$ est une application propre de dimension n munie d'une orientation complexe.

 $[\]binom{1}{2}$ Si Z est vide, on convient que f a toutes les dimensions.

Deux éléments $\sigma_0 = (Z_0, f_0, X_0)$ et $\sigma_1 = (Z_1, f_1, X_0)$ sont <u>cobordants</u> s'il existe un élément $\sigma = (Z, f, X \times R)$ de $\mathfrak{U}^n(X \times R)$ tel que f soit transverse aux applications $i_{\alpha}: X \to X \times R$ définies par $i_{\alpha}(x) = (x, \alpha)$, $\alpha = 0, 1$, et qui induise f_{α} au-dessus de $X \times \{\alpha\}$ en un sens évident. On note $U^n(X)$ l'ensemble quotient et [f] la classe du triple (Z, f, X) dans $U^n(X)$. En fait, $U^n(X)$ est un groupe abélien pour la "somme disjointe" des applications. Si X est un point, on vérifie aisément que $U^{-n}(X) = U^{-n}$ est isomorphe au groupe U_n défini dans l'introduction. En utilisant les techniques de Thom, on voit que $U_n \approx \lim_{n \to 2k} \pi_{n+2k}(MU(k))$ où MU(k) représente l'espace de Thom du fibré vectoriel complexe universel sur BU(k). Plus généralement, on a le théorème suivant :

THÉORÈME 1.- Pour toute variété X , le groupe $U^n(X)$ est isomorphe canoniquement à $\lim_{k \to \infty} \left[S^{2k-n} X^+ , MU(k) \right]$ où X^+ est l'espace X auquel on a ajouté un point en dehors.

La démonstration de ce théorème suit en fait de très près la démonstration de Thom [10] et est laissée au lecteur. Notons que ce théorème permet d'étendre la définition de $U^n(X)$ à un CW-complexe quelconque, ce qui est le point de vue "homotopique" bien connu en cobordisme. En particulier, on pourra appliquer le formalisme des théories cohomologiques générales. Notons aussi que $U^*(X) = \bigoplus_{n \in \mathbb{Z}} U^n(X)$ est naturellement un anneau gradué et que les différents $n \in \mathbb{Z}$ types de cup-produit en cohomologie se définissent de même en cobordisme.

Il convient de montrer que l'anneau $U^*(X)$ dépend de manière contravariante de X. Soit donc $g:Y\to X$ une application quelconque et soit (Z,f,X) un triple définissant un élément x de $U^n(X)$. En remplaçant au besoin f

par une application voisine (ce qui ne change pas la classe de f), on peut supposer que g est transverse à f, d'où le diagramme

Le triple (T, f_1, Y) définit l'élément de $U^n(Y)$ cherché. On le note $g^*(x)$.

Le groupe $U^*(X)$ dépend aussi de manière covariante de X. De manière précise, soit $h: X \to X_1$ une application propre de dimension q munie d'une orientation complexe. A l'élément x de $U^N(X)$ on associe l'élément $h_*(x)$ de $U^{n+q}(X_1)$ défini par $h_*(x) = [h.f]$. Les homomorphismes h_* et g^* dépendent des classes d'homotopie de h et g seulement. Pour tout diagramme (1), on a $g^*.f_* = (f_1)_*.(g_1)^*$. Enfin, si $x \in U^*(X)$ et $z \in U^*(Z)$, on a la relation $f_*((f^*x).z) = x.f_*z$ dans $U^*(X)$.

Les définitions précédentes peuvent s'étendre sans peine dans le cas où on considère des familles de supports. De manière précise, soit Φ une famille de sous-ensembles fermés de X, stable par réunions, qui satisfait aux propriétés suivantes :

(i) Si $T \in \Phi$ et si T' est un sous-ensemble fermé de T, $T' \in \Phi$; (ii) Si $T \in \Phi$, il existe un voisinage de T qui appartient à Φ . Pour définir $U^n_{\Phi}(X)$ par exemple, on se restreint alors aux triples (Z, f, X) tels que $\overline{f(Z)} \in \Phi$.

En particulier, soit V un fibré vectoriel <u>réel</u> de base X et de dimension P muni d'une structure complexe stable. Soit Φ la famille des fermés de V "bornés" pour une métrique sur le fibré vectoriel V. La section nulle i induit un isomorphisme $\theta_V: U^n(X) \to U^{n+p}_{\Phi}(V)$ qu'on note aussi i_* lorsqu'il

n'y a pas de risque de confusion. C'est "l'isomorphisme de Thom" en cobordisme complexe. L'élément $\theta_V(x)$ est le cup-produit de x par la "classe de Thom" $u_V = \theta_V(1)$ du fibré V. La restriction de u_V à i(X) définit un élément e(V) de $U^P(X)$ qui est la "classe d'Euler" de V. En fait, $e(V) = i^*i_*(1)$ est "l'intersection" de la section nulle et d'une section transverse quelconque. Notons que $u_{V \oplus W} = u_V \cup_X u_W$ (cup-produit) et que $e(V \oplus W) = e(V) \cdot e(W)$.

3. Cobordisme des espaces projectifs. Introduction des groupes formels

<u>Lemme 1.- Soient V et L deux fibrés complexes sur X et soit P(V \oplus L)</u>

<u>le fibré projectif complexe sur X . Soit §* le dual du fibré en droites cano-nique § sur P(V \oplus L) et soit L' = π^* L où π : P(V \oplus L) \rightarrow X . Alors $e(\S^* \otimes L') = [f] = f_*(1)$ où $f: P(V) \rightarrow P(V \oplus L)$ est l'inclusion évidente.</u>

<u>Démonstration</u>. Soit i' la section de $HOM(\xi, L') \approx \xi^* \otimes L'$ définie audessus de la droite Δ comme l'application linéaire de Δ dans L induite par la projection parallèlement à V. Alors i' est transverse à la section nulle i et i' $^{-1}(0) = P(V)$.

Lemme 2.- Soit t la classe d'Euler du dual du fibré canonique sur $P_n = P_n(c) \cdot \underline{\text{Alors}} \quad \underline{\text{U}}^*(\text{X} \times P_n) \quad \underline{\text{est un}} \quad \underline{\text{U}}^*(\text{X}) - \underline{\text{module libre de base}} \quad \text{1, t,..., t}^n \cdot \underline{\text{En outre, on a}} \quad t^{n+1} = 0 \cdot \underline{\text{N}} \cdot \underline{\text{N}} = 0$

<u>Démonstration</u>. La relation $t^{n+1} = 0$ est une conséquence du lemme précédent (avec X = V = point et $L = c^{n+1}$). Pour le reste, on raisonne par récurrence sur n en considérant le bout de suite exacte de cohomologie

$$0 \rightarrow U_{\frac{1}{2}}^{*}(X \times C^{n}) \xrightarrow{\alpha} U^{*}(X \times P_{n}) \rightarrow U^{*}(X \times P_{n-1}) \rightarrow 0,$$

$$U^{*}(X)$$

où p: $X \times P_n \to X$ est la première projection et où $P_* \cdot \alpha \cdot i_* = Id$. COROLLAIRE 1.- Soient x et y les classes d'Euler des duaux ξ_1^* et ξ_2^* des fibrés canoniques sur P_n et P_m respectivement. Alors $U^*(P_n \times P_m) = U^*[x,y]/x^{n+1} = y^{m+1} = 0 .$

En particulier, la classe d'Euler du produit tensoriel $\xi_1^* \otimes \xi_2^*$, fibré en droites sur $P_n \times P_m$, s'écrit comme un polynôme $F_{n,m}(x,y) = \sum_{\substack{i \geq 0 \\ i \geq 0}} a_{i,j} x^i y^j$ où

 $a_{ij} \in U^{2-2i-2j}$ est indépendant de n et m lorsque n et m sont plus grands que $\sup(i,j)$. Posons $F(x,y) = \lim_{\substack{n \to \infty \\ m \to \infty}} F_{n,m}(x,y)$ dans $U^*[[x,y]]$. On vérifie

facilement les relations suivantes :

- (i) F(x, 0) = F(0, x) = x;
- (ii) F(x, F(y, z)) = F(F(x, y), z);
- (iii) F(x, y) = F(y, x).

La donnée d'une série formelle F(x,y) à coefficients dans un anneau A (ici $A=U^*$) qui satisfait aux trois axiomes précédents est une <u>loi de groupe</u> formel sur A . Nous renvoyons le lecteur à [3] ou [5] pour un exposé systématique.

Remarque 1.- Le "formalisme" précédent s'applique à toute théorie cohomologique générale munie d'un "isomorphisme de Thom" pour les fibrés complexes. En particulier, pour la cohomologie ordinaire et la K-théorie complexe, on trouve F(x,y) = x + y et F(x,y) = x + y - xy respectivement.

Remarque 2.- Soient L_1 et L_2 deux fibrés en droites sur X_1 et X_2 respectivement. Alors $e(L_1 \otimes L_2) = F(e(L_1), e(L_2))$ car tout fibré de rang un sur un espace de dimension finie X est l'image réciproque de ξ^* par une

application de X dans P_n pour n assez grand. Si L_1^* est le dual de L_1 , on a ainsi $e(L_1^*) = -e(L_1) + \lambda_2(e(L_1))^2 + \lambda_3(e(L_1))^3 + \dots$ et $e(L_1^* \otimes L_2) = (e(L_2) - e(L_1))[1 + \theta(e(L_1), e(L_2))]$ où $\theta(x, y)$ est une série sans terme constant. Si on pose $u = e(\xi)$, on a donc aussi $U^*(X \times P_n) = U^*(X)[u]/u^{n+1} = 0$.

THÉORÈME 2.- Soit V un fibré vectoriel complexe de rang n sur X . Alors $U^*(P(V)) \quad \underline{\text{est un}} \quad U^*(X) - \underline{\text{module libre de base}} \quad 1 \text{ , u , ... , u}^{n-1} \quad \underline{\text{où}} \quad u \quad \underline{\text{est la}}$ $\underline{\text{classe d'Euler du fibré canonique}} \quad \xi \quad \underline{\text{sur}} \quad P(V) \text{ . En outre, si}$ $V = L_1 \oplus \cdots \oplus L_n \quad \underline{\text{est une somme de fibrés de rang}} \quad \text{un , on a la relation}$ $\prod_n \left[u - e(L_i) \right] = 0 \text{ .}$

Démonstration. D'après le théorème de Leray-Hirsch-Dold (ou, plus simplement, le théorème de Mayer-Vietoris), on sait que 1, u, ..., u^{n-1} forment une base de U*(P(V)) car leurs restrictions à U*(P(V)|_Y), où Y est un ouvert de trivialisation du fibré V, forment une base de U*(P(V)|_Y) considéré comme U*(Y)-module. On démontre la relation $\prod_{i=1}^n \left[u - e(L_i) \right] = 0 \quad \text{par récurrence}$ sur n. Celle-ci est claire lorsque n = 1. Supposons donc la relation vraie pour n - 1 et posons $x = \prod_{i=1}^n \left[u - e(L_i) \right]$ et $x' = \prod_{i=1}^{n-1} \left[u - e(L_i) \right]$. Soit $f: P(L_1 \oplus \cdots \oplus L_{n-1}) \rightarrow P(L_1 \oplus \cdots \oplus L_n)$ l'application évidente. D'après le lemme 1 appliqué à $V = L_1 \oplus \cdots \oplus L_{n-1}$ et $L = L_n$, on a $0 = f_*(f^*x') = x' \cdot f_*(1) = -x(1 + \theta(u, e(L_n)))$ (cf. la remarque 2 ci-dessus). Puisque $\theta(u, e(L_n))$ est nilpotent, on a x = 0 ce qui est bien la relation annoncée.

4. Classes de Chern en cobordisme complexe

THÉORÈME 3.- Il existe une façon et une seule de définir des "classes de Chern" (1) $c_i(V) \in U^{2i}(X)$, i = 0,1,2,..., pour tout fibré complexe V de base X, avec $c_0(V) = 1$, de manière à satisfaire aux axiomes suivants:

- 1) Les c_i sont "naturels", c' est-a-dire c_i (V) = f^* (c_i (V')) pour tout morphisme $V \rightarrow V'$ qui est un isomorphisme sur chaque fibre et qui induit f sur la base.
- 2) Soit $c(V) = 1 + c_1(V) + \cdots + c_i(V) + \cdots \in U^*(X)$ la classe totale de Chern de V . Alors $c(V_1 \oplus V_2) = c(V_1) \cup c(V_2)$.
 - 3) Si V est de rang un , on a $c_1(V) = e(V)$ et $c_i(V) = 0$ pour i > 1.

La démonstration de ce théorème est classique. En voici une esquisse. Grâce au théorème 2, on voit que la projection $\pi: P(V) \to X$ induit une application injective de $U^*(X)$ dans $U^*(P(V))$ (déjà utilisée pour munir $U^*(P(V))$ d'une structure de $U^*(X)$ -algèbre). Puisque π^*V contient ξ comme facteur direct, on voit aisément (en raisonnant par récurrence sur le rang de V) qu'il existe une variété F(V) et une application $s:F(V) \rightarrow X$ qui induit une injection $U^*(X) \rightarrow U^*(F(V))$ et telle que $s^*(V)$ se scinde en somme de fibrés de rang un ("principe de scindage"). Ceci démontre déjà l'unicité des c_i . Pour démontrer l'existence, supposons V de rang n . Alors les $c_{i}(V) = c_{i}$ sont définis par la relation $u^n - c_1 u^{n-1} + \dots + (-1)^n c_n = 0$. On vérifie les axiomes en utilisant de nouveau le principe de scindage et la deuxième partie du théorème 2. THÉORÈME 4.- Il existe une façon et une seule de définir des "polynômes de

Chern" $c_t(V) \in U^*(X)[t] = U^*(X)[t_1, ..., t_j, ...]$ pour tout fibré complexe de

^{(&}lt;sup>1</sup>) En fait, ces classes ont été introduites pour la première fois en cobordisme par Conner et Floyd.

base X qui satisfont aux axiomes suivants :

- 1) Les $c_t(V)$ sont "naturels", i.e. $c_t(V') = f^*(c_t(V))$ avec les notations du théorème 3.
 - 2) $c_{t}(V_{1} \oplus V_{2}) = c_{t}(V_{1}) \cup c_{t}(V_{2}).$
- 3) $c_t(L) = 1 + t_1 e(L) + t_2 (e(L))^2 + \dots + t_j (e(L))^j + \dots + \underbrace{si}_{L} est de$ rang un.

Démonstration. L'unicité est évidente d'après le principe de scindage. Pour l'existence, introduisons les fonctions symétriques élémentaires $\sigma_i = \sigma_i(x_1, \dots, x_n) \text{ , } i \leq n \text{ , des variables } x_1, \dots, x_n \text{ et considérons l'expression } \prod_{i=1}^n \left[1 + \sum_{j \geq 1} t_j(x_i)^j\right] \text{ . Cette expression s'écrit aussi}$ $\sum_{i=1}^n t^{\alpha} f_{\alpha}(x_1, \dots, x_n) \text{ , où } \alpha = (\alpha_1, \dots, \alpha_r, 0, \dots) \text{ est un multi-indice et où } f_{\alpha} \text{ est une fonction symétrique des variables } x_i \text{ . On peut donc écrire } f_{\alpha}(x_1, \dots, x_n) = g_{\alpha}(\sigma_1, \dots, \sigma_n) \text{ où } g_{\alpha} \text{ est un polynôme bien déterminé en les } \sigma_i \text{ . Si } V \text{ est un fibré de rang } n \text{ , on pose alors } c_{\alpha}(V) = g_{\alpha}(c_1, \dots, c_n) \text{ (les } c_i \text{ étant les classes de Chern de } V \text{) et } c_t(V) = \sum_{\alpha} t^{\alpha} c_{\alpha}(V) \text{ (si } \alpha = (0, \dots, 0, \dots) \text{ , on convient que } t^{\alpha} = 1 \text{ et } c_{\alpha}(V) = 1 \text{). Notons que } c_{\alpha}(V) \in U^{2|\alpha|}(V) \text{ avec } |\alpha| = \Sigma \text{ i}\alpha_i \text{ .}$

Remarque. Les polynômes de Chern définissent un morphisme de foncteurs $\widetilde{KU}(X) \to U^*(X)[t]$, noté encore c_t , tel que $c_t(x+y) = c_t(x) \cdot c_t(y)$.

5. Opérations de Landweber-Novikov et opérations de Steenrod

Soit $f:Z\to X$ une application définissant un élément [f]=x de $U^*(X)$. Alors $s_t(x)$ est l'élément de $U^*(X)[t]$ défini par la formule $s_t(x)=f_*(c_t(v_f))$ où $v_f=f^*TX-TZ$. On vérifie aisément que $s_t:U^*(X)\to U^*(X)[t]$ est un morphisme de foncteurs respectant les structures d'anneaux. Si on pose $s_t(x)=\Sigma t^\alpha s_\alpha(x)$, les opérations de Landweber-Novikov

 s_{α} jouent un rôle important dans plusieurs problèmes sur le cobordisme [6], [8]. Dans le \S 9, nous aurons besoin du lemme suivant :

Lemme 3.- Pour tout élément z de $U^*(Z)$ et toute application propre $f:Z\to X$ munie d'une orientation complexe, on a la "formule de Riemann-Roch" $s_+(f_*z)=f_*(c_+v_{f^*}s_+z)$.

 $\begin{array}{l} \underline{\text{D\'emonstration}}. \text{ Soit } z = [g] \text{ où } g: Y \rightarrow Z \text{ et soit } h = f.g. \text{ Alors} \\ \\ s_t(f_*z) = h_*(c_t\nu_h) = (f_*g_*)(c_t\nu_h) = (f_*g_*)(c_t(g^*\nu_f + \nu_g)) = (f_*g_*)(g^*c_t\nu_f \cdot c_t\nu_g) \\ \\ = f_*(c_t\nu_f \cdot g_*c_t\nu_g) = f_*(c_t\nu_f \cdot s_tz) \text{ .} \end{array}$

Un autre type d'opération introduit par tom Dieck est défini de la manière suivante. Soit $\mathbf{Z}_k = \mathbf{Z}/(k)$ et soit Q un \mathbf{Z}_k -fibré principal de base B (dans la pratique Q sera \mathbf{S}^{2r+1} , r "grand" et B l'espace lenticulaire $\mathbf{S}^{2r+1}/\mathbf{Z}_k$). Soit $\mathbf{f}: \mathbf{Z} \rightarrow \mathbf{X}$ une application définissant un élément [f] de $\mathbf{U}^n(\mathbf{X})$. Alors si n est pair, l'application évidente $\mathbf{Q} \times_{\mathbf{Z}_k} \mathbf{Z}^k \rightarrow \mathbf{Q} \times_{\mathbf{Z}_k} \mathbf{X}^k$ définit un élément de $\mathbf{U}^{nk}(\mathbf{Q} \times_{\mathbf{Z}_k} \mathbf{X}^k)$. On a ainsi défini un morphisme de foncteurs $\mathbf{T}^k: \mathbf{U}^n(\mathbf{X}) \rightarrow \mathbf{U}^{nk}(\mathbf{Q} \times_{\mathbf{Z}_k} \mathbf{X}^k)$. Par restriction à $\mathbf{B} \times \mathbf{X} \subset \mathbf{Q} \times_{\mathbf{Z}_k} \mathbf{X}^k$, on en déduit l'opération de Steenrod-tom Dieck

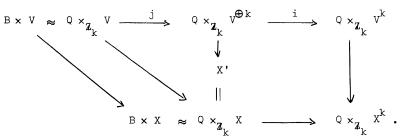
 $P^k : U^n(X) \rightarrow U^{nk}(B \times X)$.

Considérons un élément x de $U^n(X)$ (resp. un élément x' de $U^{n'}(X')$). Alors $P^k(x \cup x')$ est un élément de $U^{nk+n'k}(B \times X \times X)$. Soit $P^k(x) \cup_B P^k(x')$ la restriction évidente à $U^{nk+n'k}(B \times X \times X)$ de l'élément $P^k(x) \cup P^k(x')$ de $U^{nk+n'k}(B \times X \times B \times X)$. Il n'est pas difficile de voir que $P^k(x \cup x') = P^k(x) \cup_B P^k(x')$.

Si V est un fibré vectoriel complexe sur X , $V_k = Q \times_{\mathbf{Z}_k} V^k$ est un fibré sur $Q \times_{\mathbf{Z}_k} X^k$ et il est clair que $T^k(t_V) = t_{V_k}$, t_W représentent la classe de Thom de W = V ou V_k . La représentation standard

 $\sigma: \mathbf{Z}_k \to \operatorname{GL}_k(c)$ se scinde en $\rho \oplus 1$, l'espace de la représentation ρ étant le sous-espace vectoriel M de \mathbf{C}^k formé des vecteurs $(\mathbf{x}_1, \dots, \mathbf{x}_k)$ tels que $\Sigma \ \mathbf{x}_j = 0$. Soit $\widetilde{\rho} = Q \ \mathbf{x}_{\widetilde{\mathbf{Z}}_k}$ M le fibré sur B associé à la représentation ρ . Soit enfin $\pi: \mathbf{1} \otimes \mathbf{V} \to \mathbf{B} \times \mathbf{X}$ la projection canonique.

Démonstration. On a le diagramme commutatif



 $\text{Donc} \quad \mathbf{P}^k(\mathbf{t}_{V}) \ = \ (\text{ij})^*(\mathbf{t}_{V_k}) \ = \ \mathbf{j}^*(\mathbf{i}^*(\mathbf{t}_{V_k})) \ = \ \mathbf{j}^*(\mathbf{t}_{1 \otimes V} \cup_{X}, \ \mathbf{t}_{\widetilde{\rho} \otimes V}) \ = \ \mathbf{t}_{1 \otimes V} \cdot \boldsymbol{\pi}^*(\mathbf{e}(\widetilde{\rho} \otimes V)) \ .$

Pour toute application g:Y \to X désignons par g':BxY \to BxX l'application produit Id_R x g .

Lemme 5.- Soit g: Y \rightarrow X un plongement propre de codimension paire et soit Φ une famille de supports sur X telle que $\overline{g(Y)} \in \Phi$. Soit $\nu = \nu_g$ le fibré normal au plongement. On a alors la formule $P^k([g]) = g_*'(e(\widetilde{\rho} \otimes \nu))$ dans le groupe $U_{\Phi}^*(B \times X)$ où Φ' est engendrée par les $B \times S$, $S \in \Phi$.

Démonstration. Identifions \mathbf{v} à un voisinage tubulaire de Y dans X dont l'adhérence appartient à Φ , ce qui permet de factoriser \mathbf{g} en Y $\xrightarrow{\mathbf{i}}$ \mathbf{v} $\xrightarrow{\mathbf{u}}$ X . Alors $\mathbf{P}^k([\mathbf{g}]) = \mathbf{P}^k(\mathbf{g}_*(1)) = \mathbf{P}^k(\mathbf{u}_*\mathbf{i}_*(1)) = \mathbf{u}_*'(\mathbf{P}^k(\mathbf{i}_*(1)))$ (car \mathbf{v} est ouvert dans X) = $\mathbf{u}_*'(\mathbf{P}_k(\mathbf{v})) = \mathbf{u}_*'(\mathbf{t}_{1 \otimes \mathbf{v}} \cdot \mathbf{n}^*(\mathbf{e}(\widetilde{\mathbf{p}} \otimes \mathbf{v})))$ (lemme 4) = $\mathbf{u}_*'(\mathbf{i}_*'(\mathbf{e}(\widetilde{\mathbf{p}} \otimes \mathbf{v}))) = \mathbf{g}_*'(\mathbf{e}(\widetilde{\mathbf{p}} \otimes \mathbf{v}))$.

Lemme 6.- Soit x un élément de $U^{-2q}(X)$ représenté par une application propre $f: Y \to X$. Soit $f' = f \times Id_B$ et soit ϵ le fibré trivial de rang un sur $Y \times B$. Dans le groupe $U^{2m-2qk}(B \times X)$, on a la formule $e(\widetilde{\rho} \otimes 1)^m \cdot P^k(X) = f_*'(e(\widetilde{\rho} \otimes (m\epsilon + \nu_f)))$

pour m assez grand (indépendant de B).

6. Le théorème d'intégralité

Soit F la loi de groupe formel sur U* introduite dans le § 3 et soit C la sous-algèbre de U* engendrée sur Z par les coefficients a_{ij} de F. Soit $[m]_F(T)$ la série formelle définie par $[1]_F(T) = T$ et $[m]_F(T) = F(T,[m-1]_F(T))$. En particulier, $[m]_F(T) = mT + des$ termes de plus haut degré. D'autre part, soit η la représentation d'ordre un de Z_k associant au générateur standard de Z_k la multiplication par $\exp(2\pi i/k)$. Alors $\rho = \bigcup_{j=1}^{k-1} \eta^j$ et $e(\widetilde{\rho} \otimes L) = \bigcup_{j=1}^{k-1} e(\widetilde{\eta}^j \otimes L) = \bigcup_{j=1}^{k-1} F([j]_F(v), e(L))$ où $v = e(\widetilde{\eta})$ et où L est un fibré en droites sur X. Si on pose $w = e(\widetilde{\rho}) = (k-1)! \ v^{k-1} + \sum_{j \geq k} b_j v^j$ où $b_j \in C$, on a donc $e(\widetilde{\rho} \otimes L) = w + \sum_{j \geq 1} a_j(v)(e(L))^j$ où $a_j(T) \in C[[T]]$. Pour tout multi-indice $\alpha = (\alpha_1, \ldots, \alpha_r, 0, 0, 0, \ldots)$, posons $\ell(\alpha) = \Sigma \alpha_j$, $c_t(E) = \Sigma c_{\alpha}(E)t^{\alpha}$ et

⁽¹⁾ Noter que $p_*': U_{\Phi}^*(B \times C^m \times X) \approx U^*(B \times X)$ est l'isomorphisme de suspension.

408-14

$$c_{t}^{!}(E) = \sum_{\ell(\alpha) \leq n} w^{n-\ell(\alpha)} a(v)^{\alpha} c_{\alpha}(E) t^{\alpha} \text{ où } n \text{ est le rang du fibré } E \text{ et où }$$

 $a(v)^{\alpha} = a_1(v)^{\alpha_1} a_2(v)^{\alpha_2} \dots a_r(v)^{\alpha_r}$. Alors, on vérifie aisément que $c_{t}^{!}(E \oplus F) = c_{t}^{!}(E) \cup c_{t}^{!}(F) \text{ et que } c_{t}^{!}(L) = w + \sum_{j \geq 1}^{\Sigma} a_{j}(v)(e(L))^{j}t, \text{ si } L \text{ est}$ de rangun . Si $E = \bigoplus_{i=1}^{n} L_i$ est une somme de n fibrés de rang un , il s'en suit que $e(\widetilde{\rho} \otimes E) = \prod_{i=1}^{n} e(\widetilde{\rho} \otimes L_i) = \sum_{\ell(\alpha) \leq n} w^{n-\ell(\alpha)} a(v)^{\alpha} c_{\alpha}(E)$. D'après le principe de scindage, la formule $e(\tilde{\rho} \otimes E) = \sum_{\ell(\alpha) \leq n} w^{n-\ell(\alpha)} a(v)^{\alpha} c_{\alpha}(E)$ est vraie aussi pour tout fibré complexe E de rang n . Cette formule s'applique notamment dans la situation du lemme précédent où E = m ϵ + $\nu_{\rm f}$ est de rang n = m - q. Alors $c_{\alpha}(E) = c_{\alpha}(v_f)$ et $f_{*}(e(\tilde{\rho} \otimes E)) =$ $f_{*}^{\bullet}(w^{n-\ell(\alpha)}a(v)^{\alpha}c_{n}(E)) = w^{n-\ell(\alpha)}a(v)^{\alpha}f_{*}(c_{n}(E)) = w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x) . \text{ D'où le } f_{*}^{\bullet}(w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x) . \text{ D'où le } f_{*}^{\bullet}(w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x)) = w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x) . \text{ D'où le } f_{*}^{\bullet}(w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x) . \text{ D'où le } f_{*}^{\bullet}(w^{n-\ell(\alpha$ théorème :

<u>et</u>

$$w^{n+q}P^k(x) = \sum_{\ell(\alpha) \le n} w^{n-\ell(\alpha)}a(v)^{\alpha}s_{\alpha}(x)$$

 $\underline{\text{pour}}$ n $\underline{\text{assez grand}}$ (indépendant de B). $\underline{\text{Dans cette formule}}$, $\underline{\text{a}}_{j}(T)$ $\underline{\text{est une}}$ $\underline{\text{s\'erie formelle \`a coefficients dans}} \quad \mathbf{C} \quad \underline{\text{et}} \quad \mathbf{w} = (k-1)! \mathbf{v}^{k-1} + \sum_{j \ge k} \mathbf{b}_j \mathbf{v}^j \quad \underline{\text{o\`u}}$ $b_i \in C$.

7. Cobordisme des espaces lenticulaires

Soit L = $\widetilde{\eta}$ = Q $\times_{\mathbf{Z}_{L}}$ C le fibré en droites sur B associé à la représentation η . Soit $j:Q\hookrightarrow L\hookrightarrow P(L\oplus 1)$ et soit ξ^* le dual du fibré canonique sur $P(L \oplus 1)$.

Lemme 7.- La classe d'Euler de $\xi^{*\otimes k}$ est égale à $j_*(1) = [j]$.

<u>Démonstration</u>. Le fibré $\xi^{*\otimes k}$ s'identifie au quotient de $(L\oplus 1)\times C$ par la relation d'équivalence $(a,t)\sim (\mu a,\mu^k t)$, $\mu\in C^*$. D'autre part, un point de L peut s'écrire qz, $q\in Q$ et $z\in C$, en convenant que $(q\sigma^r)z=q(\omega^rz)$ où σ est le générateur de \mathbf{Z}_k et où $\omega=\exp(2\pi i/k)$. Soit maintenant s la section de $\xi^{*\otimes k}$ induite par $a\longmapsto (a,t)$ où $t=z^k-\lambda^k$ lorsqu'on écrit $a=(qz,\lambda)\in L\oplus 1$. Alors s est transverse à la section nulle et $s^{-1}(0)=Q$.

<u>Lemme 8.- Soit</u> $\Phi_k(x)$ <u>la série formelle</u> $\frac{[k]_F(x)}{x}$ <u>et soit</u> $f: Q \to B$ <u>la projection canonique</u>. <u>Alors</u> $f_*(1) = \Phi_k(e(L))$.

Le fibré $\xi^{\otimes k}$ sur $P_n = P_n(C)$ s'identifie au quotient de $S^{2n+1} \times C$ par la relation $(x_{\mu}, t) \sim (x_{\mu}^k t)$, $\mu \in S^1$. Le fibré en sphères associé $S(\xi^{\otimes k})$ s'identifie donc à l'espace lenticulaire S^{2n+1}/\mathbb{Z}_k par l'application $(x, t) \mapsto \sqrt[k]{t} x$. La suite exacte de Gysin associé au fibré $\xi^{\otimes k}$ s'écrit

408-16

(car $U^q(s^{2n+1}/\mathbf{Z}_k)$ est déjà de type fini d'après le théorème 1). De manière plus générale, X étant une variété fixée, posons $h^*(Y) = U^*(Y \times X)$ et $\widetilde{h}^*(Y) = \operatorname{Coker}(h^*(\operatorname{Point}) \to h^*(Y))$. Alors un raisonnement analogue montrerait que $\widetilde{h}^q(s^{2n+1}/\mathbf{Z}_k)$ est un groupe fini si X a un nombre fini de composantes connexes.

THÉORÈME 6.- Posons $h^{q}(B\mathbf{Z}_{k}) = \lim_{h} h^{q}(S^{2n+1}/\mathbf{Z}_{k})$. On a alors la suite exacte $h^{q}(Point) \xrightarrow{\Phi_{k}(v)} h^{q}(B\mathbf{Z}_{k}) \xrightarrow{v} h^{q+2}(B\mathbf{Z}_{k})$.

<u>Démonstration</u>. Ecrivons un bout d**e la** suite exacte de Gysin associé au fibré L (avec $Q = S^{2n+1}$ et $B = Q/\mathbf{Z}_k$):

$$h^{q}(Point) \xrightarrow{\theta} h^{q}(BZ_{k}) \xrightarrow{v} h^{q+2}(BZ_{k})$$
.

Dans cette suite, θ coîncide avec $\lim_{k \to \infty} (r_n s_n)_* = \lim_{k \to \infty} (f_n)_*$ où $f_n: s^{2n+1} \to s^{2n+1}/2_k$. D'après le lemme 8, θ coîncide donc bien avec la multiplication par $\Phi_k(v)$.

8. Le théorème fondamental

THÉORÈME 7.- Si X a le type d'homotopie d'un CW-complexe fini (1) connexe, on a

COROLLAIRE 3 (suggéré par Conner et Smith [4] p. 166).- La U^* -algèbre $U^*(X)$ est engendrée par des éléments de $U^*(X)$ de degrés strictement positifs.

En appliquant le foncteur suspension, on voit aisément qu'on est ramené à démontrer que $\widetilde{U}^{pair}(X) = C \ _{q} \sum_{0} U^{2q}(X)$. En désignant par $R^*(X)$ le sousgroupe $C \ _{q>0}^{\sum_{0} U^{2q}(X)}$, il suffit de démontrer que $R^{-2j}(X)_{(k)} = \widetilde{U}^{-2j}(X)_{(k)}$ en localisant pour chaque nombre premier k. Cette identité est triviale lorsque j < 0. Raisonnons alors par récurrence sur j, l'identité étant supposée vérifiée pour j < q. Soit x un élément de $\widetilde{U}^{-2q}(X)$ qu'on identifie ici à $Ker(U^{-2q}(X) \to U^{-2q}(Point))$. D'après le théorème 5, on a pour n assez grand l'identité

(1)
$$w^{n+q} p^{k}(x) = \sum_{\ell(\alpha) \le n} w^{n-\ell(\alpha)} a(v)^{\alpha} s_{\alpha}(x)$$

dans le groupe $\mathfrak{T}^{2n(k-1)-2q}(B\times X)$. En fait, en considérant des limites projectives comme dans le paragraphe précédent, il est plus commode de regarder cette identité dans le groupe $\mathfrak{T}^{2n(k-1)-2q}(B\mathbf{Z}_k\times X)$. Puisque $\mathbf{W}=(k-1)!\mathbf{v}^{k-1}+\sum\limits_{j\geq k}\mathbf{b}_j\mathbf{v}^j$ où $\mathbf{b}_j\in C$, on a $\mathbf{v}^{n'}(\mathbf{w}^q\mathbf{p}^k(\mathbf{x})-\mathbf{x})=\psi'(\mathbf{v})$, où $\psi'(T)\in R^*(X)_{(k)}(T)$ et où n'=n(k-1).

^{(&}lt;sup>1</sup>) En fait, on démontrera ce théorème pour une variété. Ceci ne restreint pas la généralité puisque tout CW-complexe fini a le type d'homotopie d'une variété (ouverte).

<u>Démonstration du lemme</u>. Soit m le plus petit entier tel que $v^m(v^q P^k(x) - x)$ puisse s'écrire $\psi(v)$ où $\psi(T) \in \mathbb{R}^*(X)_{(k)}(T)$. Si m = 0, il n'y a rien à démontrer. Supposons donc $m \ge 1$. En restreignant l'identité à $\widetilde{U}^*(X) \subset \widetilde{U}^*(BZ_k \times X)$, on en déduit $\psi(0) = 0$, donc $\psi(T) = T\psi_1(T)$, soit $v(v^{m-1}(v^q P^k(x) - x) - \psi_1(v)) = 0$. D'après le théorème 6, on a donc $v^{m-1}(v^q P^k(x) - x) = \psi_1(v) + y\Phi_k(v)$, où on peut supposer que $y \in \widetilde{U}^*(X)$. Cette dernière identité a lieu dans le groupe $U^{2(m-1)-2q}(X)_{(k)}$. Si m > 1, y appartient à $\widetilde{U}^{2(m-1)-2q}(X)_{(k)} = \mathbb{R}^{2(m-1)-2q}(X)_{(k)}$ d'après l'hypothèse de récurrence, ce qui contredit la minimalité de m. Donc m = 1 et on a bien $v^q P^k(x) - x = \psi_1(v) + y\Phi_k(v)$.

Fin de la démonstration du théorème 7. Restreignons l'identité du lemme 9 à $\widetilde{U}^*(X)$ et distinguons deux cas

- 1) q>0. Alors l'identité devient $-x=\psi_1(0)+ky$, ce qui implique que tout élément de $\widetilde{U}^{-2q}(X)_{(k)}/R^{-2q}(X)_{(k)}$ est k-divisible. Puisque $\widetilde{U}^{-2q}(X)$ est un groupe de type fini, on a donc $\widetilde{U}^{-2q}(X)_{(k)}/R^{-2q}(X)_{(k)}=0$.
- 2) q=0 . On a alors $x^k-x=\psi_1(0)+ky$. Mais, x étant nilpotent, la transformation $x\longmapsto x^k-x$ induit un automorphisme de $\widetilde{U}^{\circ}(X)$, donc de $\widetilde{U}^{\circ}(X)_{(k)}/R^{\circ}(X)_{(k)}$, dont l'image est k-divisible. Par suite, $\widetilde{U}^{\circ}(X)_{(k)}/R^{\circ}(X)_{(k)}=0$.

9. La transformation de Boardman

Pour toute application propre $f: Z \rightarrow X$ munie d'une orientation complexe, on sait définir un homomorphisme de Gysin en cohomologie $H^*(Z) \to H^*(X)$ qu'on notera f_*^H pour le distinguer de $f_*^U:U^*(Z)\to U^*(X)$. Définissons un homomorphisme $\gamma: U^*(X) \to H^*(X)$ par la formule $\gamma([f]) = \gamma(f_*^U(1)) = f_*^H(1)$. Il est clair que $\gamma(f_*^U(z)) = f_*^H(\gamma z)$ pour tout élément z de $U^*(Z)$ et que γ est une transformation de théories cohomologiques multiplicatives. Elle induit une transformation de $U^*(X)[t]$ dans $H^*(X)[t]$ qu'on notera aussi γ . D'autre part, le formalisme des premiers paragraphes s'applique aussi à la cohomologie et, si on désigne par $e^{H}(V)$, $c_{+}^{H}(V)$, etc... les classes caractéristiques dans les théories $\mbox{ H}^{\mbox{\scriptsize \#}}$ et $\mbox{ U}^{\mbox{\scriptsize \#}}$, on a $\gamma(\mbox{e}^{\mbox{\scriptsize U}}(\mbox{\scriptsize V})) = \mbox{e}^{\mbox{\scriptsize H}}(\mbox{\scriptsize V})$ et $\gamma(c_t^U(V)) = c_t^H(V) \text{ . La "transformation de Boardman" } \beta_t : \text{U*}(X) \to \text{H*}(X)[t]$ est l'homomorphisme composé $\gamma.s_{t}$: c'est une transformation cohomologique multiplicative dont le comportement vis-à-vis des homomorphismes de Gysin est précisé par la proposition suivante, conséquence évidente du lemme 3 : PROPOSITION 1.- Pour tout élément z de $U^*(Z)$, on a la formule $\beta_{\mathsf{t}}(f_{\star}^{\mathsf{U}}(z)) = f_{\star}^{\mathsf{H}}(c_{\mathsf{t}}^{\mathsf{H}}(\mathsf{v}_{\mathsf{f}}).\beta_{\mathsf{t}}(z)) \cdot \underline{\mathsf{En particulier}}, \underline{\mathsf{si}} \quad \mathsf{f} : \mathsf{Z} \to \mathsf{X} \quad \underline{\mathsf{est la projec}} - \underline{\mathsf{est la projec}}$ tion de Z sur X réduit à un point, $\beta_{+}([f])$ est un polynôme dont les coefficients sont déterminés par les nombres de Chern de Z.

PROPOSITION 2.- Si L est un fibré en droites, on a $\beta_t(e^U(L)) = \sum_{j \ge 0}^{\Sigma} t_j(e^H(L))^{j+1}$ (on convient que $t_0 = 1$).

Soient maintenant L_1 et L_2 deux fibrés en droites. On a alors $e^U(L_1 \otimes L_2) = F(e^U(L_1), e^U(L_2))$ et $\beta_t(e^U(L_1 \otimes L_2)) = \sum\limits_{j \ge 0} t_j(e^H(L_1 \otimes L_2))^{j+1}$ $= \sum\limits_{j \ge 0} t_j(e^H(L_1) + e^H(L_2))^{j+1}$. Soit $(\beta_t F)$ la loi de groupe formel sur $\mathbb{Z}[t]$ définie par les coefficients $b_{ij} = \beta_t(a_{ij})$. Si on pose $\theta_t(x) = \sum\limits_{j \ge 0} t_j x^{j+1}$, la formule précédente peut s'écrire $(\beta_t F)(\theta_t(x), \theta_t(y)) = \theta_t(x+y)$ en tenant compte encore de la proposition 2. Grâce à un changement de variable, on en déduit que $(\beta_t F)(x,y) = \theta_t(\theta_t^{-1}(x) + \theta_t^{-1}(y))$, formule qui détermine entièrement la loi de groupe formel $\beta_t F$ dans l'anneau $\mathbb{Z}[t] = H^*(\text{Point})[t]$.

10. L'anneau de Lazard. Structure de U*

Considérons le foncteur qui associe à tout anneau A l'ensemble des lois de groupe formel $x+y+\sum\limits_{\substack{i\geq 1\\j\geq 1}}a_{ij}x^iy^j$ sur A (cf. § 3). Ce foncteur est rejulation x_i

présentable dans le sens suivant : il existe un anneau L ("l'anneau de Lazard") et une loi de groupe formel universelle F_L sur L telle que toute loi de groupe formel sur A soit déduite de F_L par un homomorphisme L \rightarrow A qui lui est attaché de manière unique. Pour anneau L on prend le quotient de l'algèbre $2[a_{11}, a_{12}, \ldots, a_{ij}, \ldots]$ par l'idéal engendré par les relations polynomiales exprimant que $G(x, y) = x + y + \sum_{i \ge 1}^{\Sigma} a_{ij} x^i y^j$ est $j \ge 1$

une loi de groupe formel. La loi universelle F_L est définie simplement par $F_L(x,y) = x + y + \sum_{\substack{i \geq 1 \ i \geq 1}} \bar{a}_{ij} x^i y^j$ où \bar{a}_{ij} est la classe de a_{ij} dans L.

L'anneau L peut être gradué de plusieurs façons en assignant à \bar{a}_{ij} le degré 2-2i-2j (cas du cobordisme complexe), 1-i-j (cas du cobordisme réel) ou i+j-1. Nous allons adopter la troisième convention.

THÉORÈME 8 (Lazard).- L'anneau L est une algèbre de polynômes sur 2 avec un générateur en chaque degré positif.

$$L \xrightarrow{\delta} U^{\text{pair}} \xrightarrow{\beta_t} \mathbf{Z[t]}.$$

Si on convient (provisoirement) que les éléments de U^{-2q} sont de degré q et que t_j est de degré j, ces homomorphismes respectent les graduations. L'homomorphisme composé $\alpha=\beta_t\cdot\delta$ transporte la loi universelle F_L en la loi H définie par F_L 0 et F_L 1 en la loi verselle par F_L 2 en la loi verselle par F_L 3 en la loi verselle par F_L 4 en la loi verselle par F_L 6 en la loi verselle par F_L 7 en la loi verselle par F_L 8 en la loi verselle par F_L 9 en la loi

$$\alpha_{_{\mathrm{G}}}: Q_{_{\mathrm{G}}}(L) \rightarrow Q_{_{\mathrm{G}}}(\mathbf{Z}[t])$$
.

Pour cela, remarquons que l'ensemble des homomorphismes de $Q_q(L)$ dans un groupe abélien G s'identifie à l'ensemble des lois de groupe formel sur l'anneau $A=\mathbf{Z}\oplus_{\mathbf{E}}G$, avec $\mathbf{e}^2=0$, qui sont de la forme $x+y+\mathbf{e}\Gamma(x,y)$, où $\Gamma(x,y)$ est un polynôme homogène de degré q+1. En écrivant que $x+y+\mathbf{e}\Gamma(x,y)$ est une loi de groupe formel, on trouve les identités $\Gamma(0,x)=\Gamma(x,0)=\Gamma(x,y)-\Gamma(y,x)=\Gamma(y,z)-\Gamma(x+y,z)+\Gamma(x,y+z)-\Gamma(x,y)=0$.

 $\begin{array}{c} \underline{\text{Lemme}} \text{ 10 (Lazard, Fr\"{o}hlich [5] p. 62).-} & \underline{\text{Soit }} \Gamma & \underline{\text{comme ci-dessus. Alors}} \\ \Gamma(x\,,\,y) \,=\, a\, \cdot \frac{1}{\gamma_q} \, \left(\left(x\,+\,y \right)^{q+1} \,-\,x^{q+1} \,-\,y^{q+1} \right) \,\,, & a\,\in\,G \,\,, \end{array}$

Ce lemme implique bien entendu que $Q_q(L) \approx \mathbf{Z}$. La loi \mathbf{F}_L induit une loi sur $\mathbf{Z} \oplus \epsilon Q_q(L)$ dont l'image dans $\mathbf{Z} \oplus \epsilon Q_q(\mathbf{Z}[t])$ est $\theta_t'(\theta_t'^{-1}(\mathbf{x}) + \theta_t'^{-1}(\mathbf{y})) = \mathbf{x} + \mathbf{y} + \epsilon t_q((\mathbf{x} + \mathbf{y})^{q+1} - \mathbf{x}^{q+1} - \mathbf{y}^{q+1})$ avec $\theta_t'(z) = z + \epsilon t_q z^{q+1}$. En écrivant $Q_q(L) \approx \mathbf{Z} \approx Q_q(\mathbf{Z}[t])$, il en résulte que

 $\pmb{lpha}_{_{\mathbf{G}}}$ est la multiplication par $\pmb{\gamma}_{_{\mathbf{G}}}$.

Fin de la démonstration du théorème 8. Pour chaque entier q , choisissons un élément a_q de L dont l'image dans $Q_q(L)$ est un générateur. On en déduit un homomorphisme surjectif $\mathbf{Z}[t_1',\ldots,t_q',\ldots]$ $\overset{\sigma}{\longrightarrow} L$ défini par $\sigma(t_q')=a_q$. En tensorisant par Q, cet homomorphisme devient bijectif puisque $(\alpha\sigma)(t_q')=\gamma_q t_q$ modulo des éléments décomposables. Donc σ est bijectif.

La démonstration du théorème 8 a mis en lumière le rôle de la suite $L \xrightarrow{\delta} U^{\text{pair}} \xrightarrow{\beta_t} Z[t] \cdot D'\text{après le théorème 7, } \delta \quad \text{est surjectif. Puisque}$ L est sans torsion (théorème 8), $\beta_t \cdot \delta \quad \text{et} \quad \delta \quad \text{sont injectifs. On en déduit}$ une version plus précise du théorème dé Milnor cité dans l'introduction : $TH\'EOR\`EME 9.- L'homomorphisme \quad \delta \quad \text{est un isomorphisme gradué de l'anneau de}$ $Lazard \quad L \quad \text{sur l'anneau} \quad U^* = U^0 \oplus U^{-1} \oplus U^{-2} \oplus \dots \quad \text{à condition d'affecter}$ $Les g\'en\'erateurs \quad \bar{a}_{ij} \quad \text{de} \quad L \quad \text{du degr\'e} \quad 2-2i-2j \cdot \underline{Par cons\'equent}, \quad U^* \quad \text{est}$ $L'somorphe \ \dot{a} \quad \text{une alg\'ebre de polynômes} \quad Z[x_2, x_4, \dots] \quad \text{où} \quad x_{2i} \quad \text{est de degr\'e}$ $-2i \quad \text{et tout \'el\'ement de} \quad U^* \quad \text{est d\'etermin\'e par ses nombres de Chern.}$

11. Cobordisme réel (non orienté)

Faute de place, nous nous bornerons à esquisser les modifications nécessaires pour adapter ce qui précède au cas réel. Ainsi $N^q(X)$ désignera l'ensemble des classes de cobordisme d'applications propres $Z\to X$ de dimension q. Les classes de Chern sont remplacées par les classes de Stiefel-Whitney. On a des opérations de Landweber-Novikov $s_{\alpha}:N^q(X)\to N^{q+|\alpha|}(X)$. Enfin, les opérations de Steenrod-tom Dieck se réduisent à $P^2:N^q(X)\to N^{2q}(P_{\infty}\times X)$ où $P_{\infty}=BZ_2$ désigne l'l'espace projectif réel infini. La démonstration du théorème 7 s'adapte sans peine au cobordisme réel. Elle permet de prouver que N^* est engendré par les coefficients

 $a_{ij} \in N^{-i-j-1}$ de la loi de groupe formel F(x,y) exprimant la classe d'Euler du produit tensoriel de deux fibrés en droites <u>réelles</u> en fonction des classes d'Euler de chacun des facteurs.

Notons que F(x,x)=0 et que N^* est un anneau de caractéristique 2 . Ceci nous amène à considérer le foncteur qui associe à chaque anneau A de caractéristique 2 l'ensemble des lois de groupe formel F sur A telles que F(x,x)=0 . Soit L_2 l'anneau qui représente ce foncteur. Pour toute variété X, on a aussi un homomorphisme de Boardman "réduit" $\beta_t: N^*(X) \to H^*(X)[t]$ où $H^*(X)$ désigne $H^*(X; \mathbf{Z}_2)$ et où $t=(t_2,t_4,t_5,\ldots)$. Pour X réduit à un point, on peut considérer la suite L_2 $\xrightarrow{\delta}$ N^* $\xrightarrow{\beta_t}$ $\mathbf{Z}_2[t]$. Le calcul effectué à la fin du \S 9 montre que la loi universelle sur L_2 se transporte par $\alpha=\beta_t.\delta$ en la loi sur $\mathbf{Z}_2[t]$ définie par $H(x,y)=\theta_t(\theta_t^{-1}(x)+\theta_t^{-1}(y))$, où $\theta_t(x)=x+t_2x^3+t_4x^5+t_5x^6+\ldots$. En fait, le lemme 10 montre que $Q_q(L_2)\approx Q_q(\mathbf{Z}_2[t])$ et $L_2\approx \mathbf{Z}_2[t]$, l'isomorphisme étant induit par α . Puisque δ est surjectif d'après le théorème 7 adapté au cas réel, on obtient ainsi une version un peu plus précise du théorème de Thom :

THÉORÈME 10.- Les homomorphismes δ et β_t sont des isomorphismes. En particulier, N^* est une algèbre de polynômes sur \mathbf{Z}_2 avec des générateurs \mathbf{x}_1 en chaque degré -i , où i est un entier positif qui n'est pas de la forme 2^j-1 . Enfin, la classe de cobordisme d'une variété réelle est déterminée par ses nombres de Stiefel-Whitney.

COROLLAIRE 4.- L'homomorphisme de Boardman réduit ${\tt N^*(X)} \ \to \ {\tt H^*(X)[t]} \approx {\tt H^*(X)} \otimes_{{\tt Z}_2} {\tt N^*}$ est un isomorphisme.

12. Quelques questions

Le rôle des groupes formels en cobordisme n'a pas encore été suffisamment exploré au goût du conférencier. Il conviendrait de regarder le cobordisme orienté réel et le cobordisme symplectique (pour ne parler que de ceux-là) et utiliser la technique des groupes formels pour les calculer. Dans le premier cas, on devrait au moins retrouver les résultats de Wall. Il conviendrait de voir autres aussi comment les théorèmes démontrés ici pourraient s'adapter aux théories cohomologiques générales (par exemple la K-théorie connexe ou la cohomotopie stable).

BIBLIOGRAPHIE

- [1] J. F. ADAMS Quillen's work on formal groups and complex cobordism,
 Notes de Chicago, 1970.
- [2] H. CARTAN Sur les foncteurs K(X) et K(X,A), Séminaire Cartan-Schwartz, 1963/64, n° 3, Benjamin, New York.
- [3] P. CARTIER Groupes formels, Notes ronéotypées, I.R.M.A., Strasbourg.
- [4] P. E. CONNER and L. SMITH On the complex bordism of finite complexes, Publ. Math. I.H.E.S., 37 (1969), p. 117-221.
- [5] A. FRÖHLICH Formal groups, Lecture Notes in Math., 74 (1968), Springer, Berlin.
- [6] P. S. LANDWEBER Cobordism operations and Hopf algebras, Trans. A.M.S., 129 (1967), p. 94-110.
- [7] J. MILNOR On the cobordism Ω^* and a complex analogue, Part I, Amer. J. Math., 82 (1960), p. 505-521.
- [8] P. S. NOVIKOV Operation rings and spectral sequences of the Adams type in extraordinary cohomology theories. U-cobordism and K-theory, Dokl. Akad. Nauk SSSR, 172 (1967), p. 33-36. [Traduction anglaise: Soviet Math. Dokl., 8 (1967), p. 27-31.]
- [9] D. QUILLEN Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., vol. 7, no 1 (1971), P. 29-56.
- [10] R. THOM Quelques propriétés globales des variétés différentiables, Comm. Math. Helv., 28 (1954), p. 17-86.
- [11] T. tom DIECK Steenrod operationen in Kobordismen-Theorien, Math. Z., 107 (1968), p. 380-401. Voir aussi Kobordismentheorie (avec T. Bröcker), Lecture Notes in Math., 178 (1971), Springer, Berlin.